Non-Invasive Prenatal Testing

From Embryology
Embryology - 12 Apr 2021    Facebook link Pinterest link Twitter link  Expand to Translate  
Google Translate - select your language from the list shown below (this will open a new external page)

العربية | català | 中文 | 中國傳統的 | français | Deutsche | עִברִית | हिंदी | bahasa Indonesia | italiano | 日本語 | 한국어 | မြန်မာ | Pilipino | Polskie | português | ਪੰਜਾਬੀ ਦੇ | Română | русский | Español | Swahili | Svensk | ไทย | Türkçe | اردو | ייִדיש | Tiếng Việt    These external translations are automated and may not be accurate. (More? About Translations)

Educational Use Only - Embryology is an educational resource for learning concepts in embryological development, no clinical information is provided and content should not be used for any other purpose.


graph Gestational age distribution at time of non-invasive prenatal testing
Gestational age distribution at time of non-invasive prenatal testing (2014)[1]
Trisomy 21 karyotype cartoon

Non-Invasive Prenatal Testing (NIPT) include new techniques that analyzes cell-free fetal DNA circulating in maternal blood or from fetal cells in the cervical canal.

Testing of circulating cell-free fetal DNA (ccffDNA) can be carried out after 10 weeks (between 10-22 weeks) analysis can take a week or more. It has been most useful for replacing amniocentesis in testing for the trisomies; Trisomy 21, Trisomy 18, and Trisomy 13.

There are other pages that refer to postnatal diagnostic testing. (More? Neonatal Diagnosis)

This Embryology site is a developmental educational resource, it does not provide specific clinical details, you should always refer to a health professional.

Diagnosis Links: Prenatal Diagnosis | pregnancy test | amniocentesis | chorionic villus sampling | ultrasound | Alpha-Fetoprotein | Pregnancy-associated plasma protein-A | Fetal Blood Sampling | Magnetic Resonance Imaging | Computed Tomography | Non-Invasive Prenatal Testing | Fetal Cells in Maternal Blood | Preimplantation Genetic Screening | Comparative Genomic Hybridization | Genome Sequencing | Neonatal Diagnosis | Category:Prenatal Diagnosis | Fetal Surgery | Classification of Diseases | Category:Neonatal Diagnosis

| Assisted Reproductive Technology | In Vitro Fertilization | Journal - Prenatal diagnosis

Some Recent Findings

  • Noninvasive preimplantation genetic testing for aneuploidy in spent medium may be more reliable than trophectoderm biopsy[2] "Preimplantation genetic testing for aneuploidy (PGT-A) with trophectoderm (TE) biopsy is widely applied in in vitro fertilization (IVF) to identify aneuploid embryos. However, potential safety concerns regarding biopsy and restrictions to only those embryos suitable for biopsy pose limitations. In addition, embryo mosaicism gives rise to false positives and false negatives in PGT-A because the inner cell mass (ICM) cells, which give rise to the fetus, are not tested. Here, we report a critical examination of the efficacy of noninvasive preimplantation genetic testing for aneuploidy (niPGT-A) in the spent culture media of human blastocysts by analyzing the cell-free DNA, which reflects ploidy of both the TE and ICM. Fifty-two frozen donated blastocysts with TE biopsy results were thawed; each of their spent culture medium was collected after 24-h culture and analyzed by next-generation sequencing (NGS). niPGT-A and TE-biopsy PGT-A results were compared with the sequencing results of the corresponding embryos, which were taken as true results for aneuploidy reporting. With removal of all corona-cumulus cells, the false-negative rate (FNR) for niPGT-A was found to be zero. By applying an appropriate threshold for mosaicism, both the positive predictive value (PPV) and specificity for niPGT-A were much higher than TE-biopsy PGT-A. Furthermore, the concordance rates for both embryo ploidy and chromosome copy numbers were higher for niPGT-A than TE-biopsy PGT-A. These results suggest that niPGT-A is less prone to errors associated with embryo mosaicism and is more reliable than TE-biopsy PGT-A."
  • Non-invasive prenatal testing to detect chromosome aneuploidies in 57,204 pregnancies[3] "Non-invasive prenatal testing (NIPT) has been widely used to detect common fetal chromosome aneuploidies, such as trisomy 13, 18, and 21 (T13, T18, and T21), and has expanded to sex chromosome aneuploidies (SCAs) during recent years, but few studies have reported NIPT detection of rare fetal chromosome aneuploidies (RCAs). In this study, we evaluated the clinical practical performance of NIPT to analyze all 24 chromosome aneuploidies among 57,204 pregnancies in the Suzhou area of China. METHODS: This was a retrospective analysis of prospectively collected NIPT data from two next-generation sequencing (NGS) platforms (Illumina and Proton) obtained from The Affiliated Suzhou Hospital of Nanjing Medical University. NIPT results were validated by karyotyping or clinical follow-up. RESULTS: NIPT using the Illumina platform identified 586 positive cases; fetal karyotyping and follow-up results validated 178 T21 cases, 49 T18 cases, 4 T13 cases, and 52 SCAs. On the Proton platform, 270 cases were positive during NIPT. Follow-up confirmed 85 T21 cases, 17 T18 cases, 4 T13 cases, 28 SCAs, and 1 fetal chromosome 22 aneuploidy case as true positives. There were 5 false-negative results, including 4 T21 and 1 T18 cases. The NGS platforms showed similar sensitivities and positive predictive values (PPVs) in detecting T21, T18, T13 and SCAs (p > 0.01). However, the Proton platform showed better specificity in detecting 45, X and the Illumina platform had better specificity in detecting T13 (p < 0.01). The major factor contributing to NIPT false-positives on the Illumina platform was false SCAs cases (65.11%). Maternal chromosome aneuploidies, maternal cancers, and confined placental mosaicism caused discordant results between fetal karyotyping and NIPT. CONCLUSION: NIPT with NGS showed good performance for detecting T13, T18, and T21. The Proton platform had better performance for detecting SCAs, but the NIPT accuracy rate for detecting RCAs was insufficient."
More recent papers  
Mark Hill.jpg
PubMed logo.gif

