Genetic risk maternal age

From Embryology
Embryology - 18 Jul 2018    Facebook link Pinterest link Twitter link  Expand to Translate  
Google Translate - select your language from the list shown below (this will open a new external page)

العربية | català | 中文 | 中國傳統的 | français | Deutsche | עִברִית | हिंदी | bahasa Indonesia | italiano | 日本語 | 한국어 | မြန်မာ | Pilipino | Polskie | português | ਪੰਜਾਬੀ ਦੇ | Română | русский | Español | Swahili | Svensk | ไทย | Türkçe | اردو | ייִדיש | Tiếng Việt    These external translations are automated and may not be accurate. (More? About Translations)

Introduction

Trisomy 21 (Down Syndrome) Male Karyotype

The table below shows the correlation of maternal age (mother's age) and the potential risk of human genetic abnormalities in children.


The first column shows maternal age, the second column shows the most common human chromosomal abnormality, trisomy 21 (Down syndrome), the third column shows all chromosomal abnormalities. The data below are from papers published in the 1980's.[1][2][3]


Interestingly, recent studies suggest that increasing paternal age (father's age) can also have affects on childhood mortality[4] and neurodevelopmental outcomes.[5]


Genetic Links: genetic abnormalities | Genetic risk maternal age | Trisomy 21 | Trisomy 18 | Trisomy 13 | Trisomy X | Monosomy | Fragile X | Williams | Alagille | Philadelphia chromosome | mitochondria | hydatidiform mole | epigenetics | Prenatal Diagnosis | Neonatal Diagnosis | meiosis | mitosis | International Classification of Diseases | genetics
Maternal Links: Genetic risk maternal age | Placenta - Maternal Decidua | maternal diabetes | maternal hyperthermia | maternal inflammation | hypertension | Category:Maternal
 
Environmental Links: Introduction | Low Folic Acid | Iodine Deficiency | Nutrition | Drugs | Australian Drug Categories | USA Drug Categories | thalidomide | herbal drugs | Illegal Drugs | smoking | Fetal Alcohol Syndrome | TORCH | viral infection | bacterial infection | Zoonotic Infection | Toxoplasmosis | Malaria | Maternal Diabetes | Maternal Hypertension | maternal hyperthermia | Maternal Inflammation | Maternal Obesity | Hypoxia | Biological Toxins | Chemicals | heavy metals | radiation | Prenatal Diagnosis | Neonatal Diagnosis | International Classification of Diseases | Fetal Origins Hypothesis
Historic Embryology - Maternal  

Age Table

Genetic Risk Maternal Age
Age of Mother
Risk of Trisomy 21
Risk of Any Chromosomal Abnormality
20
1 in 1667
1 in 526
21
1 in 1667
1 in 526
22
1 in 1429
1 in 500
23
1 in 1429
1 in 500
24
1 in 1250
1 in 476
25
1 in 1250
1 in 476
26
1 in 1176
1 in 476
27
1 in 1111
1 in 455
28
1 in 1053
1 in 435
29
1 in 1000
1 in 417
30
1 in 952
1 in 384
31
1 in 909
1 in 384
32
1 in 769
1 in 323
33
1 in 625
1 in 286
34
1 in 500
1 in 238
35
1 in 385
1 in 192
36
1 in 294
1 in 156
37
1 in 227
1 in 127
38
1 in 175
1 in 102
39
1 in 137
1 in 83
40
1 in 106
1 in 66
41
1 in 82
1 in 53
42
1 in 64
1 in 42
43
1 in 50
1 in 33
44
1 in 38
1 in 26
45
1 in 30
1 in 21
46
1 in 23
1 in 16
47
1 in 18
1 in 13
48
1 in 14
1 in 10
49
1 in 11
1 in 8
Table Data[1][2][3]
Genetic Links: genetic abnormalities | Genetic risk maternal age | Trisomy 21 | Trisomy 18 | Trisomy 13 | Trisomy X | Monosomy | Fragile X | Williams | Alagille | Philadelphia chromosome | mitochondria | hydatidiform mole | epigenetics | Prenatal Diagnosis | Neonatal Diagnosis | meiosis | mitosis | International Classification of Diseases | genetics
Genetic risk maternal age  
Educational Use Only - Embryology is an educational resource for learning concepts in embryological development, no clinical information is provided and content should not be used for any other purpose.
Genetic Risk Maternal Age
Age of Mother
Risk of Trisomy 21
Risk of Any Chromosomal Abnormality
20
1 in 1667
1 in 526
21
1 in 1667
1 in 526
22
1 in 1429
1 in 500
23
1 in 1429
1 in 500
24
1 in 1250
1 in 476
25
1 in 1250
1 in 476
26
1 in 1176
1 in 476
27
1 in 1111
1 in 455
28
1 in 1053
1 in 435
29
1 in 1000
1 in 417
30
1 in 952
1 in 384
31
1 in 909
1 in 384
32
1 in 769
1 in 323
33
1 in 625
1 in 286
34
1 in 500
1 in 238
35
1 in 385
1 in 192
36
1 in 294
1 in 156
37
1 in 227
1 in 127
38
1 in 175
1 in 102
39
1 in 137
1 in 83
40
1 in 106
1 in 66
41
1 in 82
1 in 53
42
1 in 64
1 in 42
43
1 in 50
1 in 33
44
1 in 38
1 in 26
45
1 in 30
1 in 21
46
1 in 23
1 in 16
47
1 in 18
1 in 13
48
1 in 14
1 in 10
49
1 in 11
1 in 8
Table Data[1][2][3]
Genetic Links: genetic abnormalities | Genetic risk maternal age | Trisomy 21 | Trisomy 18 | Trisomy 13 | Trisomy X | Monosomy | Fragile X | Williams | Alagille | Philadelphia chromosome | mitochondria | hydatidiform mole | epigenetics | Prenatal Diagnosis | Neonatal Diagnosis | meiosis | mitosis | International Classification of Diseases | genetics


