Talk:Lecture - 2016 Course Introduction

From Embryology

Course Introduction

Dr Mark Hill

Course coordinator This first lecture will be a general introduction to the course and the subject of Embryology.

Firstly, an introduction to the course, its content, method of presentation, assessment and an opportunity to ask questions.
Secondly, some historic background to the subject and related current Australian trends. I do not expect you to remember specific historic dates or statistical data, this is provided as an introduction to the topic.

I like my lectures to be interactive, so ask me questions and I will also be asking you questions!

2016 Course Outline

Lecture - Print PDF

Lecture Objectives

Early Human Zygote
Introduction Movies
Human fertilization 1 icon.jpg
 ‎‎Fertilisation to
4 Blastomere
Page | Play
Embryo stages 002 icon.jpg
 ‎‎Human Embryo
Page | Play
Birth MRI icon.jpg
 ‎‎Human Birth MRI
Page | Play
Fertilization Embryonic Development (week 1 - 8) Birth (week 37)
<html5media height="384" width="352">File:Human development 001.mp4</html5media>

Click Here to play on mobile device

  1. Understand the course objectives and assessment.
  2. Brief understanding of the historic background of embryology.
  3. Brief understanding of Australian data.
  4. Broad overview of human development.

ECHO360 icon.gif

Human development 001 icon.jpg
 ‎‎Human Development
Page | Play

ANAT2341 Course Outline

Human embryonic development week 1 to 8
Human embryonic development (week 1 to 8)

I will spend the first half going through the current course design, online support and assessment criteria. This is an opportunity to ask the coordinator questions about the course.

2015 Course Outline PDF

Audio from this lecture is available from ECHO360 or by the link within Moodle.

Course Links: Homepage | Overview | Timetable | Moodle | Lecture 1 PDF

Lecture Archive: 2014 | 2013 | 2012 | 2011

Email me for any additional information or to make an appointment.


The Developing Human, 10th edn
  • The textbooks listed below is recommended for this course and page references are given in each lecture.
  • The UNSW Library is currently updating subscription to the new textbook10th edition for 2015. When available I will update the links shown here.
  • Textbook available at campus bookshop and online to UNSW students.
  • There are additional embryology textbooks that can also be used, consult course organizer.

The Developing Human: Clinically Oriented Embryology (10th edn) 
The Developing Human, 10th edn.jpg

UNSW Students have online access to the current 10th edn. through the UNSW Library subscription (with student Zpass log-in).

APA Citation: Moore, K.L., Persaud, T.V.N. & Torchia, M.G. (2015). The developing human: clinically oriented embryology (10th ed.). Philadelphia: Saunders.

Links: PermaLink | UNSW Embryology Textbooks | Embryology Textbooks | UNSW Library
  1. Introduction to the Developing Human
  2. First Week of Human Development
  3. Second Week of Human Development
  4. Third Week of Human Development
  5. Fourth to Eighth Weeks of Human Development
  6. Fetal Period
  7. Placenta and Fetal Membranes
  8. Body Cavities and Diaphragm
  9. Pharyngeal Apparatus, Face, and Neck
  10. Respiratory System
  11. Alimentary System
  12. Urogenital System
  13. Cardiovascular System
  14. Skeletal System
  15. Muscular System
  16. Development of Limbs
  17. Nervous System
  18. Development of Eyes and Ears
  19. Integumentary System
  20. Human Birth Defects
  21. Common Signaling Pathways Used During Development
  22. Appendix : Discussion of Clinically Oriented Problems

Larsen's human embryology 5th ed.jpg Schoenwolf, G.C., Bleyl, S.B., Brauer, P.R., Francis-West, P.H. & Philippa H. (2015). Larsen's human embryology (5th ed.). New York; Edinburgh: Churchill Livingstone.

UNSW students have full access to this textbook edition through UNSW Library subscription (with student Zpass log-in).


History - Embryologists | Embryology History | Human Embryo Collections

The Position of the Uterus and Fetus at Term (1872)

17-18C Braune - The Position of the Uterus and Fetus at Term (1872)

Human Embryo Collections 
Wilhelm His.jpg

Wilhelm His (1831-1904)

His's Normentafel (Normal Table)

Anatomie menschlicher Embryonen (1882)

Keibel Mall 034a.jpg Keibel Mall 034b.jpg
Franz Keibel.jpg

Franz Keibel (1861 - 1929)

Franz Keibel and Curt Elze (1908) Normal Plates of the Development of the Human Embryo

Keibel1908 plate01.jpg Keibel1908 plate02.jpg
Franklin Mall 03.jpg

Franklin Mall (1862-1917)

Carnegie Collection

Human Carnegie stage 10-23.jpg
Begun by Dr. Hideo Nishimura (1912–1995)

Hideo Nishimura.jpg

Developed by Kohei Shiota and currently curated by Shigehito Yamada.