This table allows an automated computer search of the external PubMed database using the listed "Search term" text link.

  • This search now requires a manual link as the original PubMed extension has been disabled.
  • The displayed list of references do not reflect any editorial selection of material based on content or relevance.
  • References also appear on this list based upon the date of the actual page viewing.

References listed on the rest of the content page and the associated discussion page (listed under the publication year sub-headings) do include some editorial selection based upon both relevance and availability.

More? References | Discussion Page | Journal Searches | 2019 References | 2020 References

Search term: Non-Invasive Prenatal Testing | Fetal fraction-based risk

Older papers  
These papers originally appeared in the Some Recent Findings table, but as that list grew in length have now been shuffled down to this collapsible table.

See also the Discussion Page for other references listed by year and References on this current page.

  • Fetal fraction-based risk algorithm for non-invasive prenatal testing: screening for trisomy 13, 18, and triploidy in women with low cell-free fetal DNA[4] "To identify pregnancies at increased risk for Trisomy 13, Trisomy 18, and Template:Triploidy attributable to low fetal fraction (FF). METHODS: A FF-based risk (FFBR) model was built using data from >165,000 singleton pregnancies referred for SNP-based non-invasive prenatal testing (NIPT). Based on maternal weight and gestational age, FF distributions for normal, trisomy 13, trisomy 18, and triploid pregnancies were constructed and used to adjust prior risks for these abnormalities. A risk cutoff of ≥1% was chosen to define pregnancies at high risk for trisomy 13, trisomy 18, or triploidy (i.e., a high FFBR score). The model was evaluated on an independent blinded set of pregnancies for which SNP-based NIPT did not return a result, and for which retrospectively gathered pregnancy outcome information was available. RESULTS: The evaluation cohort comprised 1,148 cases, of which approximately half received a high FFBR score. Compared with incidence rates expected based on maternal age (MA) and gestational age (GA), cases with a high FFBR score had a significantly increased rate of trisomy 13, trisomy 18, or triploidy combined (5.7% vs. 0.7%; p<0.001) and of unexplained pregnancy loss (14.7% vs 10.4% p<0.001). For cases that did not receive a high FFBR score, the incidence of a chromosome abnormality or loss was not significantly different than that expected based on MA and GA. In the study cohort, the sensitivity of the FFBR model for detection of trisomy 13, trisomy 18, or triploidy was 91.4% (95% CI: 76.9-98.2) with a positive predictive value of 5.7% (32/564; 95% CI: 3.9-7.9). CONCLUSIONS: For pregnancies with a FF too low to receive a result on standard NIPT, the FFBR algorithm can identify a subset of cases at increased risk for trisomy 13, trisomy 18, or triploidy. For the remainder of cases, the risk for a fetal chromosome abnormality was unchanged."
  • Fetal genome profiling at 5 weeks of gestation after noninvasive isolation of trophoblast cells from the endocervical canal [5] "We have isolated intact trophoblast cells from Papanicolaou smears collected noninvasively at 5 to 19 weeks of gestation for next-generation sequencing of fetal DNA. ...The data revealed fetal DNA fractions of 85 to 99.9%, with 100% correct fetal haplotyping. This noninvasive platform has the potential to provide comprehensive fetal genomic profiling as early as 5 weeks of gestation."
  • Uptake, outcomes, and costs of implementing non-invasive prenatal testing for Down's syndrome into UK NHS maternity care[6] "Eight maternity units across the United Kingdom between 1 November 2013 and 28 February 2015. All pregnant women with a current Down's syndrome risk on screening of at least 1/1000. NIPT was prospectively offered to 3175 pregnant women. In 934 women with a Down's syndrome risk greater than 1/150, 695 (74.4%) chose NIPT, 166 (17.8%) chose invasive testing, and 73 (7.8%) declined further testing. Of 2241 women with risks between 1/151 and 1/1000, 1799 (80.3%) chose NIPT. Of 71 pregnancies with a confirmed diagnosis of Down's syndrome, 13/42 (31%) with the diagnosis after NIPT and 2/29 (7%) after direct invasive testing continued, resulting in 12 live births. ...Implementation of NIPT as a contingent test within a public sector Down's syndrome screening programme can improve quality of care, choices for women, and overall performance within the current budget. As some women use NIPT for information only, the Down's syndrome live birth rate may not change significantly. Future research should consider NIPT uptake and informed decision making outside of a research setting." Trisomy 21 | United Kingdom Statistics
  • Fetal aneuploidy screening with cell-free DNA in late gestation[7] "The aim of this study was to evaluate clinical use of NIPT at gestational ages of 23 weeks and above. A cohort of 5579 clinical patients with singleton gestations of 23 weeks or greater submitting a blood sample for NIPT in an 18-month period were selected for this study. ...Of 5372 reported late-gestation samples, 151 (2.8%) were reported as aneuploidy detected or suspected. In late-gestation samples, the overall observed positive predictive value (PPV) for NIPT was 64.7%, with an observed PPV of 100% in the subset of cases with multiple clinical indications including abnormal ultrasound findings. NIPT is a highly accurate prenatal screening option for women after 23 weeks of gestation. Women who presented for NIPT in the latter stages of pregnancy more frequently specified clinical indications of abnormal ultrasound findings than women who entered screening earlier in pregnancy."