Some Recent Findings

Human idiogram
  • Epidemiology of chromosomal trisomies in the East of Ireland[6] "Chromosomal trisomies are associated with advancing maternal age. In Ireland, information on the total prevalence and outcome of trisomy affected pregnancies is unavailable. This study aimed to ascertain more precise data on Trisomies 21, 18 and 13 in a large Irish region during the period 2011-2013. ...Over 90% of Trisomies 18/13 and 47% of Trisomy 21 were diagnosed prenatally; 61% of Trisomy 21 cases and nearly 30% of Trisomies 18/13 were live births; 38% all trisomy affected pregnancies ended in a termination. CONCLUSIONS: This study provides precise data on the total prevalence and outcome of trisomy affected pregnancies in the East of Ireland. Total prevalence rates were higher than previously reported. Prenatal diagnosis had a significant impact on outcome. These data provide a better basis for planning of services for live-born children affected by trisomy."
  • Maternal Age-Specific Rates for Trisomy 21 and Common Autosomal Trisomies in Fetuses from a Single Diagnostic Center in Thailand[7] "To provide maternal age-specific rates for trisomy 21 (T21) and common autosomal trisomies (including trisomies 21, 18 and 13) in fetuses. We retrospectively reviewed prenatal cytogenetic results obtained between 1990 and 2009 in Songklanagarind Hospital, a university teaching hospital, in southern Thailand. Maternal age-specific rates of T21 and common autosomal trisomies were established using different regression models, from which only the fittest models were used for the study. A total of 17,819 records were included in the statistical analysis. The fittest models for predicting rates of T21 and common autosomal trisomies were regression models with 2 parameters (Age and Age2). The rate of T21 ranged between 2.67 per 1,000 fetuses at the age of 34 and 71.06 per 1,000 at the age of 48. The rate of common autosomal trisomies ranged between 4.54 per 1,000 and 99.65 per 1,000 at the same ages. This report provides the first maternal age-specific rates for T21 and common autosomal trisomies fetuses in a Southeast Asian population and the largest case number of fetuses have ever been reported in Asians."
  • Sex ratios among infants with birth defects, National Birth Defects Prevention Study, 1997-2009[8] "A small number of population-based studies have examined sex differences among infants with birth defects. The highest elevations in sex ratios (i.e., male preponderance) among isolated non-cardiac defects were for craniosynostosis (2.12), cleft lip with cleft palate (2.01), and cleft lip without cleft palate (1.78); the lowest sex ratios (female preponderance) were for choanal atresia (0.45), cloacal exstrophy (0.46), and holoprosencephaly (0.64). Among isolated cardiac defects, the highest sex ratios were for aortic stenosis (2.88), coarctation of the aorta (2.51), and d-transposition of the great arteries (2.34); the lowest were multiple ventricular septal defects (0.52), truncus arteriosus (0.63), and heterotaxia with congenital heart defect (0.64)."
More recent papers  
Mark Hill.jpg
PubMed logo.gif

This table shows an automated computer PubMed search using the listed sub-heading term.

