Pharyngeal arches

From Embryology
Embryology - 28 Feb 2017    Facebook link Pinterest link Twitter link  Expand to Translate  
Google Translate - select your language from the list shown below (this will open a new external page)

العربية | català | 中文 | 中國傳統的 | français | Deutsche | עִברִית | हिंदी | bahasa Indonesia | italiano | 日本語 | 한국어 | မြန်မာ | Pilipino | Polskie | português | ਪੰਜਾਬੀ ਦੇ | Română | русский | Español | Swahili | Svensk | ไทย | Türkçe | اردو | ייִדיש | Tiếng Việt    These external translations are automated and may not be accurate. (More? About Translations)

Introduction

Embryo Stage 14

The pharyngeal arches (branchial arch, Greek, branchial = gill) are a series of externally visible anterior tissue bands lying under the early brain that give rise to the structures of the head and neck. Each arch though initially formed from similar components will differentiate to form different head and neck structures. In humans, five arches form (1, 2, 3, 4 and 6) but only four are externally visible on the embryo.

Each arch has initially identical structures: an internal endodermal pouch, a mesenchymal (mesoderm and neural crest) core, a membrane (endoderm and ectoderm) and external cleft (ectoderm). Each arch mesenchymal core also contains similar components: blood vessel, nerve, muscular, cartilage.

The arch arteries undergo extensive remodelling during development of the vascular system, in general the inferior arteries have major contributions and superior arteries have minor contributions. The endothelium of arch arteries 1 and 2 has been shown to have different embryonic origin from 3-6 (second heart field).[1]


Note is a draft page and this topic is currently covered in more detail on the Head Development page.



Links: Head Development | Neural Crest Development | Endocrine System Development

Pharyngeal Arch Development

Head arches cartoon.jpg Pharyngeal arch structure cartoon.gifStage13 pharyngeal arch excerpts.gif

  • branchial arch (Gk. branchia= gill)
  • arch consists of all 3 trilaminar embryo layers
  • ectoderm- outside
  • mesoderm- core of mesenchyme
  • endoderm- inside

Pharyngeal Arch Tables

This table gives an overview of what each arch will contribute to the embryo.

Pharyngeal Arch Nerve Artery Neural Crest
(Skeletal Structures)
Muscles Ligaments
1
(maxillary/mandibular)
trigeminal (V) maxillary artery (terminal branches) mandible, maxilla, malleus, incus muscles of mastication, mylohyoid, tensor tympanic, ant. belly digastric ant lig of malleus, sphenomandibular ligament
2
(hyoid)
facial (VII) stapedial (embryonic)

corticotympanic (adult)

stapes, styloid process, lesser cornu of hyoid, upper part of body of hyoid bone muscles of facial expression, stapedius, stylohyoid, post. belly digastric stylohyoid ligament
3 glossopharyngeal (IX) common carotid, internal carotid arteries greater cornu of hyoid, lower part of body of hyoid bone stylopharyngeus
4 vagus (X) superior laryngeal branch part of aortic arch (left), part right subclavian artery (right) thyroid, cricoid, arytenoid, corniculate and cuneform cartilages crycothyroid, soft palate levator veli palatini (not tensor veli palatini)
6 vagus (X) recurrent laryngeal branch part of left pulmonary artery (left), part of right pulmonary artery (right) thyroid, cricoid, arytenoid, corniculate and cuneform cartilages larynx intrinsic muscles (not cricothyroid muscle)
Pharyngeal Arch Derivatives  
Pharyngeal Arch Nerve Artery Neural Crest
(Skeletal Structures)
Muscles Ligaments
1
(maxillary/mandibular)
trigeminal (V) maxillary artery (terminal branches) mandible, maxilla, malleus, incus muscles of mastication, mylohyoid, tensor tympanic, ant. belly digastric ant lig of malleus, sphenomandibular ligament
2
(hyoid)
facial (VII) stapedial (embryonic)

corticotympanic (adult)

stapes, styloid process, lesser cornu of hyoid, upper part of body of hyoid bone muscles of facial expression, stapedius, stylohyoid, post. belly digastric stylohyoid ligament
3 glossopharyngeal (IX) common carotid, internal carotid arteries greater cornu of hyoid, lower part of body of hyoid bone stylopharyngeus
4 vagus (X) superior laryngeal branch part of aortic arch (left), part right subclavian artery (right) thyroid, cricoid, arytenoid, corniculate and cuneform cartilages crycothyroid, soft palate levator veli palatini (not tensor veli palatini)
6 vagus (X) recurrent laryngeal branch part of left pulmonary artery (left), part of right pulmonary artery (right) thyroid, cricoid, arytenoid, corniculate and cuneform cartilages larynx intrinsic muscles (not cricothyroid muscle)

Some Recent Findings

  • Endothelium in the pharyngeal arches 3, 4 and 6 is derived from the second heart field[1] "Oxygenated blood from the heart is directed into the systemic circulation through the aortic arch arteries (AAAs). The AAAs arise by remodeling of three symmetrical pairs of pharyngeal arch arteries (PAAs), which connect the heart with the paired dorsal aortae at mid-gestation. Aberrant PAA formation results in defects frequently observed in patients with lethal congenital heart disease. How the PAAs form in mammals is not understood. The work presented in this manuscript shows that the second heart field (SHF) is the major source of progenitors giving rise to the endothelium of the pharyngeal arches 3 - 6, while the endothelium in the pharyngeal arches 1 and 2 is derived from a different source. During the formation of the PAAs 3 - 6, endothelial progenitors in the SHF extend cellular processes toward the pharyngeal endoderm, migrate from the SHF and assemble into a uniform vascular plexus. This plexus then undergoes remodeling, whereby plexus endothelial cells coalesce into a large PAA in each pharyngeal arch."
More recent papers  
Mark Hill.jpg
PubMed logo.gif

This table shows an automated computer PubMed search using the listed sub-heading term.

