Neural - Epithalamus Development

From Embryology
Embryology - 10 Dec 2018    Facebook link Pinterest link Twitter link  Expand to Translate  
Google Translate - select your language from the list shown below (this will open a new external page)

العربية | català | 中文 | 中國傳統的 | français | Deutsche | עִברִית | हिंदी | bahasa Indonesia | italiano | 日本語 | 한국어 | မြန်မာ | Pilipino | Polskie | português | ਪੰਜਾਬੀ ਦੇ | Română | русский | Español | Swahili | Svensk | ไทย | Türkçe | اردو | ייִדיש | Tiếng Việt    These external translations are automated and may not be accurate. (More? About Translations)

Introduction

The uppermost portion of the diencephalon that includes the trigonum habenulae (habenula), the pineal (gland or body), the posterior commissure, and the medullary layers of thalamus.

The adult habenular nuclei acts as a neural relay system, connecting the forebrain with the brain stem. The function appears to be to regulate cognitive behaviors by modulating a range of transmitter system (cholinergic, dopaminergic and serotonergic) activities.

Pineal-body.jpg Pineal gland position.jpg
Adult pineal body (mid-sagittal section view) Pineal gland position (dorsolateral view)


Neural Links: neural | ventricular | ectoderm | Stage 22 | gliogenesis | neural fetal | Medicine Lecture - Neural | Lecture - Ectoderm | Lecture - Neural Crest | Lab - Early Neural | neural crest | Sensory | neural abnormalities | folic acid | iodine deficiency | Fetal Alcohol Syndrome | Postnatal | Postnatal - Neural Examination | Histology | Historic Neural | Category:Neural
Neural Parts: neural | prosencephalon | telencephalon cerebrum | amygdala | hippocampus | basal ganglia | lateral ventricles | diencephalon | Epithalamus | thalamus | hypothalamus‎ | pituitary | pineal | third ventricle | mesencephalon | tectum | cerebral aqueduct | rhombencephalon | metencephalon | pons | cerebellum | myelencephalon | medulla oblongata | spinal cord | neural vascular | meninges | Category:Neural

Some Recent Findings

  • Pitx2c ensures habenular asymmetry by restricting parapineal cell number[1] "Left-right (L/R) asymmetries in the brain are thought to underlie lateralised cognitive functions. Understanding how neuroanatomical asymmetries are established has been achieved through the study of the zebrafish epithalamus. ...We provide evidence suggesting that antagonism between Nodal and Pitx2c activities sets an upper limit on parapineal cell numbers. We conclude that restricting parapineal cell number is crucial for the correct elaboration of epithalamic asymmetry."
  • A neuronal migratory pathway crossing from diencephalon to telencephalon populates amygdala nuclei[2] "Neurons usually migrate and differentiate in one particular encephalic vesicle. We identified a murine population of diencephalic neurons that colonized the telencephalic amygdaloid complex, migrating along a tangential route that crosses a boundary between developing brain vesicles. The diencephalic transcription factor OTP was necessary for this migratory behavior."
More recent papers
Mark Hill.jpg
PubMed logo.gif

This table shows an automated computer PubMed search using the listed sub-heading term.

  • Therefore the list of references do not reflect any editorial selection of material based on content or relevance.
  • References appear in this list based upon the date of the actual page viewing.

References listed on the rest of the content page and the associated discussion page (listed under the publication year sub-headings) do include some editorial selection based upon both relevance and availability.