  • Open source non-invasive prenatal testing platform and its performance in a public health laboratory[8] "o introduce NIPT for fetal autosomal trisomies and gender in a Danish public health setting, using semi-conductor sequencing and published open source scripts for analysis. Plasma derived DNA from a total of 375 pregnant women (divided into 3 datasets) was whole-genome sequenced on the Ion Proton™ platform and analyzed using a pipeline based on WISECONDOR for fetal autosomal aneuploidy detection and SeqFF for fetal DNA fraction estimation. We furthermore validated a fetal sex determination analysis. The pipeline correctly detected 27/27 trisomy 21, 4/4 trisomy 18 and 3/3 trisomy 13 fetuses. Neither false negatives nor false positives (chromosomes 13, 18 and 21) were observed in our validation dataset. Fetal sex was identified correctly in all but one triploid fetus (172/173). SeqFF showed a strong correlation (R2  = 0.72) to Y-chromosomal content of the male fetus samples."
  • An Economic Analysis of Cell-Free DNA Non-Invasive Prenatal Testing in the US General Pregnancy Population[9] "Analyze the economic value of replacing conventional fetal aneuploidy screening approaches with non-invasive prenatal testing (NIPT) in the general pregnancy population. METHODS: Using decision-analysis modeling, we compared conventional screening to NIPT with cell-free DNA (cfDNA) analysis in the annual US pregnancy population. Sensitivity and specificity for fetal aneuploidies, trisomy 21, trisomy 18, trisomy 13, and monosomy X, were estimated using published data and modeling of both first- and second trimester screening. Costs were assigned for each prenatal test component and for an affected birth. The overall cost to the healthcare system considered screening costs, the number of aneuploid cases detected, invasive procedures performed, procedure-related euploid losses, and affected pregnancies averted. Sensitivity analyses evaluated the effect of variation in parameters. Costs were reported in 2014 US Dollars. ...Based on our analysis, universal application of NIPT would increase fetal aneuploidy detection rates and can be economically justified. Offering this testing to all pregnant women is associated with substantial prenatal healthcare benefits."
  • Diagnostic accuracy of routine antenatal determination of fetal RHD status across gestation: population based cohort study[10] "To assess the accuracy of fetal RHD genotyping using cell-free fetal DNA in maternal plasma at different gestational ages. ...Mass throughput fetal RHD genotyping is sufficiently accurate for the prediction of RhD type if it is performed from 11 weeks' gestation. Testing before this time could result in a small but significant number of babies being incorrectly classified as RHD negative. These mothers would not receive anti-RhD immunoglobulin, and there would be a risk of haemolytic disease of the newborn in subsequent pregnancies." (fetal erythroblastosis) Blood Development
  • Noninvasive Prenatal Testing: The Future Is Now[11] "Prenatal detection of chromosome abnormalities has been offered for more than 40 years, first by amniocentesis in the early 1970s and additionally by chorionic villus sampling (CVS) in the early 1980s. ...The ability to isolate fetal cells and fetal DNA from maternal blood during pregnancy has opened up exciting opportunities for improved noninvasive prenatal testing (NIPT). Direct analysis of fetal cells from maternal circulation has been challenging given the scarcity of fetal cells in maternal blood (1:10,000-1:1,000,000) and the focus has shifted to the analysis of cell-free fetal DNA, which is found at a concentration almost 25 times higher than that available from nucleated blood cells extracted from a similar volume of whole maternal blood. There have now been numerous reports on the use of cell-free DNA (cfDNA) for NIPT for chromosomal aneuploidies-especially trisomy (an extra copy of a chromosome) or monosomy (a missing chromosome)-and a number of commercial products are already being marketed for this indication. This article reviews the various techniques being used to analyze cell-free DNA in the maternal circulation for the prenatal detection of chromosome abnormalities and the evidence in support of each."
  • Noninvasive whole-genome sequencing of a human fetus[12] "Analysis of cell-free fetal DNA in maternal plasma holds promise for the development of noninvasive prenatal genetic diagnostics. Previous studies have been restricted to detection of fetal trisomies, to specific paternally inherited mutations, or to genotyping common polymorphisms using material obtained invasively, for example, through chorionic villus sampling. Here, we combine genome sequencing of two parents, genome-wide maternal haplotyping, and deep sequencing of maternal plasma DNA to noninvasively determine the genome sequence of a human fetus at 18.5 weeks of gestation. "
  • A noninvasive test to determine paternity in pregnancy[13] "Our approach shows that noninvasive prenatal paternity testing can be performed within the first trimester with the use of a maternal blood sample."


