User:Z3418989

From Embryology
Revision as of 23:41, 26 August 2014 by Z3418989 (talk | contribs)

Welcome to the 2014 Embryology Course!

Links: Timetable | How to work online | One page Wiki Reference Card | Moodle
  • Each week the individual assessment questions will be displayed in the practical class pages and also added here.
  • Copy the assessment items to your own page and provide your answer.
  • Note - Some guest assessments may require completion of a worksheet that will be handed in in class with your student name and ID.
Individual Lab Assessment
  1. Lab 1 Assessment - Fertilization References
  2. Lab 2 Assessment - Uploading a Research Image
  3. Lab 3 Assessment - Researching your Project Sub-Heading
  4. Lab 4 Assessment - Cord Stem Cells
  5. Lab 5 Assessment - Abnormalities
  6. Lab 6 Assessment - Group Work (As announced in the lecture, No individual assessment item for this Lab, but I do expect you to have added content to your Group project by tomorrow's Lab.)
  7. Lab 7 Assessment - Endocrine+Teeth
  8. Lab 8 - Genital
  9. Lab 9 - Peer Assessment
  10. Lab 10 - Sensory Development
  11. Lab 11 - Stem Cells
  12. Lab 12 - Stem Cells Presentation (see preparation information)
Lab 12 - Stem Cell Presentation Assessment More Info
Group Comment Mark (10)
1/8
  • Lots of effort to place article in larger context
  • Slide lay out could be improved: lots of empty space, use larger images and talk through them
  • Results presentation a bit convoluted. Try to finish discussion of each experiment with a clear conclusion.
  • Repetition of information towards the end
  • One presenter had an unprofessional style of presentation
7
2
  • Good well-structured presentation
  • Good introduction
  • Methods discussed separately. Try to avoid this, and incorporate in discussion of experiments. Not sure if technology was understood very well.
7.5
3
  • Good well-structured presentation
  • Do not discuss methods as a separate section
  • Discussion of results not always very clear, comprehension?
7.5
4
  • Good well-structured presentation
  • Lots of text on slides, improve talking through images, blow up images
  • Good discussion
8.5
5
  • Good well-structured presentation, amount of text on slides relatively good.
  • Figures too small, discussion bit convoluted
  • Slightly over time
8.5
6
  • Good comprehension and well-structured presentation.
  • Too much text on slides
  • Experiments discussed in a lot of detail. Try to be more concise and discuss aim of experiment, approach, summarize results, conclude.
  • No talking through figures
8.5
7
  • Good well-structured presentation, great introduction, inclusion of images in presentation done relatively well.
  • Methods discussed separately. Incorporate methods in discussion of the experiments in the results section.
  • Try not to depend too much on text on your slides
  • Talking through results images was not very clear, comprehension?
7.5
More Useful Links
Student Projects
Group 1 Respiratory User:Z3330991 User:Z3332339 User:Z3333429 User:Z3372817
Group 2 Renal User:Z3463310 User:Z3465141 User:Z3465654 User:Z5030311
Group 3 Gastrointestinal User:Z3414515 User:Z3375627 User:Z3415141 User:Z3415242
Group 4 Genital User:Z3415716 User:Z3416697 User:Z3417458 User:Z3417753
Group 5 Integumentary User:Z3417796 User:Z3417843 User:Z3418340 User:Z3418488
Group 6 Endocrine User:Z3418702 User:Z3418837 User:Z3418698 User:Z3414648
Group 7 Neural User:Z3418981 User:Z3419587 User:Z3422484 User:Z3374116
Group 8 Musculoskeletal User:Z3418779 User:Z3418718 User:Z3418989
Student Projects Fetal Development of a specific System.
2014 Course: Week 2 Lecture 1 Lecture 2 Lab 1 | Week 3 Lecture 3 Lecture 4 Lab 2 | Week 4 Lecture 5 Lecture 6 Lab 3 | Week 5 Lecture 7 Lecture 8 Lab 4 | Week 6 Lecture 9 Lecture 10 Lab 5 | Week 7 Lecture 11 Lecture 12 Lab 6 | Week 8 Lecture 13 Lecture 14 Lab 7 | Week 9 Lecture 15 Lecture 16 Lab 8 | Week 10 Lecture 17 Lecture 18 Lab 9 | Week 11 Lecture 19 Lecture 20 Lab 10 | Week 12 Lecture 21 Lecture 22 Lab 11 | Week 13 Lecture 23 Lecture 24 Lab 12
Student Projects - Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 | Group 7 | Group 8 | Moodle

Lab Attendance

Lab 1 --Mark Hill (talk) 12:50, 6 August 2014 (EST)

reference 1

PMID2508416

<pubmed>25084016</pubmed>

reference 2

[6]

<pubmed>25101180</pubmed>

reference 3

[7]

<pubmed>25100708</pubmed>

Lab 2 --Z3418989 (talk) 11:22, 13 August 2014 (EST)

Lab 3 --Z3418989 (talk) 11:40, 20 August 2014 (EST)

Lab Assessment 1

Research article 1

Altered Protein Expression Profiles in Umbilical Veins: Insights into Vascular Dysfunctions of the Children Born after In Vitro Fertilization.