Links: References | Discussion Page | Pubmed Most Recent | Journal Searches


Search term: Epithalamus Embryology

Theresa Schredelseker, Wolfgang Driever Bsx controls pineal complex development. Development: 2018; PubMed 29945867

A V Gerasimov, V P Kostyuchenko, A V Potapov, E Yu Varakuta, M R Karpova, G A Sukhanova, S V Logvinov Infradian Rhythm of the Content of Secretory Granules in Pinealocyte Cytoplasm in Mice and Rats. Bull. Exp. Biol. Med.: 2018; PubMed 29931631

Durmuş Bolat, Aytül Kürüm, Sıla Canpolat Morphology and quantification of sheep pineal glands at pre-pubertal, pubertal and post-pubertal periods. Anat Histol Embryol: 2018; PubMed 29774950

Vladimir Soukup, Simona Mrstakova, Zbynek Kozmik Asymmetric pitx2 expression in medaka epithalamus is regulated by nodal signaling through an intronic enhancer. Dev. Genes Evol.: 2018, 228(2);131-139 PubMed 29663064

J Martínez-Salvador, A Ruiz-Torner, A Blasco-Serra, F Martínez-Soriano, A A Valverde-Navarro Morphologic variations in the pineal gland of the albino rat after a chronic alcoholisation process. Tissue Cell: 2018, 51;24-31 PubMed 29622084


Search term: Epithalamus Development

Theresa Schredelseker, Wolfgang Driever Bsx controls pineal complex development. Development: 2018; PubMed 29945867

G I Elmer, H Palacorolla, C L Mayo, P L Brown, T C Jhou, D Brady, P D Shepard The rostromedial tegmental nucleus modulates the development of stress-induced helpless behavior. Behav. Brain Res.: 2018; PubMed 29932954

Aldo Giudice, Anna Crispo, Maria Grimaldi, Andrea Polo, Sabrina Bimonte, Mario Capunzo, Alfonso Amore, Giovanni D'Arena, Pellegrino Cerino, Alfredo Budillon, Gerardo Botti, Susan Costantini, Maurizio Montella The Effect of Light Exposure at Night (LAN) on Carcinogenesis via Decreased Nocturnal Melatonin Synthesis. Molecules: 2018, 23(6); PubMed 29844288

Durmuş Bolat, Aytül Kürüm, Sıla Canpolat Morphology and quantification of sheep pineal glands at pre-pubertal, pubertal and post-pubertal periods. Anat Histol Embryol: 2018; PubMed 29774950

E J Marijke Achterberg, Ruth Damsteegt, Louk J M J Vanderschuren On the central noradrenergic mechanism underlying the social play-suppressant effect of methylphenidate in rats. Behav. Brain Res.: 2018, 347;158-166 PubMed 29526788


Neural Tube Primary Vesicles Secondary Vesicles Adult Structures
week 3 week 4 week 5 adult
neural plate
neural groove
neural tube

Brain
Prosencephalon Telencephalon Rhinencephalon, Amygdala, Hippocampus, Cerebrum (Cortex), Hypothalamus, Pituitary | Basal Ganglia, lateral ventricles
Diencephalon Epithalamus, Thalamus, Subthalamus, Pineal, third ventricle
Mesencephalon Mesencephalon Tectum, Cerebral peduncle, Pretectum, cerebral aqueduct
Rhombencephalon Metencephalon Pons, Cerebellum
Myelencephalon Medulla Oblongata
Spinal Cord

References

  1. Laurence Garric, Brice Ronsin, Myriam Roussigné, Sabrina Booton, Joshua T Gamse, Pascale Dufourcq, Patrick Blader Pitx2c ensures habenular asymmetry by restricting parapineal cell number. Development: 2014, 141(7);1572-9 PubMed 24598158
  2. Fernando García-Moreno, María Pedraza, Luca G Di Giovannantonio, Michela Di Salvio, Laura López-Mascaraque, Antonio Simeone, Juan A De Carlos A neuronal migratory pathway crossing from diencephalon to telencephalon populates amygdala nuclei. Nat. Neurosci.: 2010, 13(6);680-9 PubMed 20495559

Textbooks

  • Endocrinology: An Integrated Approach. Nussey, S and Saffron Whitehead, S. Oxford: BIOS Scientific Publishers; 2001. Chapter 7. The pineal gland and melatonin

Search PubmMed

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2018, December 10) Embryology Neural - Epithalamus Development. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Neural_-_Epithalamus_Development

What Links Here?
© Dr Mark Hill 2018, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G