Sensory - Vision Development

From Embryology
Embryology - 24 Jun 2017    Facebook link Pinterest link Twitter link  Expand to Translate  
Google Translate - select your language from the list shown below (this will open a new external page)

العربية | català | 中文 | 中國傳統的 | français | Deutsche | עִברִית | हिंदी | bahasa Indonesia | italiano | 日本語 | 한국어 | မြန်မာ | Pilipino | Polskie | português | ਪੰਜਾਬੀ ਦੇ | Română | русский | Español | Swahili | Svensk | ไทย | Türkçe | اردو | ייִדיש | Tiếng Việt    These external translations are automated and may not be accurate. (More? About Translations)

Introduction

Historic retina drawing.jpg

These notes introduce the development of the eye: induction and regional specification of the eye structures, maturation and formation of retina and optic tectum neuronal connections.

The adult eye has contributions from several different embryonic layers eventually forming neuronal, supportive connective tissue, optical structures, and muscular tissues.

There are additional pages shown in the vision links, covering specific topics of vision development.

Vision Links: Introduction | Lens | Retina | Placodes | Extraocular Muscle | Cornea | Eyelid | Abnormalities | Student project 1 | Student project 2 | Category:Vision
Historic Vision Embryology  
1906 Eye Embryology | 1907 Development Atlas | 1912 Eye Development | 1912 Nasolacrimal Duct | 1918 Grays Anatomy | 1921 Eye Development | 1922 Optic Primordia | Historic Disclaimer


Senses Links: Introduction | Placodes | Hearing and Balance | Vision | Smell | Taste | Touch | Stage 22 | Category:Senses

Some Recent Findings

Adult Human Retina histology[1]
  • The relationship between eye movement and vision develops before birth [2] "While the visuomotor system is known to develop rapidly after birth, studies have observed spontaneous activity in vertebrates in visually excitable cortical areas already before extrinsic stimuli are present. Resting state networks and fetal eye movements were observed independently in utero, but no functional brain activity coupled with visual stimuli could be detected using fetal fMRI. This study closes this gap and links in utero eye movement with corresponding functional networks. BOLD resting-state fMRI data were acquired from seven singleton fetuses between gestational weeks 30-36 with normal brain development. During the scan time, fetal eye movements were detected and tracked in the functional MRI data. We show that already in utero spontaneous fetal eye movements are linked to simultaneous networks in visual- and frontal cerebral areas. In our small but in terms of gestational age homogenous sample, evidence across the population suggests that the preparation of the human visuomotor system links visual and motor areas already prior to birth."
  • Activation of c-Jun N-Terminal Kinase (JNK) during Mitosis in Retinal Progenitor Cells[3] "Most studies of c-Jun N-terminal Kinase (JNK) activation in retinal tissue were done in the context of neurodegeneration. In this study, we investigated the behavior of JNK during mitosis of progenitor cells in the retina of newborn rats. ... The data show, for the first time, that JNK is activated in mitotic progenitor cells of developing retinal tissue, suggesting a new role of JNK in the control of progenitor cell proliferation in the retina."
  • Rearrangement of retinogeniculate projection patterns after eye-specific segregation in mice[4] "When monocular enucleation was performed after eye-specific segregation, rearrangement of retinogeniculate axons in the dorsal lateral geniculate nucleus (dLGN) was observed within 5 days. ...We also examined the critical period for this rearrangement and found that the rearrangement became almost absent by the beginning of the critical period for ocular dominance plasticity in the primary visual cortex."
  • The long noncoding RNA RNCR2 directs mouse retinal cell specification[5]"We find that the RNCR2 is selectively expressed in a subset of both mitotic progenitors and postmitotic retinal precursor cells. ShRNA-mediated knockdown of RNCR2 results in an increase of both amacrine cells and Müller glia, indicating a role for this lncRNA in regulating retinal cell fate specification."
More recent papers
Mark Hill.jpg
PubMed logo.gif

This table shows an automated computer PubMed search using the listed sub-heading term.

