Worm Development

From Embryology
Embryology - 21 Oct 2018    Facebook link Pinterest link Twitter link  Expand to Translate  
Google Translate - select your language from the list shown below (this will open a new external page)

العربية | català | 中文 | 中國傳統的 | français | Deutsche | עִברִית | हिंदी | bahasa Indonesia | italiano | 日本語 | 한국어 | မြန်မာ | Pilipino | Polskie | português | ਪੰਜਾਬੀ ਦੇ | Română | русский | Español | Swahili | Svensk | ไทย | Türkçe | اردو | ייִדיש | Tiếng Việt    These external translations are automated and may not be accurate. (More? About Translations)



Initially used in the 1960's by Sydney Brenner to study the genetics of development and neurobiology. Early embryological studies of the nematode worm (roundworm) Caenorhabditis elegans (C.Elegans, so called because of its "elegant" curving movement) characterized the fate of each and every cell in the worm through all stages of development. This worm was the first to have its entire genome sequenced and also used recently in space experiments (see below).

The USA space shuttle Atlantis in November 2009 launched Caenorhabditis elegans into space as part of an experiment to study RNA interference and protein phosphorylation in a space environment.

"RNA interference and protein phosphorylation in space environment using the nematode Caenorhabditis elegans (CERISE) is an experiment that addresses two scientific objectives. The first is to evaluate the effect of microgravity on ribonucleic acid (RNA) interference. The second is to study how the space environment effects protein phosphorylation (addition of a phosphate molecule) and signal transduction in the muscle fibers of gene knock-downed Caenorhabditis elegans."

Animal Development: axolotl | bat | cat | chicken | cow | dog | dolphin | echidna | fly | frog | grasshopper | guinea pig | hamster | kangaroo | koala | lizard | medaka | mouse | pig | platypus | rabbit | rat | sea squirt | sea urchin | sheep | worm | zebrafish | life cycles | development timetable | development models | K12
Historic Embryology  
1897 Pig | 1900 Chicken | 1901 Lungfish | 1904 Sand Lizard | 1905 Rabbit | 1906 Deer | 1907 Tarsiers | 1908 Human | 1909 Northern Lapwing | 1909 South American and African Lungfish | 1910 Salamander | 1951 Frog | Embryology History | Historic Disclaimer

Some Recent Findings

  • Homeobox Genes of Caenorhabditis elegans and Spatio-Temporal Expression[1] "We show that, out of 103 homeobox genes, 70 are co-orthologous to human homeobox genes. 14 are highly divergent, lacking an obvious ortholog even in other Caenorhabditis species. One of these homeobox genes encodes 12 homeodomains, while three other highly divergent homeobox genes encode a novel type of double homeodomain, termed HOCHOB. To understand how transcription factors regulate cell fate during development, precise spatio-temporal expression data need to be obtained. Using a new imaging framework that we developed, Endrov, we have generated spatio-temporal expression profiles during embryogenesis of over 60 homeobox genes, as well as a number of other developmental control genes using GFP reporters." [[Developmental Signals - Homeobox]
  • Basic Caenorhabditis elegans Methods: Synchronization and Observation[2] "Research into the molecular and developmental biology of the nematode Caenorhabditis elegans was begun in the early seventies by Sydney Brenner and it has since been used extensively as a model organism (1). C. elegans possesses key attributes such as simplicity, transparency and short life cycle that have made it a suitable experimental system for fundamental biological studies for many years (2). ...Because of its transparency, C. elegans structures can be distinguished under the microscope using Differential Interference Contrast microscopy, also known as Nomarski microscopy. The use of a fluorescent DNA binder, DAPI (4',6-diamidino-2-phenylindole), for instance, can lead to the specific identification and localization of individual cells, as well as subcellular structures/defects associated to them."
  • Small RNAs and temporal control in Caenorhabditis elegans.[3] "Developmental timing studies in C. elegans led to the landmark discovery of miRNAs and continue to enhance our understanding of the regulation and activity of these small regulatory molecules. Current views of the heterochronic gene pathway are summarized here, with a focus on the ways in which miRNAs contribute to temporal control and how miRNAs themselves are regulated. Finally, the conservation of heterochronic genes and their functions in timing, as well as their related roles in stem cells and cancer, are highlighted."
More recent papers
Mark Hill.jpg
PubMed logo.gif

This table shows an automated computer PubMed search using the listed sub-heading term.

  • Therefore the list of references do not reflect any editorial selection of material based on content or relevance.
  • References appear in this list based upon the date of the actual page viewing.

References listed on the rest of the content page and the associated discussion page (listed under the publication year sub-headings) do include some editorial selection based upon both relevance and availability.

Links: References | Discussion Page | Pubmed Most Recent | Journal Searches

Search term: Worm Embryology

Patricia Rojas-Ríos, Martine Simonelig piRNAs and PIWI proteins: regulators of gene expression in development and stem cells. Development: 2018, 145(17); PubMed 30194260

Tzu-Pei Fan, Hsiu-Chi Ting, Jr-Kai Yu, Yi-Hsien Su Reiterative use of FGF signaling in mesoderm development during embryogenesis and metamorphosis in the hemichordate Ptychodera flava. BMC Evol. Biol.: 2018, 18(1);120 PubMed 30075704

Hannah S Seidel, Tilmira A Smith, Jessica K Evans, Jarred Q Stamper, Thomas G Mast, Judith Kimble C. elegans germ cells divide and differentiate in a folded tissue. Dev. Biol.: 2018; PubMed 30030982

Suryesh Namdeo, Eduardo Moreno, Christian Rödelsperger, Praveen Baskaran, Hanh Witte, Ralf J Sommer ##Title## Development: 2018, 145(13); PubMed 29967123

Christopher W Williams, Jyoti Iyer, Yan Liu, Kevin F O'Connell CDK-11-Cyclin L Is Required for Gametogenesis and Fertility in C. elegans. Dev. Biol.: 2018; PubMed 29886128

Adult Anatomy

C elegans cartoon.jpg

Adult Hermaphrodite Gonad

Adult hermaphrodite gonad arm.jpg

Adult hermaphrodite gonad arm[4] - A drawing representation of an adult hermaphrodite gonad arm. The progression of germ cell proliferation and meiosis are indicated by the arrows starting from the distal tip region of the gonad arm.

