Sensory - Vision Abnormalities

From Embryology
Embryology - 19 Mar 2024    Facebook link Pinterest link Twitter link  Expand to Translate  
Google Translate - select your language from the list shown below (this will open a new external page)

العربية | català | 中文 | 中國傳統的 | français | Deutsche | עִברִית | हिंदी | bahasa Indonesia | italiano | 日本語 | 한국어 | မြန်မာ | Pilipino | Polskie | português | ਪੰਜਾਬੀ ਦੇ | Română | русский | Español | Swahili | Svensk | ไทย | Türkçe | اردو | ייִדיש | Tiếng Việt    These external translations are automated and may not be accurate. (More? About Translations)

 ICD-11 Structural developmental anomalies of the eye, eyelid or lacrimal apparatus

LA10.0 Microphthalmos - This is a developmental disorder of the eye that literally means small eye (micros = small; ophthalmos = eye). One (Unilateral Microphthalmia) or both (Bilateral Microphthalmia) eyes may be involved.

LA10.1 Clinical anophthalmos - This refers to the clinical absence of one or both eyes. Both the globe (human eye) and the ocular tissue are missing from the orbit. The absence of the eye will cause a small bony orbit, a constricted mucosal socket, short eyelids, reduced palpebral fissure and malar prominence. Genetic mutations, chromosomal abnormalities, and prenatal environment can all cause anophthalmia. Anophthalmia is an extremely rare disease and is mostly rooted in genetic abnormalities.

LA10.3 Congenital macrophthalmos - A condition caused by failure of the eye to develop correctly during the antenatal period. This condition is characterized by enlargement of the globe of the eye.

LA11 Structural developmental anomalies of the anterior segment of eye - LA11.1 Structural developmental anomalies of cornea LA11.3 Aniridia LA11.4 Coloboma of iris LA11.5 Congenital corneal opacity

LA12 Structural developmental anomalies of lens or zonula - LA12.0 Coloboma of lens LA12.1 Congenital cataract LA12.2 Congenital aphakia LA12.3 Spherophakia

LA13 Structural developmental anomalies of the posterior segment of eye - LA13.0 Congenital anomalies of the vitreous LA13.1 Coloboma of choroid or retina LA13.2 Coloboma of macula LA13.3 Congenital vitreoretinal dysplasia LA13.4 Optic pit LA13.5 Congenital retinal aneurysm LA13.6 Congenital malformations of choroid LA13.7 Congenital malformation of optic disc

LA14 Structural developmental anomalies of eyelid, lacrimal apparatus or orbit

Introduction

Congenital rubella syndrome retinopathy
Retinopathy associated with congenital rubella syndrome.[1]

These notes introduce the abnormal development of the eye and vision associated structures.

Anophthalmia (absence of an eye) and microphthalmia (small eye within the orbit) have a combined birth prevalence of approximately 30 per 100,000 population.[2]

Genetic factors include developmental transcription factors required for inductive/developmental events in the structure of the eye and retina development.

Many environmental factors during development can lead to vision abnormalities, including gestational-acquired infections, maternal vitamin A deficiency, smoking, X-ray exposure, solvent misuse and thalidomide exposure. A pregnancy Rubella viral infection example may cause blindness associated with congenital rubella syndrome.

Vision Links: vision | lens | retina | placode | extraocular muscle | cornea | eyelid | lacrima gland | vision abnormalities | Student project 1 | Student project 2 | Category:Vision | sensory
Historic Embryology - Vision 
Historic Embryology: 1906 Eye Embryology | 1907 Development Atlas | 1912 Eye Development | 1912 Nasolacrimal Duct | 1917 Extraocular Muscle | 1918 Grays Anatomy | 1921 Eye Development | 1922 Optic Primordia | 1925 Eyeball and optic nerve | 1925 Iris | 1927 Oculomotor | 1928 Human Retina | 1928 Retina | 1928 Hyaloid Canal | Historic Disclaimer

