Fetal ECHO Meeting 2012: Difference between revisions

From Embryology
Line 255: Line 255:
* Stage 16  10 mm embryo EHR at least 120 beats / minute
* Stage 16  10 mm embryo EHR at least 120 beats / minute
* Stage 18  15 mm embryo EHR at least 130 beats / minute
* Stage 18  15 mm embryo EHR at least 130 beats / minute
==Fetal Heart==
Beyond the scope of this current talk.
Study using 3 and 4-dimensional fetal echocardiography between 12 and 41 weeks gestational age.<ref><pubmed>17384040</pubmed>| [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2190734 MC2190734] [http://www.jultrasoundmed.org/content/26/4/437.long J Ultrasound Med.]</ref>
* The angle between ductal arch and thoracic aorta significantly decreased with advancing gestational age.


==Abnormalities==
==Abnormalities==

Revision as of 07:32, 5 October 2012

Introduction

Dr Mark Hill

Fetal ECHO Meeting 5th-8th October 2012 ROYAL PRINCE ALFRED HOSPITAL, SYDNEY, AUSTRALIA

This presentation will introduce development of the heart from its earliest origins through to the end of the embryonic period. The main morphological changes in the human heart will be shown in the context of the normal human timeline of development.

Developmental Timings

  • Clinical timings refer to Gestational Age (GA) from the last day of the Last Menstrual Period (LMP).
  • Embryonic timings refer to Ovulation age (OA) from day 14 of the cycle when fertilization occurs.
Cardiovascular Links: cardiovascular | Heart Tutorial | Lecture - Early Vascular | Lecture - Heart | Movies | 2016 Cardiac Review | heart | coronary circulation | heart valve | heart rate | Circulation | blood | blood vessel | blood vessel histology | heart histology | Lymphatic | ductus venosus | spleen | Stage 22 | cardiovascular abnormalities | OMIM | 2012 ECHO Meeting | Category:Cardiovascular
Historic Embryology - Cardiovascular 
1902 Vena cava inferior | 1905 Brain Blood Vessels | 1909 Cervical Veins | 1909 Dorsal aorta and umbilical veins | 1912 Heart | 1912 Human Heart | 1914 Earliest Blood-Vessels | 1915 Congenital Cardiac Disease | 1915 Dura Venous Sinuses | 1916 Blood cell origin | 1916 Pars Membranacea Septi | 1919 Lower Limb Arteries | 1921 Human Brain Vascular | 1921 Spleen | 1922 Aortic-Arch System | 1922 Pig Forelimb Arteries | 1922 Chicken Pulmonary | 1923 Head Subcutaneous Plexus | 1923 Ductus Venosus | 1925 Venous Development | 1927 Stage 11 Heart | 1928 Heart Blood Flow | 1935 Aorta | 1935 Venous valves | 1938 Pars Membranacea Septi | 1938 Foramen Ovale | 1939 Atrio-Ventricular Valves | 1940 Vena cava inferior | 1940 Early Hematopoiesis | 1941 Blood Formation | 1942 Truncus and Conus Partitioning | Ziegler Heart Models | 1951 Heart Movie | 1954 Week 9 Heart | 1957 Cranial venous system | 1959 Brain Arterial Anastomoses | Historic Embryology Papers | 2012 ECHO Meeting | 2016 Cardiac Review | Historic Disclaimer

Human Embryo Development

Human development timeline graph 01.jpg

Weeks shown are ovulation age (OA) for gestational age (GA) add 2 weeks.

Human Carnegie stage 1-23.jpg

Heart Embryonic Timeline

Advanced Heart Development Timeline GA.jpg

Weeks shown above are for clinical Gestational Age (GA). Ages shown below are Ovulation Age (OA), subtract 2 weeks from GA.