Male Development

Worm - male development.jpg

The features that differentiate the C. elegans male from the hermaphrodite arise during postembryonic development.[5]

RNA interference

The two researchers, Andrew Z. Fire and Craig C. Mello[6], were investigating how gene expression is regulated in C. elegans and identified the novel regulation method of RNA interference (RNAi), gene silencing by double-stranded RNA. This discovery was awarded the 2006 Nobel Prize in Physiology or Medicine.

Links: 2006 Nobel Press Release

Embryonic Cell Lineages

Worm - embryonic cell lineage 02.jpg

The overview diagram above shows the fate of each individual cell in the developing c. elegans.

  • Zygote (P0 cell) divides into two daughter cells (AB and P1 cells).
  • These two daughter cells then divide into the next generation.
  • the "X" indicates cells that die by apoptosis during development.

Note the above image is not at a readable resolution, to view see large readable version (10,389 × 1,336 pixels). Embryonic cell lineage developed by J .E. Sulston, E. Schierenberg, J. G. White, J. N. Thomson.

Links: Apoptosis | Worm Atlas - Cell Lineages

Gastrointestinal Tract

The worm digestive tract consists of a pharynx, intestine, and rectum and contains only about 100 cells. Development is regulated by similar transcription factors found for other species (FoxA and GATA factors).[7]

  • FoxA - pharynx and rectum
  • GATA - intestine


  1. Jürgen Hench, Johan Henriksson, Akram M Abou-Zied, Martin Lüppert, Johan Dethlefsen, Krishanu Mukherjee, Yong Guang Tong, Lois Tang, Umesh Gangishetti, David L Baillie, Thomas R Bürglin The Homeobox Genes of Caenorhabditis elegans and Insights into Their Spatio-Temporal Expression Dynamics during Embryogenesis. PLoS ONE: 2015, 10(5);e0126947 PubMed 26024448 | PLoS One.
  2. Montserrat Porta-de-la-Riva, Laura Fontrodona, Alberto Villanueva, Julián Cerón Basic Caenorhabditis elegans methods: synchronization and observation. J Vis Exp: 2012, (64);e4019 PubMed 22710399 | J Vis Exp.
  3. Tamar D Resnick, Katherine A McCulloch, Ann E Rougvie miRNAs give worms the time of their lives: small RNAs and temporal control in Caenorhabditis elegans. Dev. Dyn.: 2010, 239(5);1477-89 PubMed 20232378
  4. Jeremy S Bickel, Liting Chen, Jin Hayward, Szu Ling Yeap, Ashley E Alkers, Raymond C Chan Structural maintenance of chromosomes (SMC) proteins promote homolog-independent recombination repair in meiosis crucial for germ cell genomic stability. PLoS Genet.: 2010, 6(7);e1001028 PubMed 20661436 | PLoS Genetics
  5. Scott W Emmons Male development. WormBook: 2005;1-22 PubMed 18050419 Worm Book - Male development
  6. Lisa Timmons, Hiroaki Tabara, Craig C Mello, Andrew Z Fire Inducible systemic RNA silencing in Caenorhabditis elegans. Mol. Biol. Cell: 2003, 14(7);2972-83 PubMed 12857879 | PMC165691
  7. Jay D Kormish, Jeb Gaudet, James D McGhee Development of the C. elegans digestive tract. Curr. Opin. Genet. Dev.: 2010, 20(4);346-54 PubMed 20570129


WormBook - a comprehensive, open-access collection of original, peer-reviewed chapters covering topics related to the biology of Caenorhabditis elegans and other nematodes.


Search Pubmed

July 2010 "c elegans Development" All (5126) Review (898) Free Full Text (2363)

Search Pubmed: Worm Development | Caenorhabditis elegans Development | c elegans Development

External Links

External Links Notice - The dynamic nature of the internet may mean that some of these listed links may no longer function. If the link no longer works search the web with the link text or name. Links to any external commercial sites are provided for information purposes only and should never be considered an endorsement. UNSW Embryology is provided as an educational resource with no clinical information or commercial affiliation.

Animal Development: axolotl | bat | cat | chicken | cow | dog | dolphin | echidna | fly | frog | grasshopper | guinea pig | hamster | kangaroo | koala | lizard | medaka | mouse | pig | platypus | rabbit | rat | sea squirt | sea urchin | sheep | worm | zebrafish | life cycles | development timetable | development models | K12
Historic Embryology  
1897 Pig | 1900 Chicken | 1901 Lungfish | 1904 Sand Lizard | 1905 Rabbit | 1906 Deer | 1907 Tarsiers | 1908 Human | 1909 Northern Lapwing | 1909 South American and African Lungfish | 1910 Salamander | 1951 Frog | Embryology History | Historic Disclaimer

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2018, October 21) Embryology Worm Development. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Worm_Development

What Links Here?
© Dr Mark Hill 2018, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G