Summary

IVF children have been noticed to have cardiovascular problems and remodeling. However not much is known of how IVF treatment could cause these cardiovascular problems and this is the main concern of this article. The scientists’ previous studies have led them to discover that ART like IVF may cause differentially expressed proteins (DEPs) in the IVF placenta.

The umbilical veins and cord blood from 45 IVD and 48 naturally conceived (CV) newborns was collected and tissue samples were collected and then put to undergo in vitro fertilization under various conditions. E_2 cord blood levels was also examined. Using a randomizing program, 3 IVF and 3 NC umbilical veins were selected for proteomic analysis by the iTRAQ, a proteomic analysis technology. First the 6 umbilical vein sample proteins were extracted, separated with chromatography and identified using different methods like a mass spectrometer and the MASCOT search engine (Gao et al, 2014).

Also the E_2 in human umbilical vein endothelial cells (HUVECs) and cord blood was measured. For further validation of proteomic results PCR and Western blotting analysis was conducted on 11 and 4 umbilical veins respectively (Gao et al, 2014).

Results showed 47 DEPs (20 up-regulated; 27 down-regulated) were found in IVF newborns in comparison to NC newborns. Q-PCR and Western blotting done showed validated results as proteins lumican, nestin and PTGDS were up-regulated and vimentin was down regulated as observed with proteomic results. The bioinformatics analysis conducted showed that umbilical vein DEPs had a connection with development of many systems including cardiovascular system development and carbon metabolism (Gao et al, 2014). This study indicates there is different in expression of proteins in IVF-newborns compared to NC newborns and that DEPs might correlate with IVF-related cardiovascular issues (Gao et al, 2014).

Research article 2

Improvement in in vitro fertilization rate, decrease in reactive oxygen species and spermatozoa death incidence in rams by dietary fish oil.

Summary

This experiment aims to investigates, in rams, the effects of fish oil on level of reactive oxygen species (ROS), spermatozoa death incidence and in vitro fertilization (IVF) (Behzad, 2014).

9 Rams were randomly selected and split into control (5) and fish oil (4) groups. A diet was administered of essentially 0% fish oil to the control groups and 2.5% to the fish oil group and other things such as equal amounts of vitamin E. After 21 days semen from both groups was collated via an artificial vagina. Semen continued to be collected weekly following this. This continued on for 70 days during breeding season. (Behzad, 2014). Every week after the initial 21 days ROS level and spermatozoa death incidence was measured via flow cytometry. However during only the first (day 21) and last (day 70) weeks of sperm collection sperm was analyzed using a sperm analyzer program called CASA and swimming up technique was used to prepare sperm for IVF. (Behzad, 2014).

The results showed a greater volume, concentration and sperm motility in fish oil groups. They found higher fertilization rates in fish oil groups; 56% compared to 49%. In third week of samples O_2 and spermatozoa death incidence was lower in fish oil groups (Behzad, 2014).

Therefore this articulate argues that dietary omega-3 which is found in fish oil could be used to increase fertilization rates in vitro fertilization.

Lab Assessment 2

Promising System for Selecting Healthy In Vitro Fertilized Embryos in Cattle.png


Promising System for Selecting Healthy In Vitro Fertilized Embryos in Cattle[1]


  1. <pubmed>22590579</pubmed>| [1]

Lab Assessment 3

Anatomy and variations of palmaris longus in fetuses.[1]

Development of the rectus abdominis and its sheath in the human fetus.[2]

Sonic hedgehog acts cell-autonomously on muscle precursor cells to generate limb muscle diversity.[3]

The normal growth of the biceps brachii muscle in human fetuses.[4]

  1. <pubmed> 23529313</pubmed>| [2]
  2. <pubmed> 22869489</pubmed>| [3]
  3. <pubmed> 22987640</pubmed>| [4]
  4. <pubmed>23468258</pubmed>| [5]