Shiota Hill Yamada.jpg

Kyoto Collection

Human Carnegie stage 1-23.jpg
Animal Models 
Frog Links: Frog Development | 2009 Student Project | 1897 Development of the Frog's Egg | Hans Spemann | Wilhelm Roux | 1921 Early Frog Development | 1951 Rana pipiens Development | Rana pipiens Images | Frog Glossary | John Gurdon | Category:Frog | Animal Development
  • The frog was used by many of the early embryology investigators and currently there are many different molecular mechanisms concerning development of the frog.
  • The eggs develop independently, in relative synchrony and are relatively see-through making staging and observation fairly easy.
  • The frog was a key model for the study of the process of gastrulation.
Chick icon.jpg


  • The chicken embryo develops and hatches in 20-21 days and historically these were one of the first embryos to be studied. Cutting a window in the egg shell allows direct observation of the embryo. The Hamburger & Hamilton chicken development staging allowed researchers to develop this model as a key embryological tool.
  • Key research involved the transplanting of quail cells into chick embryos, to later identify their contribution to different embryonic structures, particularly for somite, neural tube and neural crest development.
  • The mouse has always been a good embryological model, easy to generate (litters 8-20) and quick (21d).
  • Mouse embryology really expanded when molecular biologists used mice for gene knockouts.
Fly Development - The fruitfly (drosophila) was and is the traditional geneticist's tool. It has been transformed to an magnificent embryologist's tool, with developmental mechanisms being uncovered in this system combined with homolgy gene searches in other species. The fly genome was one of the first to be been completely sequenced. In early development nurse cells sacrifice their cytoplasmic contents to allow egg growth and early pattern formation is through the localization of maternal messenger RNAs (mRNAs).
C elegans.jpg
Worm Development - Early embryological studies of the worm Caenorhabditis elegans (C.Elegans, so called because of its "elegant" curving movement) characterized the fate of each and every cell in the worm through all stages of development. This worm has recently had its entire genome sequenced.
Zebrafish Development - Zebrafish are seen as the latest and greatest "model' for embryological development studies. They can be easily genetically altered and develop as practically "see through" embryos, all internal development can be clearly observed from the outside in the living embryo.
In Vitro Fertilization (1978) Stem Cells (1981) Induced Stem Cells (2006) Molecular Development
Intracytoplasmic sperm insemination.jpg Hematopoietic and stromal cell differentiation.jpg Mouse- embryonic stem cell signaling regulation.jpg Hedgehog signaling pathway.jpg

Australian Data

1 August 2014 at 03:53:30 PM (Canberra time), the resident population of Australia is projected to be: 23,550,233.

Australian-births 2011.jpg

Australian Statistics
Australia mothers and babies 2011.jpg Assisted reproductive technology in Australia and New Zealand 2010.jpg
Australia’s mothers and babies (2011) Assisted reproductive technology in Australia and New Zealand (2010)
Average maternal age in 2011 was 30.0 years, the same as 2009 but still more than the earlier years (2000, 29.0 years; 2002, 29.4 years). Assisted Reproductive Technology (ART) was used by 3.8% (2009, 3.6%) of women who gave birth.
Victoria - 10 most reported birth anomalies 
Based upon statistics from the Victorian Perinatal Data Collection Unit in Victoria between 2003-2004.
Hypospadia Hypospadias (More? Development Animation - Genital Male External | Genital Abnormalities - Hypospadia)
Obstructive Defect of the Renal Pelvis Obstructive Defects of the Renal Pelvis (obstructive defects of the renal pelvis, uteropelvic junction obstruction, pelvo-uterero junction obstruction) Term describing a developmental renal abnormality due to partial or complete blockage of the drainage of the kidney pelvis requiring surgical correction. The blockage can also have several causes including: unusual ureter twisting or bending, ureter compression by a blood vessel, malformations of the muscular wall. The blockage leads to an accumulation of urine in the affected region, with several potential effects: nephron damage from compression (hydronephrosis); decreased urine output leading to lack of amniotic fluid (oligohydramnios); respiratory development effects due to the lack of amniotic fluid.
  • The most common type of obstruction is at the uteropelvic junction (UPJ), between the junction of the ureter and the kidney.
  • Blockage lower as the ureter enters the bladder, the ureterovesicular junction (UVJ), usually involves only one kidney and the back flow enlarges the affected ureter (megaureter).