  • Therefore the list of references do not reflect any editorial selection of material based on content or relevance.
  • References appear in this list based upon the date of the actual page viewing.

References listed on the rest of the content page and the associated discussion page (listed under the publication year sub-headings) do include some editorial selection based upon both relevance and availability.

Links: References | Discussion Page | Pubmed Most Recent | Journal Searches


Search term: Maternal Age Abnormal Development

Yangmei Li, Xinxue Liu, Neena Modi, Sabita Uthaya Impact of breast milk intake on body composition at term in very preterm babies: secondary analysis of the Nutritional Evaluation and Optimisation in Neonates randomised controlled trial. Arch. Dis. Child. Fetal Neonatal Ed.: 2018; PubMed 30007939

Kelly F Cummings, Melissa S Helmich, Songthip T Ounpraseuth, Nafisa K Dajani, Everett F Magann The Third Stage of Labour in the Extremely Obese Parturient. J Obstet Gynaecol Can: 2018; PubMed 30007800

Anne Eskild, Lars Monkerud, Anne Marie Jukic, Bjørn Olav Åsvold, Kari Kveim Lie Maternal concentrations of human chorionic gonadotropin (hCG) and risk for cerebral palsy (CP) in the child. A case control study. Eur. J. Obstet. Gynecol. Reprod. Biol.: 2018, 228;203-208 PubMed 30007247

Alessandro Bartolacci, Luca Pagliardini, Sofia Makieva, Andrea Salonia, Enrico Papaleo, Paola Viganò Abnormal sperm concentration and motility as well as advanced paternal age compromise early embryonic development but not pregnancy outcomes: a retrospective study of 1266 ICSI cycles. J. Assist. Reprod. Genet.: 2018; PubMed 29995229

L Li, H T Yu, X D Wang, F Zhou, F Wang, C F Wang [Analysis of birth defect rate trend of cleft lip and palate in Shanghai from 2007 to 2016]. Zhonghua Kou Qiang Yi Xue Za Zhi: 2018, 53(5);301-306 PubMed 29972986

Maternal Age Trisomy 21 Studies

Comparative data compiled by this study.[7]

Maternal age trisomy 21 study table.png

Ireland

Data from a clinical data study of chromosomal trisomies in the East of Ireland (2011-2013).[6]

Total births 80,894 - 394 trisomy cases (prevalence rate 48.9/10,000) Diagnosed prenatally
  • 90+% trisomies 18/13
  • 47% of Trisomy 21

Thailand

The following data is from a recent Thai study of maternal age and trisomies.[7]

Genetic Risk Maternal Age
Age of Mother
Risk of Trisomy 21
Risk of Any Autosomal Trisomies
Genetic Risk Maternal Age
Age of Mother
Risk of Trisomy 21
Risk of Any Autosomal Trisomies
34
2.67 in 1,000
4.54 in 1,000
48
71.06 in 1,000
99.65 in 1,000


References

  1. 1.0 1.1 1.2 Hook EB. (1981). Rates of chromosome abnormalities at different maternal ages. Obstet Gynecol , 58, 282-5. PMID: 6455611
  2. 2.0 2.1 2.2 Hook EB, Cross PK & Schreinemachers DM. (1983). Chromosomal abnormality rates at amniocentesis and in live-born infants. JAMA , 249, 2034-8. PMID: 6220164
  3. 3.0 3.1 3.2 Schreinemachers DM, Cross PK & Hook EB. (1982). Rates of trisomies 21, 18, 13 and other chromosome abnormalities in about 20 000 prenatal studies compared with estimated rates in live births. Hum. Genet. , 61, 318-24. PMID: 6891368
  4. Zhu JL, Vestergaard M, Madsen KM & Olsen J. (2008). Paternal age and mortality in children. Eur. J. Epidemiol. , 23, 443-7. PMID: 18437509 DOI.
  5. Saha S, Barnett AG, Foldi C, Burne TH, Eyles DW, Buka SL & McGrath JJ. (2009). Advanced paternal age is associated with impaired neurocognitive outcomes during infancy and childhood. PLoS Med. , 6, e40. PMID: 19278291 DOI.
  6. 6.0 6.1 McDonnell R, Monteith C, Kennelly M, Martin A, Betts D, Delany V, Lynch SA, Coulter-Smith S, Sheehan S & Mahony R. (2017). Epidemiology of chromosomal trisomies in the East of Ireland. J Public Health (Oxf) , 39, e145-e151. PMID: 27591300 DOI.
  7. 7.0 7.1 7.2 Jaruthamsophon K, Sriplung H, Charalsawadi C & Limprasert P. (2016). Maternal Age-Specific Rates for Trisomy 21 and Common Autosomal Trisomies in Fetuses from a Single Diagnostic Center in Thailand. PLoS ONE , 11, e0165859. PMID: 27812158 DOI.
  8. Michalski AM, Richardson SD, Browne ML, Carmichael SL, Canfield MA, VanZutphen AR, Anderka MT, Marshall EG & Druschel CM. (2015). Sex ratios among infants with birth defects, National Birth Defects Prevention Study, 1997-2009. Am. J. Med. Genet. A , 167A, 1071-81. PMID: 25711982 DOI.


