Cardiovascular System - Abnormalities

From Embryology

Introduction

Data shown as a percentage of all major abnormalities based upon published statistics using the same groupings as Congenital Malformations Australia 1981-1992 P. Lancaster and E. Pedisich ISSN 1321-8352.

Heart defects and preterm birth are the most common causes of neonatal and infant death. The long-term development of the heart combined with extensive remodelling and post-natal changes in circulation lead to an abundance of abnormalities associated with this system.

A UK study literature showed that preterm infants have more than twice as many cardiovascular malformations (5.1 / 1000 term infants and 12.5 / 1000 preterm infants) as do infants born at term and that 16% of all infants with cardiovascular malformations are preterm. (0.4% of live births occur at greater than 28 weeks of gestation, 0.9% at 28 to 31 weeks, and 6% at 32 to 36 weeks. Overall, 7.3% of live-born infants are preterm)[1]

"Baltimore-Washington Infant Study data on live-born cases and controls (1981-1989) was reanalyzed for potential environmental and genetic risk-factor associations in complete atrioventricular septal defects AVSD (n = 213), with separate comparisons to the atrial (n = 75) and the ventricular (n = 32) forms of partial AVSD. ...Maternal diabetes constituted a potentially preventable risk factor for the most severe, complete form of AVSD." [2]

In addition, there are in several congenital abnormalities that exist in adults (bicuspid aortic valve, mitral valve prolapse, and partial anomalous pulmonary venous connection) which may not be clinically recognized.


Cardiovascular Links: cardiovascular | Heart Tutorial | Lecture - Early Vascular | Lecture - Heart | Movies | 2016 Cardiac Review | heart | coronary circulation | heart valve | heart rate | Circulation | blood | blood vessel | blood vessel histology | heart histology | Lymphatic | ductus venosus | spleen | Stage 22 | cardiovascular abnormalities | OMIM | 2012 ECHO Meeting | Category:Cardiovascular
Historic Embryology - Cardiovascular 
1902 Vena cava inferior | 1905 Brain Blood Vessels | 1909 Cervical Veins | 1909 Dorsal aorta and umbilical veins | 1912 Heart | 1912 Human Heart | 1914 Earliest Blood-Vessels | 1915 Congenital Cardiac Disease | 1915 Dura Venous Sinuses | 1916 Blood cell origin | 1916 Pars Membranacea Septi | 1919 Lower Limb Arteries | 1921 Human Brain Vascular | 1921 Spleen | 1922 Aortic-Arch System | 1922 Pig Forelimb Arteries | 1922 Chicken Pulmonary | 1923 Head Subcutaneous Plexus | 1923 Ductus Venosus | 1925 Venous Development | 1927 Stage 11 Heart | 1928 Heart Blood Flow | 1935 Aorta | 1935 Venous valves | 1938 Pars Membranacea Septi | 1938 Foramen Ovale | 1939 Atrio-Ventricular Valves | 1940 Vena cava inferior | 1940 Early Hematopoiesis | 1941 Blood Formation | 1942 Truncus and Conus Partitioning | Ziegler Heart Models | 1951 Heart Movie | 1954 Week 9 Heart | 1957 Cranial venous system | 1959 Brain Arterial Anastomoses | Historic Embryology Papers | 2012 ECHO Meeting | 2016 Cardiac Review | Historic Disclaimer


Some Recent Findings

  • Spontaneous Closure of Muscular Trabecular Ventricular Septal Defect: Comparison of Defect Positions PMID 21517965 "We performed a historical cohort study for which 150 patients <3 months of age (median age, 9 days) diagnosed as having a muscular trabecular VSD were selected. ...We infer that midventricular muscular trabecular VSD tends to close spontaneously earlier and more frequently than either anterior or apical muscular trabecular VSD."

Heart Abnormalities

Ventricular Septal Defect

Ventricular Septal Defect.jpg The Ventricular Septal Defect (VSD) usually occurs in the membranous (perimembranous) rather than muscular interventricular septum, and is more frequent in males that females.

Perimembranous defects are located close to the aortic and tricuspid valves and adjacent to atrioventricular conduction bundle.


