Neural - Medulla Oblongata Development

From Embryology
Embryology - 10 Dec 2018    Facebook link Pinterest link Twitter link  Expand to Translate  
Google Translate - select your language from the list shown below (this will open a new external page)

العربية | català | 中文 | 中國傳統的 | français | Deutsche | עִברִית | हिंदी | bahasa Indonesia | italiano | 日本語 | 한국어 | မြန်မာ | Pilipino | Polskie | português | ਪੰਜਾਬੀ ਦੇ | Română | русский | Español | Swahili | Svensk | ไทย | Türkçe | اردو | ייִדיש | Tiếng Việt    These external translations are automated and may not be accurate. (More? About Translations)

Stage10 sem6.jpg

Introduction

Historic Ziegler Model of the Medulla
Historic Ziegler Model of the Medulla

The medulla or medulla oblongata develops from the secondary brain vesicle the myelencephalon, that in turn formed from the earlier primary brain vesicle rhombencephalon. The neural tube lateral walls have 2 halves (alar and a basal lamina) and are connected by a floor plate and roof-plate region.


Neural development is one of the earliest systems to begin and the last to be completed after birth. This development generates the most complex structure within the embryo and the long time period of development means in utero insult during pregnancy may have consequences to development of the nervous system.

The early central nervous system begins as a simple neural plate that folds to form a groove then tube, open initially at each end. Failure of these opening to close contributes a major class of neural abnormalities (neural tube defects).


Within the neural tube stem cells generate the 2 major classes of cells that make the majority of the nervous system : neurons and glia. Both these classes of cells differentiate into many different types generated with highly specialized functions and shapes. This section covers the establishment of neural populations, the inductive influences of surrounding tissues and the sequential generation of neurons establishing the layered structure seen in the brain and spinal cord. Neural development beginnings quite early, therefore also look at notes covering Week 3 neural tube and Week 4 early nervous system.


Historic Embryology  
Sabin FR. and Knower H. An atlas of the medulla and midbrain, a laboratory manual (1901) Baltimore: Friedenwald.
Neural Links: neural | ventricular | ectoderm | Stage 22 | gliogenesis | neural fetal | Medicine Lecture - Neural | Lecture - Ectoderm | Lecture - Neural Crest | Lab - Early Neural | neural crest | Sensory | neural abnormalities | folic acid | iodine deficiency | Fetal Alcohol Syndrome | Postnatal | Postnatal - Neural Examination | Histology | Historic Neural | Category:Neural
Neural Parts: neural | prosencephalon | telencephalon cerebrum | amygdala | hippocampus | basal ganglia | lateral ventricles | diencephalon | Epithalamus | thalamus | hypothalamus‎ | pituitary | pineal | third ventricle | mesencephalon | tectum | cerebral aqueduct | rhombencephalon | metencephalon | pons | cerebellum | myelencephalon | medulla oblongata | spinal cord | neural vascular | meninges | Category:Neural

Some Recent Findings

  • A neuronal migratory pathway crossing from diencephalon to telencephalon populates amygdala nuclei[1] "Neurons usually migrate and differentiate in one particular encephalic vesicle. We identified a murine population of diencephalic neurons that colonized the telencephalic amygdaloid complex, migrating along a tangential route that crosses a boundary between developing brain vesicles. The diencephalic transcription factor OTP was necessary for this migratory behavior."
More recent papers
Mark Hill.jpg
PubMed logo.gif

This table shows an automated computer PubMed search using the listed sub-heading term.

  • Therefore the list of references do not reflect any editorial selection of material based on content or relevance.
  • References appear in this list based upon the date of the actual page viewing.

References listed on the rest of the content page and the associated discussion page (listed under the publication year sub-headings) do include some editorial selection based upon both relevance and availability.

Links: References | Discussion Page | Pubmed Most Recent | Journal Searches


Search term: Medulla Oblongata Embryology

Peng-Peng Jin, Feng Xia, Bin-Fang Ma, Zhen Li, Guo-Feng Zhang, Yan-Chun Deng, Zhi-Lan Tu, Xing-Xing Zhang, Shuang-Xing Hou Spatiotemporal expression of NDRG2 in the human fetal brain. Ann. Anat.: 2018; PubMed 30312765

Bilgehan Solmaz, Mustafa Görkem Özyurt, Demir Berk Ata, Fulya Akçimen, Mohammed Shabsog, Kemal Sıtkı Türker, Hakkı Dalçik, Oktay Algin, Ayşe Nazlı Başak, Merve Özgür, Safiye Çavdar Assessment of the corticospinal fiber integrity in mirror movement disorder. J Clin Neurosci: 2018; PubMed 29907388

Reinhard Altmann, Christian Specht, Iris Scharnreitner, Caroline Schertler, Richard Mayer, Wolfgang Arzt, Matthias Scheier Reference Ranges for Transvaginal Examined Fossa Posterior Structures in Fetuses from 45 to 84 mm Crown-Rump Length. Gynecol. Obstet. Invest.: 2018;1-6 PubMed 29870989