  • Therefore the list of references do not reflect any editorial selection of material based on content or relevance.
  • References appear in this list based upon the date of the actual page viewing.

References listed on the rest of the content page and the associated discussion page (listed under the publication year sub-headings) do include some editorial selection based upon both relevance and availability.

Links: References | Discussion Page | Pubmed Most Recent | Journal Searches


Search term: Vision Development

Oana M Dumitrascu, Joanne F Shen, Madhavi Kurli, Maria I Aguilar, Lisa A Marks, Bart M Demaerschalk, Dean M Wingerchuk, Cumara B O'Carroll Is Intravenous Thrombolysis Safe and Effective in Central Retinal Artery Occlusion? A Critically Appraised Topic. Neurologist: 2017, 22(4);153-156 PubMed 28644261

Kunho Bae, Ju Sun Song, Chung Lee, Nayoung K D Kim, Woong Yang Park, Byoung Joon Kim, Chang Seok Ki, Sang Jin Kim Identification of Pathogenic Variants in the CHM Gene in Two Korean Patients With Choroideremia. Ann Lab Med: 2017, 37(5);438-442 PubMed 28643494

Pan Chi, Zhifen Chen [Comparison of robotic and laparoscopic total mesorectal excision]. Zhonghua Wei Chang Wai Ke Za Zhi: 2017, 20(6);610-613 PubMed 28643302

Minhua Zheng, Junjun Ma [Advantages and disadvantages of minimally invasive surgery in colorectal cancer surgery]. Zhonghua Wei Chang Wai Ke Za Zhi: 2017, 20(6);601-605 PubMed 28643300

Melissa Crawford, Valerie Leclerc, Lina Dagnino A reporter mouse model for in vivo tracing and in vitro molecular studies of melanocytic lineage cells and their diseases. Biol Open: 2017; PubMed 28642245


Search term: Vision Embryology

Kajo Bućan, Anita Matas, Josipa Marin Lovrić, Darko Batistić, Ivna Pleština Borjan, Livia Puljak, Ivona Bućan Epidemiology of ocular trauma in children requiring hospital admission: a 16-year retrospective cohort study. J Glob Health: 2017, 7(1);010415 PubMed 28607671

Tooka Aavani, Nobuhiko Tachibana, Valerie Wallace, Jeffrey Biernaskie, Carol Schuurmans Temporal profiling of photoreceptor lineage gene expression during murine retinal development. Gene Expr. Patterns: 2017, 23-24;32-44 PubMed 28288836

Xinguang Yang, Fuquan Huo, Bei Liu, Jing Liu, Tao Chen, Junping Li, Zhongqiao Zhu, Bochang Lv Crocin Inhibits Oxidative Stress and Pro-inflammatory Response of Microglial Cells Associated with Diabetic Retinopathy Through the Activation of PI3K/Akt Signaling Pathway. J. Mol. Neurosci.: 2017; PubMed 28238066

Andrea Mazzaferro, Adriano Carnevali, Ilaria Zucchiatti, Lea Querques, Francesco Bandello, Giuseppe Querques Optical coherence tomography angiography features of intrachoroidal peripapillary cavitation. Eur J Ophthalmol: 2017, 27(2);e32-e34 PubMed 28233894

Sarah Decembrini, Catherine Martin, Florian Sennlaub, Sylvain Chemtob, Martin Biel, Marijana Samardzija, Alexandre Moulin, Francine Behar-Cohen, Yvan Arsenijevic Cone Genesis Tracing by the Chrnb4-EGFP Mouse Line: Evidences of Cellular Material Fusion after Cone Precursor Transplantation. Mol. Ther.: 2017; PubMed 28143742