  • Therefore the list of references do not reflect any editorial selection of material based on content or relevance.
  • References appear in this list based upon the date of the actual page viewing.

References listed on the rest of the content page and the associated discussion page (listed under the publication year sub-headings) do include some editorial selection based upon both relevance and availability.

Links: References | Discussion Page | Pubmed Most Recent | Journal Searches


Search term: Pharyngeal Arch

Вера Д Куроедова, Татьяна А Чикор, Александра Н Макарова, Анна А Ким [Orthodontic treatment effect of on the condition of the upper airways]. Wiad. Lek.: 2016, 69(6);734-736 PubMed 28214805

Andrea De Vito, Vanni Agnoletti, Gianluca Zani, Ruggero Massimo Corso, Giovanni D'Agostino, Elisabetta Firinu, Chiara Marchi, Ying-Shuo Hsu, Stefano Maitan, Claudio Vicini The importance of drug-induced sedation endoscopy (D.I.S.E.) techniques in surgical decision making: conventional versus target controlled infusion techniques-a prospective randomized controlled study and a retrospective surgical outcomes analysis. Eur Arch Otorhinolaryngol: 2017; PubMed 28213776

Linlea Armstrong, Maja Tarailo-Graovac, Graham Sinclair, Kimberly I Seath, Wyeth W Wasserman, Colin J Ross, Clara D M van Karnebeek A girl with developmental delay, ataxia, cranial nerve palsies, severe respiratory problems in infancy-Expanding NDST1 syndrome. Am. J. Med. Genet. A: 2017, 173(3);712-715 PubMed 28211985

J Andrew Gillis, Olivia R A Tidswell The Origin of Vertebrate Gills. Curr. Biol.: 2017; PubMed 28190727

Anna E Zhadan, Alexander B Tzetlin, Sergio I Salazar-Vallejo Sternaspidae (Annelida, Sedentaria) from Vietnam with description of three new species and clarification of some morphological features. Zootaxa: 2017, 4226(1);zootaxa.4226.1.3 PubMed 28187630

Neural Crest

  • Mesenchyme invaded by neural crest generating connective tissue components
  • cartilage, bone, ligaments
  • arises from midbrain and hindbrain region

Links: Neural Crest Development

Arch Features

Each arch contains: artery, cartilage, nerve, muscular component

Arches and Phanynx Form the face, tongue, lips, jaws, palate, pharynx and neck cranial nerves, sense organ components, glands

  • Humans have 5 arches - 1, 2, 3, 4, 6 (Arch 5 does not form or regresses rapidly)
  • from in rostro-caudal sequence, Arch 1 to 6 from week 4 onwards
  • arch 1 and 2 appear at time of closure of cranial neuropore
  • Face - mainly arch 1 and 2
  • Neck components - arch 3 and 4 (arch 4 and 6 fuse)

Arch Features

    • arch
    • groove
      • externally separates each arch
        • also called a cleft
      • only first pair persist as external auditory meatus
    • pouch
      • internally separates each arch
      • pockets from the pharynx
    • membrane
      • ectoderm and endoderm contact regions
      • only first pair persist as tympanic membrane
  • Pharyngeal Arch 1 (Mandibular Arch) has 2 prominances
    • smaller upper- maxillary forms maxilla, zygomatic bone and squamous part of temporal
    • larger lower- mandibular, forms mandible
  • Pharyngeal Arch 2 (Hyoid Arch)
    • forms most of hyoid bone
  • Arch 3 and 4
    • neck structures


Embryo Week: Week 1 | Week 2 | Week 3 | Week 4 | Week 5 | Week 6 | Week 7 | Week 8 | Week 9

Carnegie Stages: 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | About Stages | Timeline


Pharyngeal Arch 1

Pharyngeal Arch 2

Pharyngeal Arch 3

Pharyngeal Arch 4

Pharyngeal Arch 6

Additional Images

Historic Images

Historic Disclaimer - information about historic embryology pages 
Mark Hill.jpg
Pages where the terms "Historic Textbook" and "Historic Embryology" appear on this site, and sections within pages where this disclaimer appears, indicate that the content and scientific understanding are specific to the time of publication. This means that while some scientific descriptions are still accurate, the terminology and interpretation of the developmental mechanisms reflect the understanding at the time of original publication and those of the preceding periods, these terms and interpretations may not reflect our current scientific understanding.     (More? Embryology History | Historic Embryology Papers)

Frazer JE. The second visceral arch and groove in the tubo-tympanic region. (1914) J Anat Physiol. 48(4): 391-408. PMID 17233005

Frazer JE. Development of the larynx. (1910) J Anat. 44: 156-191. PMID 17232839

Keibel F. and Mall FP. Manual of Human Embryology II. (1912) J. B. Lippincott Company, Philadelphia.

Glossary Links

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols

Cite this page: Hill, M.A. 2017 Embryology Pharyngeal arches. Retrieved February 28, 2017, from https://embryology.med.unsw.edu.au/embryology/index.php/Pharyngeal_arches

What Links Here?
© Dr Mark Hill 2017, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G
  1. 1.0 1.1 Xia Wang, Dongying Chen, Kelley Chen, Ali Jubran, AnnJosette Ramirez, Sophie Astrof Endothelium in the pharyngeal arches 3, 4 and 6 is derived from the second heart field. Dev. Biol.: 2017, 421(2);108-117 PubMed 27955943