Some Recent Findings

Anophthalmia and microphthalmia
  • Review - Inherited cataracts: molecular genetics, clinical features, disease mechanisms and novel therapeutic approaches[3] "Cataract is the most common cause of blindness in the world; during infancy and early childhood, it frequently results in visual impairment. Congenital cataracts are phenotypically and genotypically heterogeneous and can occur in isolation or in association with other systemic disorders. Significant progress has been made in identifying the molecular genetic basis of cataract; 115 genes to date have been found to be associated with syndromic and non-syndromic cataract and 38 disease-causing genes have been identified to date to be associated with isolated cataract. In this review, we briefly discuss lens development and cataractogenesis, detail the variable cataract phenotypes and molecular mechanisms, including genotype-phenotype correlations, and explore future novel therapeutic avenues including cellular therapies and pharmacological treatments."
  • Functional and Molecular Characterization of Rod-like Cells from Retinal Stem Cells Derived from the Adult Ciliary Epithelium[4] "In vitro generation of photoreceptors from stem cells is of great interest for the development of regenerative medicine approaches for patients affected by retinal degeneration and for high throughput drug screens for these diseases. In this study, we show unprecedented high percentages of rod-fated cells from retinal stem cells of the adult ciliary epithelium. Molecular characterization of rod-like cells demonstrates that they lose ciliary epithelial characteristics but acquire photoreceptor features. Rod maturation was evaluated at two levels: gene expression and electrophysiological functionality. Here we present a strong correlation between phototransduction protein expression and functionality of the cells in vitro. We demonstrate that in vitro generated rod-like cells express cGMP-gated channels that are gated by endogenous cGMP. We also identified voltage-gated channels necessary for rod maturation and viability. This level of analysis for the first time provides evidence that adult retinal stem cells can generate highly homogeneous rod-fated cells."
More recent papers  
Mark Hill.jpg
PubMed logo.gif

This table allows an automated computer search of the external PubMed database using the listed "Search term" text link.

  • This search now requires a manual link as the original PubMed extension has been disabled.
  • The displayed list of references do not reflect any editorial selection of material based on content or relevance.
  • References also appear on this list based upon the date of the actual page viewing.


References listed on the rest of the content page and the associated discussion page (listed under the publication year sub-headings) do include some editorial selection based upon both relevance and availability.

More? References | Discussion Page | Journal Searches | 2019 References | 2020 References

Search term: Developmental Vision Abnormalities | Congenital Blindness | Anophthalmia | Microphthalmia | Bardet-Biedl Syndrome

Older papers  
These papers originally appeared in the Some Recent Findings table, but as that list grew in length have now been shuffled down to this collapsible table.

See also the Discussion Page for other references listed by year and References on this current page.

  • Stem cell therapy for retinal disease[5] "Stem cells can now be directed to specific retinal cell fates with high yields and acceptable purity for clinical trials. New stem cell sources have been discovered including induced pluripotent stem cells that can be derived from adult tissues then differentiated into multiple retinal cell types. The initial results of clinical trials of subretinal transplantation of human embryonic stem cell-derived retinal pigment epithelium cells in patients with Stargardt's macular dystrophy and dry age-related macular degeneration showed preliminary safety and possible visual acuity benefits. A phase I trial of intravitreally injected autologous bone marrow-derived mononuclear cells for hereditary retinal dystrophy demonstrated no evidence of toxicity with possible visual acuity benefits but no structural or functional changes. Ongoing trials are examining the trophic effects of undifferentiated umbilical cells for the treatment of geographic atrophy in age-related macular degeneration."
  • Targeted 'next-generation' sequencing in anophthalmia and microphthalmia patients confirms SOX2, OTX2 and FOXE3 mutations[6] "Anophthalmia/microphthalmia (A/M) is caused by mutations in several different transcription factors, but mutations in each causative gene are relatively rare, emphasizing the need for a testing approach that screens multiple genes simultaneously. We used next-generation sequencing to screen 15 A/M patients for mutations in 9 pathogenic genes to evaluate this technology for screening in A/M."

Neonatal Vision

Vision in the developing infant can be assessed by a number of tests for: central vision, stereoscopic (binocular) vision, refraction, colour vision, contrast vision, scotopic/photopic (dark/light) vision (retina/rods), and tracking (following and saccades), (retina, oculomotor muscles).