A recent 2014 Canadian studyPubmedParser error: The PubmedParser extension received invalid XML data. () identified the cost of NIPT ranges from US$800 to US$2000 in the USA and from US$500 to US$1500 elsewhere.

Inheritance Genetics

Pedigree chart

Links: Genetic risk maternal age | Trisomy 21


A recent publication from NHMRC Medical Genetic Testing: information for health professionals (2010). This paper covers background information on all types of genetic tests, not just those associated with prenatal diagnosis.

Types of genetic tests

  • Somatic cell genetic testing involves testing tissue (usually cancer) for non-heritable mutations. This may be for diagnostic purposes, or to assist in selecting treatment for a known cancer.
  • Diagnostic testing for heritable mutations involves testing an affected person to identify the underlying mutation(s) responsible for the disease. This typically involves testing one or more genes for a heritable mutation.
  • Predictive testing for heritable mutations involves testing an unaffected person for a germline mutation identified in genetic relatives. The risk of disease will vary according to the gene, the mutation and the family history.
  • Carrier testing for heritable mutations involves testing for the presence of a mutation that does not place the person at increased risk of developing the disease, but does increase the risk of having an affected child developing the disease.
  • Pharmacogenetic testing for a genetic variant that alters the way a drug is metabolised. These variants can involve somatic cells or germline changes. Even if these variants are heritable (that is germline changes), the tests are usually of relevance to genetic relatives only if they are being treated with the same type of medication.