Dasiel O Borroto-Escuela, Manuel Narváez, Patrizia Ambrogini, Luca Ferraro, Ismel Brito, Wilber Romero-Fernandez, Yuniesky Andrade-Talavera, Antonio Flores-Burgess, Carmelo Millon, Belen Gago, Jose Angel Narvaez, Yuji Odagaki, Miklos Palkovits, Zaida Diaz-Cabiale, Kjell Fuxe Receptor⁻Receptor Interactions in Multiple 5-HT1A Heteroreceptor Complexes in Raphe-Hippocampal 5-HT Transmission and Their Relevance for Depression and Its Treatment. Molecules: 2018, 23(6); PubMed 29865267

Tao Chen, Wataru Taniguchi, Qi-Yu Chen, Hidetoshi Tozaki-Saitoh, Qian Song, Ren-Hao Liu, Kohei Koga, Tsuyoshi Matsuda, Yae Kaito-Sugimura, Jian Wang, Zhi-Hua Li, Ya-Cheng Lu, Kazuhide Inoue, Makoto Tsuda, Yun-Qing Li, Terumasa Nakatsuka, Min Zhuo Top-down descending facilitation of spinal sensory excitatory transmission from the anterior cingulate cortex. Nat Commun: 2018, 9(1);1886 PubMed 29760484

Development Overview

Neuralation begins at the trilaminar embryo with formation of the notochord and somites, both of which underly the ectoderm and do not contribute to the nervous system, but are involved with patterning its initial formation. The central portion of the ectoderm then forms the neural plate that folds to form the neural tube, that will eventually form the entire central nervous system.

Early developmental sequence: Epiblast - Ectoderm - Neural Plate - Neural groove and Neural Crest - Neural Tube and Neural Crest


Neural Tube Primary Vesicles Secondary Vesicles Adult Structures
week 3 week 4 week 5 adult
neural plate
neural groove
neural tube

Brain
Prosencephalon Telencephalon Rhinencephalon, Amygdala, Hippocampus, Cerebrum (Cortex), Hypothalamus, Pituitary | Basal Ganglia, lateral ventricles
Diencephalon Epithalamus, Thalamus, Subthalamus, Pineal, third ventricle
Mesencephalon Mesencephalon Tectum, Cerebral peduncle, Pretectum, cerebral aqueduct
Rhombencephalon Metencephalon Pons, Cerebellum
Myelencephalon Medulla Oblongata
Spinal Cord

Early Brain Vesicles

Primary Vesicles

CNS primary vesicles.jpg

Secondary Vesicles

CNS secondary vesicles.jpg

Historic Ziegler Model

Ziegler model 16.jpg Ziegler model 15.jpg

Image of information attached to underside of Medulla model base.

Model for explaining the course and the fiber cores of the midbrain and the medulla oblongata of the newborn. (Modell zur Erläuterung des Faserverlaufes und der Kerne des Mittelhirnes und des verlängerten Markes eines Neugeborenen.)

Ziegler model 10.jpg

Medulla Model

Ziegler model 11.jpg

Medulla Model

Ziegler model 13.jpg Ziegler model 14.jpg
Ziegler model 08.jpg Ziegler model 09.jpg


Links: Ziegler Models

References

  1. García-Moreno F, Pedraza M, Di Giovannantonio LG, Di Salvio M, López-Mascaraque L, Simeone A & De Carlos JA. (2010). A neuronal migratory pathway crossing from diencephalon to telencephalon populates amygdala nuclei. Nat. Neurosci. , 13, 680-9. PMID: 20495559 DOI.

Reviews

Articles

Duncan JR, Paterson DS & Kinney HC. (2008). The development of nicotinic receptors in the human medulla oblongata: inter-relationship with the serotonergic system. Auton Neurosci , 144, 61-75. PMID: 18986852 DOI.

Lorke DE, Kwong WH, Chan WY & Yew DT. (2003). Development of catecholaminergic neurons in the human medulla oblongata. Life Sci. , 73, 1315-31. PMID: 12850246

Tan K & Le Douarin NM. (1991). Development of the nuclei and cell migration in the medulla oblongata. Application of the quail-chick chimera system. Anat. Embryol. , 183, 321-43. PMID: 1867385

Search PubMed

Search Pubmed: Medulla Embryology | Medulla Oblongata Development

External Links

External Links Notice - The dynamic nature of the internet may mean that some of these listed links may no longer function. If the link no longer works search the web with the link text or name. Links to any external commercial sites are provided for information purposes only and should never be considered an endorsement. UNSW Embryology is provided as an educational resource with no clinical information or commercial affiliation.


Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link



Cite this page: Hill, M.A. (2018, December 10) Embryology Neural - Medulla Oblongata Development. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Neural_-_Medulla_Oblongata_Development

What Links Here?
© Dr Mark Hill 2018, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G