User:Z5030311: Difference between revisions

From Embryology
No edit summary
Line 8: Line 8:


Lab 4:--[[User:Z5030311|Z5030311]] ([[User talk:Z5030311|talk]]) 11:09, 27 August 2014 (EST)
Lab 4:--[[User:Z5030311|Z5030311]] ([[User talk:Z5030311|talk]]) 11:09, 27 August 2014 (EST)
Lab 5:--[[User:Z5030311|Z5030311]] ([[User talk:Z5030311|talk]]) 11:12, 3 September 2014 (EST)


http://www.ncbi.nlm.nih.gov/pubmed
http://www.ncbi.nlm.nih.gov/pubmed

Revision as of 11:12, 3 September 2014

-- Welcome to the 2014 Embryology Course!

Links: Timetable | How to work online | One page Wiki Reference Card | Moodle
  • Each week the individual assessment questions will be displayed in the practical class pages and also added here.
  • Copy the assessment items to your own page and provide your answer.
  • Note - Some guest assessments may require completion of a worksheet that will be handed in in class with your student name and ID.
Individual Lab Assessment
  1. Lab 1 Assessment - Fertilization References
  2. Lab 2 Assessment - Uploading a Research Image
  3. Lab 3 Assessment - Researching your Project Sub-Heading
  4. Lab 4 Assessment - Cord Stem Cells
  5. Lab 5 Assessment - Abnormalities
  6. Lab 6 Assessment - Group Work (As announced in the lecture, No individual assessment item for this Lab, but I do expect you to have added content to your Group project by tomorrow's Lab.)
  7. Lab 7 Assessment - Endocrine+Teeth
  8. Lab 8 - Genital
  9. Lab 9 - Peer Assessment
  10. Lab 10 - Sensory Development
  11. Lab 11 - Stem Cells
  12. Lab 12 - Stem Cells Presentation (see preparation information)
Lab 12 - Stem Cell Presentation Assessment More Info
Group Comment Mark (10)
1/8
  • Lots of effort to place article in larger context
  • Slide lay out could be improved: lots of empty space, use larger images and talk through them
  • Results presentation a bit convoluted. Try to finish discussion of each experiment with a clear conclusion.
  • Repetition of information towards the end
  • One presenter had an unprofessional style of presentation
7
2
  • Good well-structured presentation
  • Good introduction
  • Methods discussed separately. Try to avoid this, and incorporate in discussion of experiments. Not sure if technology was understood very well.
7.5
3
  • Good well-structured presentation
  • Do not discuss methods as a separate section
  • Discussion of results not always very clear, comprehension?
7.5
4
  • Good well-structured presentation
  • Lots of text on slides, improve talking through images, blow up images
  • Good discussion
8.5
5
  • Good well-structured presentation, amount of text on slides relatively good.
  • Figures too small, discussion bit convoluted
  • Slightly over time
8.5
6
  • Good comprehension and well-structured presentation.
  • Too much text on slides
  • Experiments discussed in a lot of detail. Try to be more concise and discuss aim of experiment, approach, summarize results, conclude.
  • No talking through figures
8.5
7
  • Good well-structured presentation, great introduction, inclusion of images in presentation done relatively well.
  • Methods discussed separately. Incorporate methods in discussion of the experiments in the results section.
  • Try not to depend too much on text on your slides
  • Talking through results images was not very clear, comprehension?
7.5
More Useful Links
Student Projects
Group 1 Respiratory User:Z3330991 User:Z3332339 User:Z3333429 User:Z3372817
Group 2 Renal User:Z3463310 User:Z3465141 User:Z3465654 User:Z5030311
Group 3 Gastrointestinal User:Z3414515 User:Z3375627 User:Z3415141 User:Z3415242
Group 4 Genital User:Z3415716 User:Z3416697 User:Z3417458 User:Z3417753
Group 5 Integumentary User:Z3417796 User:Z3417843 User:Z3418340 User:Z3418488
Group 6 Endocrine User:Z3418702 User:Z3418837 User:Z3418698 User:Z3414648
Group 7 Neural User:Z3418981 User:Z3419587 User:Z3422484 User:Z3374116
Group 8 Musculoskeletal User:Z3418779 User:Z3418718 User:Z3418989
Student Projects Fetal Development of a specific System.
2014 Course: Week 2 Lecture 1 Lecture 2 Lab 1 | Week 3 Lecture 3 Lecture 4 Lab 2 | Week 4 Lecture 5 Lecture 6 Lab 3 | Week 5 Lecture 7 Lecture 8 Lab 4 | Week 6 Lecture 9 Lecture 10 Lab 5 | Week 7 Lecture 11 Lecture 12 Lab 6 | Week 8 Lecture 13 Lecture 14 Lab 7 | Week 9 Lecture 15 Lecture 16 Lab 8 | Week 10 Lecture 17 Lecture 18 Lab 9 | Week 11 Lecture 19 Lecture 20 Lab 10 | Week 12 Lecture 21 Lecture 22 Lab 11 | Week 13 Lecture 23 Lecture 24 Lab 12
Student Projects - Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 | Group 7 | Group 8 | Moodle