Links: NHMRC - Medical Genetic Testing: information for health professionals


A new site developed by NIH "GeneTests" provides medical genetics information resources available at no cost to all interested persons. It contains educational information, a directory of genetic testing laboratories and links to other databases such as OMIM.

Links: GeneTests | Medline Plus - Genetic Testing

Ethics of Testing

Major developmental abnormalities detected early enough can be resolved far more easily than those discovered late in a pregnancy.

What are the ethical questions that are raised by prenatal testing? Future individual rights or parents rights? But what about diseases, like Huntington's, where a diagnostic test can be made but there are no current treatments for the postnatal (95% of cases adult onset) disease?

Huntington's disease

Guidelines for the molecular genetics predictive test

Recommendation 2.1 "the test is available only to individuals who have reached the age of majority."
Recommendation 7.2 "the couple requesting antenatal testing must be clearly informed that if they intend to complete the pregnancy if the fetus is a carrier of the gene defect, there is no valid reason for performing the test."

(excerpt from: IHA and the World Federation of Neurology Research Group on Huntington's Chorea. Guidelines for the molecular genetics predictive test in Huntington's disease.)


Panorama Test

Links: YouTube


  1. McCullough RM, Almasri EA, Guan X, Geis JA, Hicks SC, Mazloom AR, Deciu C, Oeth P, Bombard AT, Paxton B, Dharajiya N & Saldivar JS. (2014). Non-invasive prenatal chromosomal aneuploidy testing--clinical experience: 100,000 clinical samples. PLoS ONE , 9, e109173. PMID: 25289665 DOI.
  2. Huang L, Bogale B, Tang Y, Lu S, Xie XS & Racowsky C. (2019). Noninvasive preimplantation genetic testing for aneuploidy in spent medium may be more reliable than trophectoderm biopsy. Proc. Natl. Acad. Sci. U.S.A. , 116, 14105-14112. PMID: 31235575 DOI.
  3. Xue Y, Zhao G, Li H, Zhang Q, Lu J, Yu B & Wang T. (2019). Non-invasive prenatal testing to detect chromosome aneuploidies in 57,204 pregnancies. Mol Cytogenet , 12, 29. PMID: 31249627 DOI.
  4. McKanna T, Ryan A, Krinshpun S, Kareht S, Marchand K, Grabarits C, Ali M, McElheny A, Gardiner K, LeChien K, Hsu M, Saltzman D, Stosic M, Martin K & Benn P. (2018). Fetal fraction-based risk algorithm for non-invasive prenatal testing: screening for trisomy 13, 18, and triploidy in women with low cell-free fetal DNA. Ultrasound Obstet Gynecol , , . PMID: 30014528 DOI.
  5. Jain CV, Kadam L, van Dijk M, Kohan-Ghadr HR, Kilburn BA, Hartman C, Mazzorana V, Visser A, Hertz M, Bolnick AD, Fritz R, Armant DR & Drewlo S. (2016). Fetal genome profiling at 5 weeks of gestation after noninvasive isolation of trophoblast cells from the endocervical canal. Sci Transl Med , 8, 363re4. PMID: 27807286 DOI.
  6. Chitty LS, Wright D, Hill M, Verhoef TI, Daley R, Lewis C, Mason S, McKay F, Jenkins L, Howarth A, Cameron L, McEwan A, Fisher J, Kroese M & Morris S. (2016). Uptake, outcomes, and costs of implementing non-invasive prenatal testing for Down's syndrome into NHS maternity care: prospective cohort study in eight diverse maternity units. BMJ , 354, i3426. PMID: 27378786
  7. Taneja PA, Prosen TL, de Feo E, Kruglyak KM, Halks-Miller M, Curnow KJ & Bhatt S. (2017). Fetal aneuploidy screening with cell-free DNA in late gestation. J. Matern. Fetal. Neonatal. Med. , 30, 338-342. PMID: 27124739 DOI.
  8. Johansen P, Richter SR, Balslev-Harder M, Miltoft CB, Tabor A, Duno M & Kjaergaard S. (2016). Open source non-invasive prenatal testing platform and its performance in a public health laboratory. Prenat. Diagn. , 36, 530-6. PMID: 27027563 DOI.
  9. Benn P, Curnow KJ, Chapman S, Michalopoulos SN, Hornberger J & Rabinowitz M. (2015). An Economic Analysis of Cell-Free DNA Non-Invasive Prenatal Testing in the US General Pregnancy Population. PLoS ONE , 10, e0132313. PMID: 26158465 DOI.
  10. Chitty LS, Finning K, Wade A, Soothill P, Martin B, Oxenford K, Daniels G & Massey E. (2014). Diagnostic accuracy of routine antenatal determination of fetal RHD status across gestation: population based cohort study. BMJ , 349, g5243. PMID: 25190055
  11. Norwitz ER & Levy B. (2013). Noninvasive prenatal testing: the future is now. Rev Obstet Gynecol , 6, 48-62. PMID: 24466384
  12. Kitzman JO, Snyder MW, Ventura M, Lewis AP, Qiu R, Simmons LE, Gammill HS, Rubens CE, Santillan DA, Murray JC, Tabor HK, Bamshad MJ, Eichler EE & Shendure J. (2012). Noninvasive whole-genome sequencing of a human fetus. Sci Transl Med , 4, 137ra76. PMID: 22674554 DOI.
  13. Guo X, Bayliss P, Damewood M, Varney J, Ma E, Vallecillo B & Dhallan R. (2012). A noninvasive test to determine paternity in pregnancy. N. Engl. J. Med. , 366, 1743-5. PMID: 22551147 DOI.


