Gastrointestinal Tract - Intestine Development

From Embryology
Notice - Mark Hill
Currently this page is only a template and will be updated (this notice removed when completed).


Introduction

midgut herniation

The part of the gastrointestinal tract (GIT) lying between the stomach and anus, is described as the intestines or bowel. This region is further divided anatomically and functionally into the small intestine or bowel (duodenum, jejunum and ileum) and large intestine or bowel (cecum and colon). Initially development concerns the midgut region, connected to the yolk sac, and the hindgut region, ending at the cloacal membrane. This is followed by two mechanical processes of elongation and rotation. Elongation, growth in length, leaves the midgut "herniated" at the umbilicus and external to the abdomen. Rotation, around a mesentery axis, establishes the anatomical position of the large intestine within the peritoneal space.

Migration of neural crest cells into the wall establishes the enteric nervous system, which has a role in peristalsis and secretion. Prenatally, secretions also accumulate in this region and are the first postnatal bowel movement, the meconium.

Like most of the gut, this region is not "functional" until after birth, when development continues by populating the large intestine with commensal bacteria and the establishment of the immune structure in the wall.

The small intestine grows in length rapidly in the last trimester, at birth it is about half the eventual adult length. (More?


GIT Links: Introduction | Medicine Lecture | Science Lecture | endoderm | mouth | oesophagus | stomach | liver | gallbladder | Pancreas | intestine | mesentery | tongue | taste | enteric nervous system | Stage 13 | Stage 22 | gastrointestinal abnormalities | Movies | Postnatal | milk | tooth | salivary gland | BGD Lecture | BGD Practical | GIT Terms | Category:Gastrointestinal Tract
GIT Histology Links: Upper GIT | Salivary Gland | Smooth Muscle Histology | Liver | Gallbladder | Pancreas | Colon | Histology Stains | Histology | GIT Development
Historic Embryology - Gastrointestinal Tract  
1878 Alimentary Canal | 1882 The Organs of the Inner Germ-Layer The Alimentary Tube with its Appended Organs | 1884 Great omentum and transverse mesocolon | 1902 Meckel's diverticulum | 1902 The Organs of Digestion | 1903 Submaxillary Gland | 1906 Liver | 1907 Development of the Digestive System | 1907 Atlas | 1907 23 Somite Embryo | 1908 Liver | 1908 Liver and Vascular | 1910 Mucous membrane Oesophagus to Small Intestine | 1910 Large intestine and Vermiform process | 1911-13 Intestine and Peritoneum - Part 1 | Part 2 | Part 3 | Part 5 | Part 6 | 1912 Digestive Tract | 1912 Stomach | 1914 Digestive Tract | 1914 Intestines | 1914 Rectum | 1915 Pharynx | 1915 Intestinal Rotation | 1917 Entodermal Canal | 1918 Anatomy | 1921 Alimentary Tube | 1932 Gall Bladder | 1939 Alimentary Canal Looping | 1940 Duodenum anomalies | 2008 Liver | 2016 GIT Notes | Historic Disclaimer
Human Embryo: 1908 13-14 Somite Embryo | 1921 Liver Suspensory Ligament | 1926 22 Somite Embryo | 1907 23 Somite Embryo | 1937 25 Somite Embryo | 1914 27 Somite Embryo | 1914 Week 7 Embryo
Animal Development: 1913 Chicken | 1951 Frog

Some Recent Findings

  • Fgf9 signaling regulates small intestinal elongation and mesenchymal development [1] "Short bowel syndrome is an acquired condition in which the length of the small intestine is insufficient to perform its normal absorptive function. ...These data suggest a model in which epithelial-derived Fgf9 stimulates intestinal mesenchymal stem cells (iMSCs) that in turn regulate underlying mesenchymal fibroblast proliferation and differentiation at least in part through inhibition of Tgfbeta signaling in the mesenchyme."

