Paper - The Development of the Pars Membranacea Septi in the Human Heart: Difference between revisions

From Embryology
mNo edit summary
mNo edit summary
Line 14: Line 14:
{{Heart Links}}
{{Heart Links}}
|}
|}
=The Development of the Pars Membranacea Septi in the Human Heart=
By P. N. B. Odgers
From the Department of Human Anatomy, University of Oxford
THE accounts which have been published of the development of this region of
the heart, the method in which the interventricular foramen is occluded to
form the membranous part of the septum, or whether indeed this occurs at all,
have been so vague or so contradictory that a re-examination of the question
seemed worth while.
For this investigation I was able to study human embryos of 11.2, 11.4-, 12.5, 14, 14.5, 15.5, 17, and 17.5 mm. in crown-rump length. Of these the 14 mm. embryo was the least valuable for my present purpose, as the heart is over-distended with blood in this specimen. I have therefore not included it among the detailed descriptions which follow. Reconstruction models were made of this region in the 11.2, 11.4, 14.5, 15.5, and 17 mm. specimens.
==11.2 mm Embryo==
At this stage (Text-fig. 1) the two bulbar ridges (Frazer) or the proximal
bulbar swellings (Tandler) are seen united above to form the bulbar septum, but
soon separating below into right and left moieties. The right one (R.B.R.) can be
traced down on the right ventricular wall to become continuous with the anlage
of the right or inferior cusp of the tricuspid valve, while the left one (L.B.R.)
joins the right side of the interventricular septum and on that soon disappears.
Where they are fused and for a few sections after their separation the two
ridges are seen to be of equal size, but at a. lower level the right one soon appears to be not only the more extensive but the more substantial of the two.
The interventricular foramen (I. V.F.) is seen in thirty sections, i.e. its cranio-caudal diameter is 300 p.. It is bordered ventrally by the inter ventricular septum (I. V.S.) and dorsally by the fused auriculoventricular cushions (hereafter abbreviated into the A.-V. cushions). Above, the dorsal (cranial) border of the interventricular septum joins the fused A.-V. cushions about their centre, while below it joins their right margin.
Below the caudal border of the foramen the septum is fused to the inferior A.-V. cushion in fourteen sections (i.e. for 140 p.). This must presumably represent the amount of closure of the interventricular foramen which has already occurred since about the 7 mm. stage. It may be noted here, however, that in our 7 mm. embryo, where the interventricular septum is represented by a
low ridge which does not yet make contact with the A.-V. cushions, the cranio-





Revision as of 09:56, 19 January 2016

Embryology - 6 May 2024    Facebook link Pinterest link Twitter link  Expand to Translate  
Google Translate - select your language from the list shown below (this will open a new external page)

العربية | català | 中文 | 中國傳統的 | français | Deutsche | עִברִית | हिंदी | bahasa Indonesia | italiano | 日本語 | 한국어 | မြန်မာ | Pilipino | Polskie | português | ਪੰਜਾਬੀ ਦੇ | Română | русский | Español | Swahili | Svensk | ไทย | Türkçe | اردو | ייִדיש | Tiếng Việt    These external translations are automated and may not be accurate. (More? About Translations)

Odgers PN. The Development of the Pars Membranacea Septi in the Human Heart. J Anat. 1938 Jan;72(Pt 2):247-59. PMID 17104688

Historic Disclaimer - information about historic embryology pages 
Mark Hill.jpg
Pages where the terms "Historic" (textbooks, papers, people, recommendations) appear on this site, and sections within pages where this disclaimer appears, indicate that the content and scientific understanding are specific to the time of publication. This means that while some scientific descriptions are still accurate, the terminology and interpretation of the developmental mechanisms reflect the understanding at the time of original publication and those of the preceding periods, these terms, interpretations and recommendations may not reflect our current scientific understanding.     (More? Embryology History | Historic Embryology Papers)
Online Editor Note
Mark Hill.jpg

See also the earlier 1916 paper by Frazer JE. The Formation of the Pars Membranacea Septi. J Anat. 1916 Oct;51(Pt 1):19-29. PMID 17103800