Search PubMed: Ventricular Septal Defect

Atrial Septal Defects

Atrial Septal Defect.jpg Atrial Septal Defects (ASD) are a group of common (1% of cardiac) congenital anomolies defects occuring in a number of different forms and more often in females.
  • patent foramen ovale- allows a continuation of the atrial shunting of blood, in 25% of people a probe patent foramen ovale (allowing a probe to bepassed from one atria to the other) exists.
  • ostium secundum defect
  • endocardial cushion defect involving ostium primum
  • sinus venosus defect - contributes about 10% of all ASDs and occurs mainly in a common and less common form. Common ("usual type") - in upper atrial septum which is contiguous with the superior vena cava. Less common - at junction of the right atrium and inferior vena cava.
  • common atrium

Treatment: The surgical repair requires a cardiopulmonary bypass and is recommended in most cases of ostium secundum ASD, even though there is a significant risk involved. Ostium primum defects tend to present earlier and are often associated with endocardial cushion defects and defective mitral or tricuspid valves. In such cases, valve replacement may be necessary and the extended operation has a considerable chance of mortality.

  • Increasingly closure by a transcatheter device closure has been applied.
  • Repair of atrial septal defects on the perfused beating heart (atrial septal defect size 2 cm - 4.5 cm) [3]


Links: OMIM: Atrial Septal Defect | Search PubMed | Medline Plus - ASD Repair Video

Patent Ductus Arteriosus

Patent Ductus Arteriosus.jpg Patent ductus arteriosus (PDA), or Patent arterial duct (PAD), occurs commonly in preterm infants, and at approximately 1 in 2000 full term infants and more common in females (to male ratio is 2:1). Can also be associated with specific genetic defects, trisomy 21 and trisomy 18, and the Rubinstein-Taybi and CHARGE syndromes. The opening is asymptomatic when the duct is small and can close spontaneously (by day three in 60% of normal term neonates), the remainder are ligated simply and with little risk, with transcatheter closure of the duct generally indicated in older children. The operation is always recommended even in the absence of cardiac failure and can often be deferred until early childhood.


Links: Search PubMed

Tetralogy of Fallot

Named after Etienne-Louis Arthur Fallot (1888) who described it as "la maladie blue" and is a common developmental cardiac defect. The syndrome consists of a number of a number of cardiac defects possibly stemming from abnormal neural crest migration.


Links: Gene expression in cardiac tissues from infants with idiopathic conotruncal defects | Search PubMed

Hypoplastic Left Heart

Hypoplastic Left Heart.jpg Characterized by hypoplasia (underdevelopment or absence) of the left ventricle obstructive valvular and vascular lesion of the left side of the heart.


Links: Search PubMed

Double Outlet Right Ventricle

De-oxygenated blood enters the aorta from the right ventricle and is returned to the body.


Links: Search PubMed

Tricuspid Atresia

Tricuspid Atresia.jpg Blood is shunted through an atrial septal defect to the left atrium and through the ventricular septal defect to the pulmonary artery. The shaded arrows indicate mixing of the blood.

Fontan Procedure: a surgical procedure developed by Fontan and Baudet (1971) to restore a circulation in patients with tricuspid atresia.


Links: Search PubMed | Fontan procedure

Dextrocardia

Dextrocardia heart position.jpg Dextrocardia.jpg
Dextrocardia anatomical heart position[4] Dextrocardia (postnatal 1 year old)[4]

Initial malrotation of the heart tube bending left instead of right. Results in heart and greater vessels reversed. Can also occur with situs invertus, where viscera are transposed LR.

Anatomical left-right normal asymmetry is called situs solitus. The alternative heterotaxy can be either randomization (situs ambiguus) or a complete reversal (situs inversus) of normal organ position.


Links: Chicken Abnormal Heart Movie | Search PubMed

Abnormalities of Conducting System

Also variously called the cardiac conduction system (CCS), cardiac pacemaking and conduction system (CPCS), or atrioventricular conduction system (AVCS). Recently animal models (CCS-lacZ transgenic mouse) have helped identify key processes in the development of this specialized conduction system.

"Known arrhythmogenic areas including Bachmann's bundle, the pulmonary veins, and sinus venosus derived internodal structures, demonstrate lacZ expression." (Jongbloed et al, 2004)


Long QT Syndrome

Congenital long QT syndrome (LQTS) is a group of rare genetic disorders with prolonged ventricular repolarization and a risk of ventricular tachyarrhythmias. Cause is mutations in genes encoding either cardiac ion channels or channel interacting proteins.