Gekas J, Langlois S, Ravitsky V, Audibert F, van den Berg DG, Haidar H & Rousseau F. (2016). Non-invasive prenatal testing for fetal chromosome abnormalities: review of clinical and ethical issues. Appl Clin Genet , 9, 15-26. PMID: 26893576 DOI.

Skirton H, Goldsmith L, Jackson L, Lewis C & Chitty LS. (2015). Non-invasive prenatal testing for aneuploidy: a systematic review of Internet advertising to potential users by commercial companies and private health providers. Prenat. Diagn. , 35, 1167-75. PMID: 26266986 DOI.

Allyse M, Minear MA, Berson E, Sridhar S, Rote M, Hung A & Chandrasekharan S. (2015). Non-invasive prenatal testing: a review of international implementation and challenges. Int J Womens Health , 7, 113-26. PMID: 25653560 DOI.

Benn P. (2014). Non-Invasive Prenatal Testing Using Cell Free DNA in Maternal Plasma: Recent Developments and Future Prospects. J Clin Med , 3, 537-65. PMID: 26237390 DOI.


Van Opstal D & Srebniak MI. (2016). Cytogenetic confirmation of a positive NIPT result: evidence-based choice between chorionic villus sampling and amniocentesis depending on chromosome aberration. Expert Rev. Mol. Diagn. , 16, 513-20. PMID: 26864482 DOI.

Fairbrother G, Burigo J, Sharon T & Song K. (2016). Prenatal screening for fetal aneuploidies with cell-free DNA in the general pregnancy population: a cost-effectiveness analysis. J. Matern. Fetal. Neonatal. Med. , 29, 1160-4. PMID: 26000626 DOI.

Straver R, Oudejans CB, Sistermans EA & Reinders MJ. (2016). Calculating the fetal fraction for noninvasive prenatal testing based on genome-wide nucleosome profiles. Prenat. Diagn. , 36, 614-21. PMID: 26996738 DOI.

Ohnhaeuser T & Schmitz D. (2016). Non-invasive Prenatal Testing (NIPT): Better Meet an Expert!: The Case of a Late Detected Trisomy 13 Reveals Structural Problems in NIPT Counselling and Highlights Substantial Risks for the Reproductive Autonomy. Geburtshilfe Frauenheilkd , 76, 277-279. PMID: 27064737 DOI.

Orhant L, Anselem O, Fradin M, Becker PH, Beugnet C, Deburgrave N, Tafuri G, Letourneur F, Goffinet F, Allach El Khattabi L, Leturcq F, Bienvenu T, Tsatsaris V & Nectoux J. (2016). Droplet digital PCR combined with minisequencing, a new approach to analyze fetal DNA from maternal blood: application to the non-invasive prenatal diagnosis of achondroplasia. Prenat. Diagn. , 36, 397-406. PMID: 26850935 DOI.