Timeline

Embryonic Development

  • Weeks 3 - 4 Eye Fields-Optic Vesicle
  • Weeks 5 - 6 Optic Cup, Lens Vesicle, Choroid Fissure, Hyaloid Artery
  • Weeks 7 - 8 Cornea, Anterior Chamber, Pupillary Membrane, Lens, Retina
  • Weeks 9 - 15 Iris, Ciliary Body
  • Weeks 8 - 10 Eyelids
Eye and retina cartoon.jpg

Carnegie Stages - Eye

The following data is from a study of human embryonic carnegie stages[6] and other sources.
  • Stage 10 - optic primordia appear.
  • Stage 11 - right and left optic primordia meet at the optic chiasma forming a U-shaped rim.
  • Stage 12 - optic neural crest reaches its maximum extent and the optic vesicle becomes covered by a complete sheath,
  • Week 4 - Stage 13 - By the end of the fourth week the optic vesicle lies close to the surface ectoderm. Optic evagination differentiation allows identification of optic part of retina, future pigmented layer of retina, and optic stalk. The surface ectoderm overlying the optic vesicle, in response to this contact, has thickened to form the lense placode.
  • Week 5 - Stage 14 - (about 32 days) the lens placode is indented by the lens pit, cup-shaped and still communicates with the surface by a narrowing pore.
  • Week 5 - Stage 15 - (about 33 days) the lens pit is closed. The lens vesicle and optic cup lie close to the surface ectoderm and appear to press against the surface.
  • Week 6 - Stage 16 - (37 days) Growth of the lens body results in a D-shaped lens cavity. Perilental blood vessels (tunica vasculosa lentis) are visible. Prior to the development of the eyelids, one small sulcus or groove forms above the eye (eyelid groove) and another below it.
  • Week 6 to 7 - Stages 17 - 19 - Retinal pigment is visible and the retinal fissure is largely closed. Eyelids grooves deepen, eyelid folds develop, first below, and then above, the eye.
  • Week 7 - Stages 18 - Mesenchyme invades the region between the lens epithelium and the surface ectoderm.
  • Week 7 to 8 - Stages 19 - 22 - the eyelid folds develop into the eyelids and cover more of the eye as the palpebral fissure takes shape. Stage 19 the upper and the lower eyelids meet at the outer canthus (palpebral commissure, corner of the eye where the upper and lower eyelids meet).
  • Week 8 - Stage 20 - The lens cavity is lost and a lens suture begins to form. The inner canthus (palpebral commissure, corner of the eye where the upper and lower eyelids meet) is established.
  • Week 8 - Stage 23 - The retina comprises the pigmented layer, external limiting membrane, proliferative zone, external neuroblastic layer, transient fiber layer, internal neuroblastic layer, nerve fiber layer, and internal limiting membrane. Eyelids closure is complete (Note - shown as still open in the Kyoto embryo).
Embryo Virtual Slides
Stage 22 - Eye and Nose

Stage 22 image 008.jpg

 ‎‎Mobile | Desktop | Original

Stage 22 | Embryo Slides

Stage 22 - Eye

Stage 22 image 008-eye.jpg

 ‎‎Mobile | Desktop | Original

Stage 22 | Embryo Slides

See below the drawings of sections of the whole eye from week 8 of development.[7]

Lens

Human Lens (stage 22)

The lens or crystalline lens or aquula (Latin, aquula = a little stream) has a key role in focussing light (with the cornea) upon the neural retina. The lens embryonic origin is from surface ectoderm of the sensory placodes that form in the head region (More? Week 4 - Placodes). The lens focusses by refracting light as it passes through the biconvex lens, which can be altered in shape (accommodation) by surrounding ciliary muscles. These ciliary muscles are activated (contracted) by parasympathetic innervation from the ciliary ganglion itself innervated by the oculomotor nerve (Cranial Nerve III) (More? Cranial Nerves).

surface ectoderm -> lens placode -> lens pit -> lens vesicle -> lens fibres -> lens capsule and embryonic/fetal nucleus.


Links: Vision - Lens Development

Stage 22 Eye

The images below link to virtual slides of the human developing eye at Carnegie stage 22. Click on the image to open or select specific regions from the regions of interest links.