Preterm infants have been shown to develop a number of vision related abnormalities including: visual impairment, oculomotor abnormalities, and refractive error.[7]

Newborn-normal-behaviour.jpg Newborn n 02.jpg
normal behaviour cranial nerves


Links: Movie - Newborn normal behaviour

LA10.1 Anophthalmos

 ICD-11 LA10.1 Clinical anophthalmos - This refers to the clinical absence of one or both eyes. Both the globe (human eye) and the ocular tissue are missing from the orbit. The absence of the eye will cause a small bony orbit, a constricted mucosal socket, short eyelids, reduced palpebral fissure and malar prominence. Genetic mutations, chromosomal abnormalities, and prenatal environment can all cause anophthalmia. Anophthalmia is an extremely rare disease and is mostly rooted in genetic abnormalities.
Anophthalmos (anophthalmia} is clinical description for the absence of an eye. Gene mutation of SOX2, a developmental transcription factor, has been associated with this condition. Anophthalmia.jpg

LA10.0 Microphthalmos

 ICD-11 LA10.0 Microphthalmos - This is a developmental disorder of the eye that literally means small eye (micros = small; ophthalmos = eye). One (Unilateral Microphthalmia) or both (Bilateral Microphthalmia) eyes may be involved.
Microphthalmos (microphthalmia} is clinical description for the presence of a small eye within the orbit and occurs in up to 11% of blind children. A human study has identified microphthalmia can be associated with mutations in the retinal homeobox gene (CHX10).[8] Syndromic microphthalmia-9 can be also be caused by mutations in the Stimulated by Retinoic Acid 6 (STRA6) gene. OMIM - MCOPS9 Microphthalmia.jpg

Maternal smoking in early pregnancy seemed to increase the risk for microphthalmia in the absence of a coloboma.[9]

LA10.3 Macrophthalmos

 ICD-11 LA10.3 Congenital macrophthalmos - caused by failure of the eye to develop correctly during the antenatal period. This condition is characterized by enlargement of the globe of the eye.

Coloboma

Coloboma (Greek; koloboma = defect) is a missing pieces of tissue in the structures that form the eye. Occurs in occurs approximately 1 in 10,000 people and, depending on the eye tissue, has a different  ICD-11 associated classification.

LA11.4 Coloboma of iris

 ICD-11LA11.4 Coloboma of iris - A disease of the eye, caused by trauma or congenital genetic mutation. This disease is characterized by notches or gaps in iris.

LA11 Structural developmental anomalies of the anterior segment of eye - LA11.1 Structural developmental anomalies of cornea

LA12.0 Coloboma of lens

 ICD-11 - LA12.0 Coloboma of lens

LA12 Structural developmental anomalies of lens or zonula

LA13.1 Coloboma of choroid or retina

 ICD-11 LA13.1 Coloboma of choroid or retina - A condition of the eye characterized by absence of the retina in the lower inside corner of the eye.

LA13 Structural developmental anomalies of the posterior segment of eye

LA13.2 Coloboma of macula

 ICD-11 LA13.2 Coloboma of macula - A disease caused by malformation of the macula due to retinal inflammation during the antenatal period or by congenital genetic mutation. This disease is characterized by a clearly delineated defect in the macula.


Bardet-Biedl Syndrome

(BBS) is an abnormality with triallelic inheritance and is characterized by a range of multisystem abnormalities incliuding postnatal developmental blindness.

  • cone-rod dystrophy
  • truncal obesity
  • postaxial polydactyly
  • cognitive impairment
  • neural development
  • male hypogonadotrophic hypogonadism
  • female genitourinary malformations
  • renal dysfunction

(More? OMIM - Bardet-Biedl syndrome | GeneReviews - Bardet-Biedl syndrome)


Pax6 Mutation

Pax6 eye phenotypes.jpg

Phenotypes of wild-type (top) and PAX6 ortholog mutations (bottom) in human, mouse, zebrafish, and fly.[10]

Human mutations may result in aniridia (absence of iris), corneal opacity (aniridia-related keratopathy), cataract (lens clouding), glaucoma, and long-term retinal degeneration.