Historic Embryology Papers

Cardiovascular Links: cardiovascular | Heart Tutorial | Lecture - Early Vascular | Lecture - Heart | Movies | 2016 Cardiac Review | heart | coronary circulation | heart valve | heart rate | Circulation | blood | blood vessel | blood vessel histology | heart histology | Lymphatic | ductus venosus | spleen | Stage 22 | cardiovascular abnormalities | OMIM | 2012 ECHO Meeting | Category:Cardiovascular
Historic Embryology - Cardiovascular 
1902 Vena cava inferior | 1905 Brain Blood Vessels | 1909 Cervical Veins | 1909 Dorsal aorta and umbilical veins | 1912 Heart | 1912 Human Heart | 1914 Earliest Blood-Vessels | 1915 Congenital Cardiac Disease | 1915 Dura Venous Sinuses | 1916 Blood cell origin | 1916 Pars Membranacea Septi | 1919 Lower Limb Arteries | 1921 Human Brain Vascular | 1921 Spleen | 1922 Aortic-Arch System | 1922 Pig Forelimb Arteries | 1922 Chicken Pulmonary | 1923 Head Subcutaneous Plexus | 1923 Ductus Venosus | 1925 Venous Development | 1927 Stage 11 Heart | 1928 Heart Blood Flow | 1935 Aorta | 1935 Venous valves | 1938 Pars Membranacea Septi | 1938 Foramen Ovale | 1939 Atrio-Ventricular Valves | 1940 Vena cava inferior | 1940 Early Hematopoiesis | 1941 Blood Formation | 1942 Truncus and Conus Partitioning | Ziegler Heart Models | 1951 Heart Movie | 1954 Week 9 Heart | 1957 Cranial venous system | 1959 Brain Arterial Anastomoses | Historic Embryology Papers | 2012 ECHO Meeting | 2016 Cardiac Review | Historic Disclaimer

The Development of the Pars Membranacea Septi in the Human Heart

By P. N. B. Odgers

From the Department of Human Anatomy, University of Oxford

THE accounts which have been published of the development of this region of the heart, the method in which the interventricular foramen is occluded to form the membranous part of the septum, or whether indeed this occurs at all, have been so vague or so contradictory that a re-examination of the question seemed worth while.


For this investigation I was able to study human embryos of 11.2, 11.4-, 12.5, 14, 14.5, 15.5, 17, and 17.5 mm. in crown-rump length. Of these the 14 mm. embryo was the least valuable for my present purpose, as the heart is over-distended with blood in this specimen. I have therefore not included it among the detailed descriptions which follow. Reconstruction models were made of this region in the 11.2, 11.4, 14.5, 15.5, and 17 mm. specimens.

11.2 mm Embryo

At this stage (Text-fig. 1) the two bulbar ridges (Frazer) or the proximal bulbar swellings (Tandler) are seen united above to form the bulbar septum, but soon separating below into right and left moieties. The right one (R.B.R.) can be traced down on the right ventricular wall to become continuous with the anlage of the right or inferior cusp of the tricuspid valve, while the left one (L.B.R.) joins the right side of the interventricular septum and on that soon disappears. Where they are fused and for a few sections after their separation the two ridges are seen to be of equal size, but at a. lower level the right one soon appears to be not only the more extensive but the more substantial of the two.


The interventricular foramen (I. V.F.) is seen in thirty sections, i.e. its cranio-caudal diameter is 300 p.. It is bordered ventrally by the inter ventricular septum (I. V.S.) and dorsally by the fused auriculoventricular cushions (hereafter abbreviated into the A.-V. cushions). Above, the dorsal (cranial) border of the interventricular septum joins the fused A.-V. cushions about their centre, while below it joins their right margin.


Below the caudal border of the foramen the septum is fused to the inferior A.-V. cushion in fourteen sections (i.e. for 140 p.). This must presumably represent the amount of closure of the interventricular foramen which has already occurred since about the 7 mm. stage. It may be noted here, however, that in our 7 mm. embryo, where the interventricular septum is represented by a low ridge which does not yet make contact with the A.-V. cushions, the cranio-




Cite this page: Hill, M.A. (2024, May 6) Embryology Paper - The Development of the Pars Membranacea Septi in the Human Heart. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Paper_-_The_Development_of_the_Pars_Membranacea_Septi_in_the_Human_Heart

What Links Here?
© Dr Mark Hill 2024, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G