Higuchi EC, Sheldon JP, Zikmund-Fisher BJ & Yashar BM. (2016). Non-invasive prenatal screening for trisomy 21: Consumers' perspectives. Am. J. Med. Genet. A , 170A, 375-85. PMID: 26553705 DOI.


PubMed Health

Search Pubmed

Search Pubmed: Non-Invasive Prenatal Testing

Prenatal Diagnosis Terms

  • blastomere biopsy - An ART preimplantation genetic diagnosis technique carried out at cleavage stage (day 3), excluding poor quality embryos, detects chromosomal abnormalities of both maternal and paternal origin. May not detect cellular mosaicism in the embryo.
  • blastocyst biopsy - An ART preimplantation genetic diagnosis technique carried out at blastocyst stage (day 4-5), removes several trophoblast (trophoderm) cells, detects chromosomal abnormalities of both maternal and paternal origin and may detect cellular mosaicism.
  • cell-free fetal deoxyribonucleic acid - (cfDNA) refers to fetal DNA circulating and isolated from the plasma portion of maternal blood. Can be performed from GA 10 weeks as a first-tier test or as a second-tier test, with women with increased probability on combined first trimester screening offered cfDNA or diagnostic testing.
  • false negative rate - The proportion of pregnancies that will test negative given that the congenital anomaly is present.
  • false positive rate - The proportion of pregnancies that will test positive given that the congenital anomaly is absent.
  • free β human chorionic gonadotrophin - beta-hCG subunit of hCG used as a diagnostic marker for: early detection of pregnancy, Trisomy 21, spontaneous abortion, ectopic pregnancy, hydatidiform mole or choriocarcinoma.
  • multiples of the median - (MoM) A multiple of the median is a measure of how far an individual test result deviates from the median and is used to report the results of medical screening tests, particularly where the results of the individual tests are highly variable.
  • negative predictive value - The probability that a congenital anomaly is absent given that the prenatal screening test is negative.
  • Non-Invasive Prenatal Testing - (NIPT) could refer to ultrasound or other imaging techniques, but more frequently used to describe analysis of cell-free fetal DNA circulating in maternal blood.
  • polar body biopsy - (PB biopsy) An ART preimplantation genetic diagnosis technique that removes either the first or second polar body from the zygote. As these are generated by oocyte meiosis they detects chromosomal abnormalities only on the female genetics.
  • positive predictive value - The probability that a congenital anomaly is present given that the prenatal screening test is positive.
  • prenatal screening sensitivity - (detection rate) The probability of testing positive on a prenatal screening test if the congenital anomaly is present.
  • prenatal screening specificity - The probability of testing negative on a prenatal screening test if the congenital anomaly is absent.
  • quadruple test (maternal serum testing of a-fetoprotein Template:AFP, free B-hCG or total hCG, unconjugated estriol, and inhibin A) is a fetal chromosomal anomaly test usually carried out later in pregnancy (GA 14 to 20 weeks).
  • single nucleotide polymorphisms - (SNPs) the variation in a single DNA nucleotide that occurs at a specific position in the genome.
  • triple test - (maternal serum testing of a-fetoprotein Template:AFP, free B-hCG or total hCG, and unconjugated estriol) is a fetal chromosomal anomaly test usually carried out later in pregnancy (GA 14 to 20 weeks).

Other Terms Lists  
Terms Lists: ART | Birth | Bone | Cardiovascular | Cell Division | Endocrine | Gastrointestinal | Genital | Genetic | Head | Hearing | Heart | Immune | Integumentary | Neonatal | Neural | Oocyte | Palate | Placenta | Radiation | Renal | Respiratory | Spermatozoa | Statistics | Tooth | Ultrasound | Vision | Historic | Drugs | Glossary

External Links

External Links Notice - The dynamic nature of the internet may mean that some of these listed links may no longer function. If the link no longer works search the web with the link text or name. Links to any external commercial sites are provided for information purposes only and should never be considered an endorsement. UNSW Embryology is provided as an educational resource with no clinical information or commercial affiliation.

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2021, April 12) Embryology Non-Invasive Prenatal Testing. Retrieved from

What Links Here?
© Dr Mark Hill 2021, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G