Links: PAX

KA62.8 Congenital rubella syndrome

 ICD-11 KA62.8 Congenital rubella syndrome - A disease caused by an infection with the rubella virus in utero. This disease presents with symptoms depending on the timing of infection of the fetus and may present with birth defects (such as hearing loss), or intrauterine growth retardation. Transmission is by vertical transmission. Confirmation is by identification of rubella virus or detection of anti-rubella virus IgM antibodies in the neonate or infant.

Congenital rubella syndrome (CRS) occurs as a result of a maternal rubella infection during the first trimester of pregnancy and is most commonly associated neural, cardiac and sensory abnormalities. Approximately 25% suffer from congenital cataracts and other eye abnormalities include pigmentary retinopathy and iris hypoplasia.


Links: rubella virus


Retinopathy of Prematurity

Retinopathy of prematurity in the right eye
Retinopathy of prematurity in the right eye. (Arrows show flat neovascularization)[11]

(ROP) A vascular proliferative disorder that affects the incompletely vascularized retina in premature neonates, birth weight 1250 grams or less and born before 31 weeks gestation GA are at highest risk. Classified as type 2 progressing to type 1, this is a primary cause of childhood blindness. Due to retinal immaturity, neovascularization occurs leading to retinal traction and retinal detachment, eventually affecting vision.

USA Statistics

  • 14,000-16,000 of low birthweight (<1.25 kg) infants are affected by some degree of ROP.
  • disease improves and leaves no permanent damage in milder cases of ROP.
    • 90% of all infants with ROP are in the milder category and do not need treatment.
  • About 1,100-1,500 infants annually develop ROP that is severe enough to require medical treatment.
    • About 400-600 infants each year in the US become legally blind from ROP.

(Data NIH - National Eye Institute)


Links: Vision Abnormalities | Birth - Preterm | Sensory - Vision Development | NIH - ROP | American Association for Pediatric Ophthalmology)


World Statistics

Sweden

Rate of anophthalmia decreased from the early 1970s from 0.4 to 0.2 per 10,000 births. Non-eye malformations were more common at anophthalmia (63%) than at microphthalmia (30%) Maternal smoking in early pregnancy seemed to increase the risk for anophthalmia or microphthalmia in the absence of a coloboma.[9]

United Kingdom

1988-94 prevalence of anophthalmia and microphthalmia was 1.0 per 10,000 births.[12]


USA California

1989-1997 prevalence per 10,000 livebirths and stillbirths for anophthalmia was 0.18 and for bilateral microphthalmia was 0.22. Risk of anophthalmia was approximately twofold among multiple births compared to singletons. (More? Shaw GM, etal., 2005)

Colour Blindness

Colourblindness red-green
Colour blindness red-green

Most common types of hereditary colour blindness are due to the loss or limited function of red cone (protan) or green cone (deutran) photopigments. This kind of colour blindness is commonly referred to as red-green colour blindness. (note the US spelling color)

  • Deuteranomaly In males with deuteranomaly, the green cone photopigment is abnormal. Yellow and green appear redder and it is difficult to tell violet from blue. This condition is mild and doesn’t interfere with daily living. Deuteranomaly is the most common form of colour blindness and is an X-linked disorder affecting 5 percent of males.
  • Deuteranopia In males with deuteranopia, there are no working green cone cells. They tend to see reds as brownish-yellow and greens as beige. Deuteranopia is an X-linked disorder that affects about 1 percent of males.
  • Protanomaly In males with protanomaly, the red cone photopigment is abnormal. Red, orange, and yellow appear greener and colours are not as bright. This condition is mild and doesn’t usually interfere with daily living. Protanomaly is an X-linked disorder estimated to affect 1 percent of males.
  • Protanopia In males with protanopia, there are no working red cone cells. Red appears as black. Certain shades of orange, yellow, and green all appear as yellow. Protanopia is an X-linked disorder that is estimated to affect 1 percent of males.
Inheritance Pattern images: Genetic Abnormalities | autosomal dominant | autosomal recessive | X-linked dominant (affected father) | X-Linked dominant (affected mother) | X-Linked recessive (affected father) | X-Linked recessive (carrier mother) | mitochondrial inheritance | Codominant inheritance | Genogram symbols | Genetics
Links: GeneReviews | PubMed Health | NIH - Facts About Color Blindness