Z5030311 (talk) 12:45, 6 August 2014 (EST)

Lab Attendance

Lab 1:--Z5030311 (talk) 12:53, 6 August 2014 (EST)

Lab 2:--Z5030311 (talk) 11:21, 13 August 2014 (EST)

Lab 3:--Z5030311 (talk) 11:07, 20 August 2014 (EST)

Lab 4:--Z5030311 (talk) 11:09, 27 August 2014 (EST)

Lab 5:--Z5030311 (talk) 11:12, 3 September 2014 (EST)

http://www.ncbi.nlm.nih.gov/pubmed PubMed

Lab 1 Assessment

http://www.ncbi.nlm.nih.gov/pubmed/25036713 <pubmed>25036713</pubmed>

Kisspeptin-54 is essential for human fertility as it is involved in the surge of luteinizing hormone and the maturation of oocytes. Studies have shown that a mutation inactivating the kisspeptin signal leads to infertility in women as there is no surge in the level of luteinizing hormone and so oocytes are not matured and released. In this study 53 women were injected with Kisspeptin-54 following superovulation; it was hoped that the Kisspeptin-54 would cause a surge in LH resulting in oocyte maturation. After 36 hours the oocytes were retrieved transvaginally, their maturation state was assessed and they were fertilized by intracytoplasmic sperm. Embryos were then formed from the fertilized oocyte. It was discovered that an injection of Kisspeptin-54 can increase the mean number of mature eggs produced by each patient and that it can induce oocyte maturation in patients with subfertility who are undergoing in vitro fertilization. In 92% of the patients who were given the Kisspeptin injection the oocyte was fertilized and the subsequent embryo was successfully implanted in the patient’s uterus.


http://www.ncbi.nlm.nih.gov/pubmed/24751928 <pubmed>24751928</pubmed>

One of the stages of IVF is superovulation, this is where multiple oocytes are stimulated to mature by injecting hormones into the patient. This study is proposing to adapt the levels of hormones used in superovulation for each patient so that the optimum number and size of oocytes is achieved. A mathematical model was constructed which predicted the dose of the hormones that would result in the optimum number and size of oocytes. The model was applied to real patients and the resulting oocytes were analyzed to see if the optimum oocytes were produced. The results showed that there were more oocytes and better sized oocytes when the levels of hormones were altered for each patient in comparison to the normal method where the hormone level is the same for each patient. This will improve the success of superovulation cycles and reduce the cost of excess medication.

Lab 2 Assessment

Sperm Entry Blocked by Heparin.jpeg

Lab 3 Assessment

Structures that arise from the Ureteric bud

<pubmed>25088264</pubmed> <pubmed>25087982</pubmed>

Structures that arise from the Metanephric mesoderm

<pubmed>18835385</pubmed> <pubmed>19726549</pubmed>

Lab 4 Assessment

1. <pubmed>24144029</pubmed>

An experimental study of preventing and treating acute radioactive enteritis with human umbilical cordmesenchymal stem cells

Human umbilical cord-derived stem mesenchymal cells were investigated on rats to see if they are able to cure radiation sickness in Humans. The rats used in this experiment had acute radioactive enteritis, which is where there is inflammation of the small intestine. The human stem cells used in the experiment were cultured in vitro and the rat models with the actue radioactive enteritis were established. The stems cells were then injected into the rats and the changes to the Visual and histopathological of the rats were observed.

It was found that rats that were treated with the human umbilical cord-derived stem mesenchymal cells had better survival rates compared to the control group. Histopathologically it was found that the treatment group also had more regenerative cells, stronger proliferation activity and there intestinal mucosa had a better structure.

2. The three developmental vascular "shunts" present in the embryo are Ductus arteriosus, Ductus venosus and Foramen ovale; all three close postnatally.

Ductus arteriosus is a blood vessel which connects the pulmonary artery and the proximal descending aorta; it allows blood to bypass the lungs.

Ductus venosus allows blood from the placenta to bypass the liver by shunting blood from the left umbilical vein to the inferior vena cava.

Foramen ovale is located in the heart and it allows blood to flow from the right atrium to the left atrium; this allows blood to bypass the lungs