Stage 22 - Eye and Nose

Stage 22 image 008.jpg

 ‎‎Mobile | Desktop | Original

Stage 22 | Embryo Slides
Stage 22 - Eye

Stage 22 image 008-eye.jpg

 ‎‎Mobile | Desktop | Original

Stage 22 | Embryo Slides

Virtual Slide - Regions of Interest

Links: Embryo Virtual Slides

Retinotopic Map

This neuroscience term describes how the developing retina is precisely "mapped" onto the visual cortex through a series of signaling and activity dependent mechanisms. This follows from Hubel and Wiesel (1981 Nobel Prize in Physiology or Medicine) key discoveries (1959-70) of how in development system matching occurs in the visual system. The topographic map establishes an ordered neuronal connection between sensory structures and the central nervous system.

The retinotectal map (eye to brain) of birds (lower vertebrates):

  • temporal (posterior) retina is connected to the rostral (anterior) part of the contralateral optic tectum
  • nasal (anterior) retina to the caudal (posterior) tectum
  • ventral retina to the dorsal (medial) tectum
  • dorsal ventral (lateral) tectum

Retinal waves a form of coordinated spontaneous activity that occurs in the developing retina. These waves of electrical activity (action potentials) are thought to have a role in establishing the initial retinotopic map by correlating/coordinating the activity of neighbouring retinal ganglion cells.

EphA/ephrin-A molecular signaling also thought to have a role in establishing the initial retinotopic map.

Neural Crest

Mouse eye neural crest.jpg

Mouse eye neural crest[8]

Mouse eye TGF-beta model.jpg

Mouse eye TGF-beta model[8]

Links: Image - Mouse eye neural crest | Image - Mouse eye TGF-beta model | Vision Development | Neural Crest Development | Head Development

Schlemm's canal

Mouse Schlemm's canal development 01.jpg

Schematic showing the stages of Schlemm's canal development in the postnatal mouse by the novel process of canalogenesis.[9] (Cartoons have been drawn for clarity and are not intended to suggest that most early sprouts arise from the LVP.)


Extraocular Muscles

Extraocular muscles are required to move the eye within the orbit. Their embryonic origin requires an interaction between the cranial mesoderm and the migrating neural crest cells.

The following is from a recent paper comparing human to zebrafish muscle development.[10]

About the Muscles Legend
  • Five of the six muscles (inferior rectus, superior rectus, lateral rectus, medial rectus, and superior oblique) originate at a common tendinous ring of fibrous tissue (the Annulus of Zinn).
    • The Annulus of Zinn surrounds the optic nerve, ophthalmic artery, and ophthalmic vein at their entrance through the apex of the orbit.
  • The sixth muscle (inferior oblique) has a separate origin point on the orbital side of the bony maxilla at the anterior inferomedial strut.
  • IR - inferior rectus
  • SR - superior rectus
  • LR - lateral rectus
  • MR - medial rectus
  • SO - superior oblique
  • IO - inferior oblique
Human extraocular muscles 01.jpg


Links: Extraocular Muscles

Additional Images

Historic Images

Historic Disclaimer - information about historic embryology pages 
Mark Hill.jpg
Pages where the terms "Historic Textbook" and "Historic Embryology" appear on this site, and sections within pages where this disclaimer appears, indicate that the content and scientific understanding are specific to the time of publication. This means that while some scientific descriptions are still accurate, the terminology and interpretation of the developmental mechanisms reflect the understanding at the time of original publication and those of the preceding periods, these terms and interpretations may not reflect our current scientific understanding.     (More? Embryology History | Historic Embryology Papers)