References

  1. Jivraj I, Rudnisky CJ, Tambe E, Tipple G & Tennant MT. (2014). Identification of ocular and auditory manifestations of congenital rubella syndrome in mbingo. Int J Telemed Appl , 2014, 981312. PMID: 25525427 DOI.
  2. Verma AS & Fitzpatrick DR. (2007). Anophthalmia and microphthalmia. Orphanet J Rare Dis , 2, 47. PMID: 18039390 DOI.
  3. Berry V, Georgiou M, Fujinami K, Quinlan R, Moore A & Michaelides M. (2020). Inherited cataracts: molecular genetics, clinical features, disease mechanisms and novel therapeutic approaches. Br J Ophthalmol , , . PMID: 32217542 DOI.
  4. Demontis GC, Aruta C, Comitato A, De Marzo A & Marigo V. (2012). Functional and molecular characterization of rod-like cells from retinal stem cells derived from the adult ciliary epithelium. PLoS ONE , 7, e33338. PMID: 22432014 DOI.
  5. Tibbetts MD, Samuel MA, Chang TS & Ho AC. (2012). Stem cell therapy for retinal disease. Curr Opin Ophthalmol , 23, 226-34. PMID: 22450217 DOI.
  6. Jimenez NL, Flannick J, Yahyavi M, Li J, Bardakjian T, Tonkin L, Schneider A, Sherr EH & Slavotinek AM. (2011). Targeted 'next-generation' sequencing in anophthalmia and microphthalmia patients confirms SOX2, OTX2 and FOXE3 mutations. BMC Med. Genet. , 12, 172. PMID: 22204637 DOI.
  7. Birch EE & O'Connor AR. (2001). Preterm birth and visual development. Semin Neonatol , 6, 487-97. PMID: 12014889 DOI.
  8. Ferda Percin E, Ploder LA, Yu JJ, Arici K, Horsford DJ, Rutherford A, Bapat B, Cox DW, Duncan AM, Kalnins VI, Kocak-Altintas A, Sowden JC, Traboulsi E, Sarfarazi M & McInnes RR. (2000). Human microphthalmia associated with mutations in the retinal homeobox gene CHX10. Nat. Genet. , 25, 397-401. PMID: 10932181 DOI.
  9. 9.0 9.1 Källén B & Tornqvist K. (2005). The epidemiology of anophthalmia and microphthalmia in Sweden. Eur. J. Epidemiol. , 20, 345-50. PMID: 15971507
  10. Washington NL, Haendel MA, Mungall CJ, Ashburner M, Westerfield M & Lewis SE. (2009). Linking human diseases to animal models using ontology-based phenotype annotation. PLoS Biol. , 7, e1000247. PMID: 19956802 DOI.
  11. Gadkari SS, Kulkarni SR, Kamdar RR & Deshpande M. (2015). Successful Surgical Management of Retinopathy of Prematurity Showing Rapid Progression despite Extensive Retinal Photocoagulation. Middle East Afr J Ophthalmol , 22, 393-5. PMID: 26180484 DOI.
  12. Busby A, Dolk H, Collin R, Jones RB & Winter R. (1998). Compiling a national register of babies born with anophthalmia/microphthalmia in England 1988-94. Arch. Dis. Child. Fetal Neonatal Ed. , 79, F168-73. PMID: 10194985

Online Textbooks

Reviews

Bookshelf vision development

Articles

Search Pubmed

External Links

External Links Notice - The dynamic nature of the internet may mean that some of these listed links may no longer function. If the link no longer works search the web with the link text or name. Links to any external commercial sites are provided for information purposes only and should never be considered an endorsement. UNSW Embryology is provided as an educational resource with no clinical information or commercial affiliation.