Adult Intestine

Duodenum
File:GIT- Jejunum 01.jpg
Adult jejunum histology

Intestinal Regions

Small intestine or bowel

  • Duodenum (adult 25 cm length)
  • Jejunum (adult 1.4 m length)
  • Ileum (adult 3.5 m length)

Large intestine or bowel

  • Cecum (caecum)
    • Vermiform appendix ("appendix", adult 2 to 20 cm length)
  • Colon
    • Ascending colon (adult 25 cm length)
    • Transverse colon
    • Descending colon
    • Sigmoid colon

Intestinal Functions

Small Intestine

  • absorption of nutrients and minerals found in food
  • Duodenum -principal site for iron absorption

Cecum

  • connects the ileum with the ascending colon
  • separated by the ileocecal valve (ICV, Bauhin's valve)
  • connected to the vermiform appendix ("appendix")

Colon

  • absorbs fluid, water and salts, from solid wastes
  • site of commensal bacteria (flora) fermentation of unabsorbed material

Embryonic Development

Week 4

Stage13-GIT-icon.jpg
Quicktime | Flash

Week 8

Stage22-GIT-icon.jpg
Quicktime | Flash

Stage 22 image 088.jpg Stage 22 image 089.jpg

Late embryonic small intestine commencing at the duodenum, continuing as ventrally herniated and returning to join the colon.


Links: Carnegie stage 22 | Week 8

Small Intestine Length

Small intestine growth in length is initially linear (first half pregnancy to 32 cm CRL), followed by rapid growth in the last 15 weeks doubling the overall length. Growth continues postnatally but after 1 year slows again to a linear increase to adulthood.[2]

Age (weeks gestational age) Average Length (cm)
20 125
30 200
term 275
1 year postnatal 380
5 years 450
10 years 500
20 years 575

Table data based upon 8 published reports of necropsy measurement of 1010 guts.[2]

Abnormalities

Abnormality Links: Gastrointestinal Tract - Abnormalities | Intestine Development | Gastrointestinal Tract

Cite this page: Hill, M.A. (2024, April 30) Embryology Gastrointestinal Tract - Intestine Development. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Gastrointestinal_Tract_-_Intestine_Development

What Links Here?
© Dr Mark Hill 2024, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G
Links: Gastrointestinal Tract - Abnormalities | Image - Small intestine duplication

Appendix Duplication

Appendix duplication is an extremely rare congenital anomaly (0.004% to 0.009% of appendectomy specimens) first classified according to their anatomic location by Cave in 1936[3] and a later modified by Wallbridge in 1963[4], subsequently two more types of appendix abnormalities have been identified.[5][6]

Modified Cave-Wallbridge Classification (table from[7])

Classification of types
of appendix duplication
Features
A Single cecum with various degrees of incomplete duplication
B1 (bird type) Two appendixes symmetrically placed on either side of the ileocecal valve
B2 (tenia coli type) ne appendix arises from the cecum at the usual site, and the second

appendix branches from the cecum along the lines of the tenia at various distances from the first

B3 One appendix arises from the usual site, and the second appendix arises from

the hepatic flexura

B4 One appendix arises from the usual site, and the second appendix arises from

the splenic flexura

C Double cecum, each with an appendix
Horseshoe appendix One appendix has two openings into a common cecum
Triple appendix One appendix arises from the cecum at the usual site, and two additional appendixes arise from the colon

Molecular Factors

  • Cdx (Caudal-type homeobox) group of ParaHox genes (mouse Cdx1, Cdx2 and Cdx4)[8]
  • FGF9

References

  1. <pubmed>18653563</pubmed>
  2. 2.0 2.1 <pubmed>1752463</pubmed>| PMC1379160 | Gut.
  3. <pubmed>17104589</pubmed>
  4. <pubmed>13998581</pubmed>
  5. <pubmed>2772830</pubmed>
  6. <pubmed>5635427</pubmed>
  7. <pubmed>21513538</pubmed>| J Medical Case Reports | PDF
  8. <pubmed>20298182</pubmed>

Reviews

Articles

Search Pubmed

Search Bookshelf Intestine Development


Search Pubmed Now: Intestine Embryology | Intestine Development

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, April 30) Embryology Gastrointestinal Tract - Intestine Development. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Gastrointestinal_Tract_-_Intestine_Development

What Links Here?
© Dr Mark Hill 2024, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G