References

  1. Anand Swaroop, Donald J Zack Transcriptome analysis of the retina. Genome Biol.: 2002, 3(8);REVIEWS1022 PubMed 12186651 | Genome Biol.
  2. Vinicius Toledo Ribas, Bruno Souza Gonçalves, Rafael Linden, Luciana Barreto Chiarini Activation of c-Jun N-terminal kinase (JNK) during mitosis in retinal progenitor cells. PLoS ONE: 2012, 7(4);e34483 PubMed 22496813 | PMC4183095 | Front Hum Neurosci.
  3. Vinicius Toledo Ribas, Bruno Souza Gonçalves, Rafael Linden, Luciana Barreto Chiarini Activation of c-Jun N-terminal kinase (JNK) during mitosis in retinal progenitor cells. PLoS ONE: 2012, 7(4);e34483 PubMed 22496813
  4. Itaru Hayakawa, Hiroshi Kawasaki Rearrangement of retinogeniculate projection patterns after eye-specific segregation in mice. PLoS ONE: 2010, 5(6);e11001 PubMed 20544023 | PLoS ONE
  5. Nicole A Rapicavoli, Erin M Poth, Seth Blackshaw The long noncoding RNA RNCR2 directs mouse retinal cell specification. BMC Dev. Biol.: 2010, 10;49 PubMed 20459797
  6. A A Pearson The development of the eyelids. Part I. External features. J. Anat.: 1980, 130(Pt 1);33-42 PubMed 7364662
  7. Streeter GL. Developmental Horizons In Human Embryos Description Or Age Groups XIX, XX, XXI, XXII, And XXIII, Being The Fifth Issue Of A Survey Of The Carnegie Collection. (1957) Carnegie Instn. Wash. Publ. 611, Contrib. Embryol., 36: 167-196.
  8. 8.0 8.1 Lars M Ittner, Heiko Wurdak, Kerstin Schwerdtfeger, Thomas Kunz, Fabian Ille, Per Leveen, Tord A Hjalt, Ueli Suter, Stefan Karlsson, Farhad Hafezi, Walter Born, Lukas Sommer Compound developmental eye disorders following inactivation of TGFbeta signaling in neural-crest stem cells. J. Biol.: 2005, 4(3);11 PubMed 16403239 | J Biol.
  9. Krishnakumar Kizhatil, Margaret Ryan, Jeffrey K Marchant, Stephen Henrich, Simon W M John Schlemm's canal is a unique vessel with a combination of blood vascular and lymphatic phenotypes that forms by a novel developmental process. PLoS Biol.: 2014, 12(7);e1001912 PubMed 25051267 | PLoS Biol.
  10. Daniel S Kasprick, Phillip E Kish, Tyler L Junttila, Lindsay A Ward, Brenda L Bohnsack, Alon Kahana Microanatomy of adult zebrafish extraocular muscles. PLoS ONE: 2011, 6(11);e27095 PubMed 22132088 | PLoS One.

Online Textbooks

Reviews

Francis Beby, Thomas Lamonerie The homeobox gene Otx2 in development and disease. Exp. Eye Res.: 2013, 111;9-16 PubMed 23523800

Ching-Hwa Sung, Jen-Zen Chuang The cell biology of vision. J. Cell Biol.: 2010, 190(6);953-63 PubMed 20855501

| JCB

The International Journal of Developmental Biology Vol. 48 Nos. 8/9 (2004) Eye Development

Articles

L B Paquette, H A Jackson, C J Tavaré, D A Miller, A Panigrahy In utero eye development documented by fetal MR imaging. AJNR Am J Neuroradiol: 2009, 30(9);1787-91 PubMed 19541779



Bookshelf vision development

Search Pubmed

Search Pubmed: vision development | eye development | eye embryology | retina embryology | lens embryology


Search Entrez: vision development | eye development | eye embryology | retina embryology | lens embryology