(More? Renal System - Abnormalities | Renal System Development)

Ventricular Septal Defect Ventricular Septal Defect (More? Cardiovascular Abnormalities - Ventricular Septal Defect)

Basic Heart Development Timeline.jpg

Heart Development Timeline (see Basic Cardiac Embryology)

Congenital dislocation hip Congenital Dislocated Hip (More? Musculoskelal Abnormalities - Congenital Dislocation of the Hip (CDH))

(DHH, congenital dislocated hip, congenital hip dislocation, congenital hip dysplasia) Term describes a spectrum of musculoskeletal disorders of hip instability due either to the femoral head being able to move outside the acetabulum (luxation or dislocation), or abnormally within the acetabulum (subluxation or partial dislocation). This includes presentation following a normal examination of the hips in the newborn period (Ortolani and Barlow tests). When detected can be managed with splinting (Denis-Browne splint) allows the hip joint to develop normally and does not require surgery. If undetected and left untreated, the hip joint develops abnormally and surgical reduction is required. (More? Musculoskeletal System Development)

Trisomy 21 male Trisomy 21 or Down syndrome - (More? Trisomy 21)
Hydrocephalus Hydrocephalus (More? Neural Abnormalities - Hydrocephalus | NINDS - Hydrocephalus Fact Sheet | Hydrocephalus Support Association | USA National Hydrocephalus Foundation)
Cleft palate Cleft Palate (More? Development Animation - Palate 1 | Development Animation - Palate 2 | Cleft Palate)
Trisomy 18 male Trisomy 18 or Edward Syndrome - multiple abnormalities of the heart, diaphragm, lungs, kidneys, ureters and palate 86% discontinued (More? Trisomy 18)
Renal Agenesis/Dysgenesis - reduction in neonatal death and stillbirth since 1993 may be due to the more severe cases being identified in utero and being represented amongst the increased proportion of terminations (approximately 31%). (More? Renal Abnormalities - Renal Agenesis)
Bilateral cleft palate Cleft Lip and Palate - occur with another defect in 33.7% of cases. (More? Cleft Lip)

Human Development

Human development timeline graph 02.jpg

ANAT2341 Course Timetable  
Week (Mon) Lecture 1 (Mon 1-2pm) Lecture 2 (Tue 3-4pm) Practical (Fri 1-3pm)
Week 2 (1 Aug) Introduction Fertilization Lab 1
Week 3 (8 Aug) Week 1 and 2 Week 3 Lab 2
Week 4 (15 Aug) Mesoderm Ectoderm Lab 3
Week 5 (22 Aug) Early Vascular Placenta Lab 4
Week 6 (29 Aug) Gastrointestinal Respiratory Lab 5
Week 7 (5 Sep) Head Neural Crest Lab 6
Week 8 (12 Sep) Musculoskeletal Limb Development Lab 7
Week 9 (19 Sep) Renal Genital Lab 8
Mid-semester break
Week 10 (3 Oct) Public Holiday Stem Cells Lab 9
Week 11 (10 Oct) Integumentary Endocrine Lab 10
Week 12 (17 Oct) Heart Sensory Lab 11
Week 13 (24 Oct) Fetal Birth and Revision Lab 12

ANAT2341 2016: Moodle page | ECHO360 | Textbooks | Students 2016 | Projects 2016

ANAT2341Lectures - Textbook chapters  
Lecture (Timetable) Textbook - The Developing Human Textbook - Larsen's Human Embryology
Embryology Introduction Introduction to the Developing Human
Fertilization First Week of Human Development Gametogenesis, Fertilization, and First Week
Week 1 and 2 Second Week of Human Development Second Week: Becoming Bilaminar and Fully Implanting
Week 3 Third Week of Human Development Third Week: Becoming Trilaminar and Establishing Body Axes
Mesoderm Fourth to Eighth Weeks of Human Development Fourth Week: Forming the Embryo
Ectoderm Nervous System Development of the Central Nervous System
Early Vascular Cardiovascular System Development of the Vasculature
Placenta Placenta and Fetal Membranes Development of the Vasculature
Endoderm - GIT Alimentary System Development of the Gastrointestinal Tract
Respiratory Respiratory System Development of the Respiratory System and Body Cavities
Head Pharyngeal Apparatus, Face, and Neck Development of the Pharyngeal Apparatus and Face
Neural Crest Nervous System Development of the Peripheral Nervous System
Musculoskeletal Muscular System Development of the Musculoskeletal System
Limb Development of Limbs Development of the Limbs
Renal Urogenital System Development of the Urinary System
Genital Urogenital System Development of the Urinary System
Stem Cells
Integumentary Integumentary System Development of the Skin and Its Derivatives
Endocrine Covered through various chapters (see also alternate text), read head and neck, neural crest and renal chapters.
Endocrinology Textbook - Chapter Titles  
Nussey S. and Whitehead S. Endocrinology: An Integrated Approach (2001) Oxford: BIOS Scientific Publishers; ISBN-10: 1-85996-252-1.

Full Table of Contents

Heart Cardiovascular System Development of the Heart
Sensory Development of Eyes and Ears Development of the Eyes
Fetal Fetal Period Fetal Development and the Fetus as Patient
Birth and Revision
Additional Textbook Content - The following concepts also form part of the theory material covered throughout the course.
  1. Principles and Mechanisms of Morphogenesis and Dysmorphogenesis
  2. Common Signaling Pathways Used During Development
  3. Human Birth Defect

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, April 16) Embryology Lecture - 2016 Course Introduction. Retrieved from

What Links Here?
© Dr Mark Hill 2024, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G