Search NCBI Bookshelf: Congenital long-QT syndrome


Links: Search PubMed

Heart Vessel Abnormalities

Transposition of the Great Vessels

Transposition of the Great Vessels.jpg Characterized by aorta arising from right ventricle and pulmonary artery from the left ventricle and often associated with other cardiac abnormalities (e.g. ventricular septal defect).

International Classification of Diseases code 745.1

Australian national rate (1982-1992) 3.6/10,000 births.

Of 988 infants 4.1% were stillborn and 23.2% liveborn died during neonatal period. slightly more common in twin births than singleton. Congenital Malformations Australia 1981-1992 P. Lancaster and E. Pedisich ISSN 1321-8352 Neonates with transposed great arteries die without an arterial switch operation, first carried out in 1975. Murphy DJ Jr. Transposition of the great arteries: long-term outcome and current management. Curr Cardiol Rep. 2005 Jul;7(4):299-304.


LInks: Vessels Search PubMed

Coarctation of the Aorta

Coarctation of the Aorta.jpg Prevalence ranges from 5% to 8% of all congenital heart defects.
LInks: Search PubMed

Interrupted Aortic Arch

LInks: Search PubMed

Pulmonary Atresia

Pulmonary Atresia.jpg Abnormal blood flow (as indicated by the shaded blue arrow) is from the right atrium and right ventricle through an atrial septal defect to the left side of the heart. Blood can reach the pulmonary arteries only through a patent ductus arteriosus.
LInks: Search PubMed

Total Anomalous Pulmonary Venous Connection

Total Anomalous Pulmonary Venous Connection.jpg Total Anomalous Pulmonary Venous Connection (TAPVC) or Total Anomalous Pulmonary Venous Return (TAPVR) occurs when pulmonary veins connect to the right atrium (RA) and not the left atrium (LA). This abnormal connection returns oxygenated pulmonary blood from the lungs back to the right atrium or a vein flowing into the right atrium.
  • < 4% of Congenital Heart Disease
  • more common in females
  • Total or partial lack of connection of the pulmonary veins with LA.
  • They open into RA, one of the systemic veins or both.
  • The overloaded pulmonary circuit leads to cyanosis, tachypnoea and dyspnoea.
  • Treatment is via surgical redirection


LInks: Search PubMed

Complete atrioventricular canal

Complete atrioventricular canal.jpg
LInks: Search PubMed

Partial Anomalous Pulmonary Venous Drainage

Partial Anomalous Pulmonary Venous Drainage.jpg
  • < 4% of Congenital Heart Disease
  • more common in females
  • Total or partial lack of connection of the pulmonary veins with left atria (LA).
  • They open into right atria (RA), one of the systemic veins or both.
  • The overloaded pulmonary circuit leads to cyanosis, tachypnoea and dyspnoea.
  • Treatment is via surgical redirection


LInks: Search PubMed | PMID 22119121 | PMID 12652510

Aortic Stenosis

Aortic Stenosis.jpg
  • 7% of Congenital Heart Disease
  • Persistence of tissue that normally degenerates.
  • Results in left ventricle hypertrophy, heart murmurs.


LInks: Search PubMed

Pulmonary Stenosis

Pulmonary Stenosis.jpg
  • 10% of Congenital Heart Disease
  • Unequal division of trunks causes cusps to fuse to form a dome with a narrow/non-existent lumen.
  • Heart-lung transplantation may be the only therapy.


LInks: Search PubMed

References

  1. <pubmed>16322141</pubmed>
  2. <pubmed>11241431</pubmed>
  3. <pubmed>19876418</pubmed>
  4. 4.0 4.1 <pubmed>19142355</pubmed>| Arq Bras Cardiol.

Articles

<pubmed>17967198</pubmed>


Search Pubmed

Search Pubmed: Cardiovascular System Abnormalities


Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, April 30) Embryology Cardiovascular System - Abnormalities. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Cardiovascular_System_-_Abnormalities

What Links Here?
© Dr Mark Hill 2024, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G