Terms

Vision Terms  
  • annular tendon - (common tendinous ring, annulus of Zinn) fibrous tissue surrounding the optic nerve forming the origin for five of the six extra ocular muscles.
  • AXIN2 - a scaffold protein that is an antagonist and universal target of the Wnt/β-catenin pathway required for visual development. OMIM - AXIN2
  • canthus - (palpebral commissure) the corner of the eye where the upper and lower eyelids meet.
  • cranial nerve 2 - (CN II, optic nerve) the cranial nerve consisting of retinal ganglion cell axons and glia forming the connection with the brain (pathway: retina, optic disc, optic chiasma, optic tract, lateral geniculate nucleus, pretectal nuclei, and superior colliculus).
  • extraocular muscles - six muscles that control movement of the eye (superior, Inferior, lateral and medial rectus; superior and inferior oblique).
  • fovea - (fovea centralis; Latin, fovea = pit) retina region located in the center of the macula, required for sharp central vision.
  • ganglion cell layer - (retinal ganglion layer) the layer of the retina where retinal ganglion cell bodies lie.
  • macula - (Latin, macula = spot; lutea = yellow) region near the center of the retina containing two or more layers of ganglion cells.
  • nasolacrimal groove - (lacrimal groove) an embryonic surface feature between the maxillary and the lateral nasal process that will later fuse to form the lacrimal duct running between the eye and the nasal inferior meatus.
  • optic chiasm (optic chiasma) CN II region where some of the axons (partial) cross to the opposite side.
  • optic cup - the in-folded extension of the optic stalk from the diencephalon that forms the retina.
  • optic disc - (optic nerve head) region on the retina where the retinal ganglion cells exit to form CN II.
  • optic placode - (lens placode) surface ectoderm that folds inward to form the developing lens.
  • retina - The stratified sensory structure of the eye, formed from the neural ectoderm that extends from the forebrain (diencephalon) to form initially the folded optic cup. Vertebrates have ten identifiable layers formed from nerve fibers, neurons, membranes, photoreceptors and pigmented cells. Light must pass through nearly all these layers to the photoreceptors. (1. Inner limiting membrane - Müller cell footplates; 2. Nerve fiber layer; 3. Ganglion cell layer - layer of retinal ganglion cells their axons form the nerve fiber layer and eventually the optic nerve; 4. Inner plexiform layer - another layer of neuronal processes; 5. Inner nuclear layer; 6. Outer plexiform layer; 7. Outer nuclear layer; 8. External limiting membrane - layer separating inner segment portions of photoreceptors from their cell nuclei; 9. Photoreceptor layer - rods and cones that convert light into signals; 10. Retinal pigment epithelium).
  • retinal pigment epithelium - (RPE, pigmented layer) An epethial pigmented cell layer lying outside the sensory retina, formed from the outer layer of the folded optic cup. The RPE is firmly attached to the underlying choroid and overlying retinal visual cells, for which it has a nutritional role.
  • retinal waves - A form of coordinated spontaneous activity that occurs in the developing retina. These waves of electrical activity (action potentials) along with EphA/ephrin-A signaling are thought to have a role in establishing the initial retinotopic map by correlating/coordinating the activity of neighbouring retinal ganglion cells.
  • YAP - (Yes-Associated Protein) transcriptional regulator required for retinal progenitor cell cycle progression and RPE cell fate acquisition. PMID 27616714 OMIM - YAP1
Other Terms Lists  
Terms Lists: ART | Birth | Bone | Cardiovascular | Cell Division | Gastrointestinal | Genetic | Hearing | Heart | Immune | Integumentary | Neural | Oocyte | Palate | Placenta | Renal | Spermatozoa | Ultrasound | Vision | Historic | Glossary


External Links

External Links Notice - The dynamic nature of the internet may mean that some of these listed links may no longer function. If the link no longer works search the web with the link text or name. Links to any external commercial sites are provided for information purposes only and should never be considered an endorsement. UNSW Embryology is provided as an educational resource with no clinical information or commercial affiliation.


Glossary Links

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols

Cite this page: Hill, M.A. 2017 Embryology Sensory - Vision Development. Retrieved June 24, 2017, from https://embryology.med.unsw.edu.au/embryology/index.php/Sensory_-_Vision_Development

What Links Here?
© Dr Mark Hill 2017, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G