Articles

Allen EG, Freeman SB, Druschel C, Hobbs CA, O'Leary LA, Romitti PA, Royle MH, Torfs CP & Sherman SL. (2009). Maternal age and risk for trisomy 21 assessed by the origin of chromosome nondisjunction: a report from the Atlanta and National Down Syndrome Projects. Hum. Genet. , 125, 41-52. PMID: 19050929 DOI.

"We examined the association between maternal age and chromosome 21 nondisjunction by origin of the meiotic error. We analyzed data from two population-based, case-control studies: Atlanta Down Syndrome Project (1989-1999) and National Down Syndrome Project (2001-2004). Cases were live born infants with trisomy 21 and controls were infants without trisomy 21 delivered in the same geographical regions. We enrolled 1,215 of 1,881 eligible case families and 1,375 of 2,293 controls. We report four primary findings. First, the significant association between advanced maternal age and chromosome 21 nondisjunction was restricted to meiotic errors in the egg; the association was not observed in sperm or in post-zygotic mitotic errors. Second, advanced maternal age was significantly associated with both meiosis I (MI) and meiosis II (MII). For example, compared to mothers of controls, mothers of infants with trisomy 21 due to MI nondisjunction were 8.5 times more likely to be >or=40 years old than 20-24 years old at the birth of the index case (95% CI=5.6-12.9). Where nondisjunction occurred in MII, mothers were 15.1 times more likely to be >or=40 years (95% CI = 8.4-27.3). Third, the ratio of MI to MII errors differed by maternal age. The ratio was lower among women <19 years of age and those >or=40 years (2.1, 2.3, respectively) and higher in the middle age group (3.6). Lastly, we found no effect of grand-maternal age on the risk for maternal nondisjunction. This study emphasizes the complex association between advanced maternal age and nondisjunction of chromosome 21 during oogenesis."

Kuliev A, Cieslak J & Verlinsky Y. (2005). Frequency and distribution of chromosome abnormalities in human oocytes. Cytogenet. Genome Res. , 111, 193-8. PMID: 16192694 DOI.

"It was previously shown that more than half of the human oocytes obtained from IVF patients of advanced reproductive age are aneuploid, due to meiosis I and meiosis II errors. The present paper further confirms that 61.8% of the oocytes tested by fluorescent probes specific for chromosomes 13, 16, 18, 21 and 22 are abnormal, representing predominantly chromatid errors, which are the major source of aneuploidy in the resulting embryos. Almost half of the oocytes with meiosis I errors (49.3%) are prone to sequential meiosis II errors, which may lead to aneuploidy rescue in 30.8% of the cases. Half of the detected aneuploidies (49.8%) are of complex nature with involvement of two or more chromosomes, or the same chromosome in both meiotic divisions. The aneuploidy rates for individual chromosomes are different, with a higher prevalence of chromosome 21 and 22 errors. The origin of aneuploidy for the individual chromosomes is also not random, with chromosome 16 and 22 errors originating more frequently in meiosis II, and chromosome 18, 13 and 21 errors in meiosis I. There is an age dependence not only for the overall frequency of aneuploidies, but also for each chromosome error, aneuploidies originating from meiosis I, meiosis II, and both meiosis I and meiosis II errors, as well as for different types of aneuploidies. The data further suggest the practical relevance of oocyte aneuploidy testing for detection and avoidance from transfer of the embryos deriving from aneuploid oocytes, which should contribute significantly to the pregnancy outcomes of IVF patients of advanced reproduction age."

Search PubMed

Search PubMed Now: Genetic risk maternal age


Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link



Cite this page: Hill, M.A. (2018, July 18) Embryology Genetic risk maternal age. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Genetic_risk_maternal_age

What Links Here?
© Dr Mark Hill 2018, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G