Begin Advanced Heart Fields Heart Tubes Cardiac Looping Cardiac Septation Outflow Tract Valve Development Cardiac Conduction Cardiac Abnormalities Molecular Development


Heart Field

Early Heart Tube (Dorsal).jpg

Dorsal view of 18 day embryo

Early Heart Tube (Lateral).jpg

Lateral view of 18 day embryo

Heart fields 001 icon.jpg
 ‎‎Heart Fields
Page | Play
Week3 folding icon.jpg
 ‎‎Week 3
Page | Play
  • The heart primordium arises predominantly from the primary heart field in splanchnic mesoderm forming in the cardiogenic region of the trilaminar embryo.
  • The cardiogenic region can be thought of as bilateral fields that merge cranially to form a horseshoe-shaped field.
  • During the third week (PO) of development (approximately day 18) angioblastic cords develop in this cardiogenic mesoderm and canalise to form bilateral endocardial heart tubes.
  • The secondary heart field has been described as pharyngeal mesenchyme that contributes myocardium and smooth muscle to the arterial pole.

Heart Tube

Heart Tube Fusion.jpg Heart Tube Segments.jpg


  • The endothelium of the heart tube forms the internal endocardium.
  • The epicardium develops from mesothelial cells arising from the sinus venosus, that spread cranially over the myocardium.

Cardiac Looping

Human heart SEM1.jpg

Image day 21 to 25 (GA Week 5)

Heart Looping Sequence (SEMs).jpg

Stage11 sem8a.jpg

Stage11 sem5c.jpg

Stage12 sem1.jpg Stage13 bf6.jpg

Stage13 sem1c.jpg

Stage 11 Stage 12

Stage 12 detail

Stage 13

Heart Week 7 and 10 (GA)

Stage 13 image 097.jpg Stage 13 image 098.jpg
G6L G7L


Cardiovascular Movies

Week3 folding icon.jpg
 ‎‎Week 3
Page | Play
Week3 folding icon.jpg
 ‎‎Week 3
Page | Play
Heart1 looping icon.jpg
 ‎‎Heart Looping
Page | Play
Heart1 realign icon.jpg
 ‎‎Heart Realign
Page | Play
Heart1 atrium icon.jpg
 ‎‎Atrial Septation
Page | Play
Heart1 ventricle icon.jpg
 ‎‎Outflow Septation
Page | Play

Embryonic Heart Rate

In a 1996 study normal successful human gestations were defined by EHR criteria at different early embryonic (34-56 days GA, from last menstrual period) developmental stages (at the earliest stages when embryo length is difficult to measure gestational sac diameters are included). [1]

  • Stage 9-10 2 mm embryo (gestational sac diameter of 20 mm) EHR at least 75 beats / minute
  • Stage 11-12 5 mm embryo (gestational sac diameter of 30 mm) EHR at least 100 beats / minute
  • Stage 16 10 mm embryo EHR at least 120 beats / minute
  • Stage 18 15 mm embryo EHR at least 130 beats / minute

Fetal Heart

Beyond the scope of this current talk.

Study using 3 and 4-dimensional fetal echocardiography between 12 and 41 weeks gestational age.[2]

  • The angle between ductal arch and thoracic aorta significantly decreased with advancing gestational age.

Abnormalities

References

  1. <pubmed>8921130</pubmed>
  2. <pubmed>17384040</pubmed>| MC2190734 J Ultrasound Med.

Additional References


Online Textbooks

Search Bookshelf heart development

Reviews

<pubmed>21940548</pubmed> <pubmed>17224285</pubmed>| PMC1858673 <pubmed></pubmed>

Articles

<pubmed></pubmed>

Search Pubmed

Search Pubmed heart development

External Links

External Links Notice - The dynamic nature of the internet may mean that some of these listed links may no longer function. If the link no longer works search the web with the link text or name. Links to any external commercial sites are provided for information purposes only and should never be considered an endorsement. UNSW Embryology is provided as an educational resource with no clinical information or commercial affiliation.

  • Cardiovascular Ultrasound is an open access, peer-reviewed, online journal covering clinical, technological, experimental, biological, and molecular aspects of ultrasound applications in cardiovascular physiology and disease. Search - Fetal

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, May 5) Embryology Fetal ECHO Meeting 2012. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Fetal_ECHO_Meeting_2012

What Links Here?
© Dr Mark Hill 2024, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G