Terms

Vision Terms  
  • annular tendon - (common tendinous ring, annulus of Zinn) fibrous tissue surrounding the optic nerve forming the origin for five of the six extra ocular muscles.
  • AXIN2 - a scaffold protein that is an antagonist and universal target of the Wnt/β-catenin pathway required for visual development. OMIM - AXIN2
  • canthus - (palpebral commissure) the corner of the eye where the upper and lower eyelids meet.
  • Cloquet's canal - historic term for the hyaloid canal. Named after Jules G. Cloquet (1790-1883) a French anatomist.
  • cranial nerve 2 - (CN II, optic nerve) the cranial nerve consisting of retinal ganglion cell axons and glia forming the connection with the brain (pathway: retina, optic disc, optic chiasma, optic tract, lateral geniculate nucleus, pretectal nuclei, and superior colliculus).
  • extraocular muscles - six muscles that control movement of the eye (superior, Inferior, lateral and medial rectus; superior and inferior oblique).
  • fovea - (fovea centralis; Latin, fovea = pit) retina region located in the center of the macula, required for sharp central vision.
  • ganglion cell layer - (retinal ganglion layer) the layer of the retina where retinal ganglion cell bodies lie.
  • hyaloid canal - a developmental feature in the embryo contains the hyaloid artery that supplies blood to the developing lens.
  • macula - (Latin, macula = spot; lutea = yellow) region near the center of the retina containing two or more layers of ganglion cells.
  • meibomian glands - eyelid gland that secrete meibum, generates the lipid layer of the tear film that prevents excessive evaporation of tear fluid.
  • nasolacrimal groove - (lacrimal groove) an embryonic surface feature between the maxillary and the lateral nasal process that will later fuse to form the lacrimal duct running between the eye and the nasal inferior meatus.
  • optic chiasm (optic chiasma) CN II region where some of the axons (partial) cross to the opposite side.
  • optic cup - the in-folded extension of the optic stalk from the diencephalon that forms the retina.
  • optic disc - (optic nerve head) region on the retina where the retinal ganglion cells exit to form CN II.
  • optic placode - (lens placode) surface ectoderm that folds inward to form the developing lens.
  • retina - The stratified sensory structure of the eye, formed from the neural ectoderm that extends from the forebrain (diencephalon) to form initially the folded optic cup. Vertebrates have ten identifiable layers formed from nerve fibers, neurons, membranes, photoreceptors and pigmented cells. Light must pass through nearly all these layers to the photoreceptors. (1. Inner limiting membrane - Müller cell footplates; 2. Nerve fiber layer; 3. Ganglion cell layer - layer of retinal ganglion cells their axons form the nerve fiber layer and eventually the optic nerve; 4. Inner plexiform layer - another layer of neuronal processes; 5. Inner nuclear layer; 6. Outer plexiform layer; 7. Outer nuclear layer; 8. External limiting membrane - layer separating inner segment portions of photoreceptors from their cell nuclei; 9. Photoreceptor layer - rods and cones that convert light into signals; 10. Retinal pigment epithelium).
  • retinal pigment epithelium - (RPE, pigmented layer) An epethial pigmented cell layer lying outside the sensory retina, formed from the outer layer of the folded optic cup. The RPE is firmly attached to the underlying choroid and overlying retinal visual cells, for which it has a nutritional role.
  • retinal waves - A form of coordinated spontaneous activity that occurs in the developing retina. These waves of electrical activity (action potentials) along with EphA/ephrin-A signaling are thought to have a role in establishing the initial retinotopic map by correlating/coordinating the activity of neighbouring retinal ganglion cells.
  • Stilling's canal - historic term for the hyaloid canal. Named after Benedict Stilling (1810-1879) a German anatomist.
  • YAP - (Yes-Associated Protein) transcriptional regulator required for retinal progenitor cell cycle progression and RPE cell fate acquisition. PMID 27616714 OMIM - YAP1
Other Terms Lists  
Terms Lists: ART | Birth | Bone | Cardiovascular | Cell Division | Endocrine | Gastrointestinal | Genital | Genetic | Head | Hearing | Heart | Immune | Integumentary | Neonatal | Neural | Oocyte | Palate | Placenta | Radiation | Renal | Respiratory | Spermatozoa | Statistics | Tooth | Ultrasound | Vision | Historic | Drugs | Glossary

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, March 19) Embryology Sensory - Vision Abnormalities. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Sensory_-_Vision_Abnormalities

What Links Here?
© Dr Mark Hill 2024, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G