Integumentary System Development

From Embryology
Embryology - 19 Mar 2024    Facebook link Pinterest link Twitter link  Expand to Translate  
Google Translate - select your language from the list shown below (this will open a new external page)

العربية | català | 中文 | 中國傳統的 | français | Deutsche | עִברִית | हिंदी | bahasa Indonesia | italiano | 日本語 | 한국어 | မြန်မာ | Pilipino | Polskie | português | ਪੰਜਾਬੀ ਦੇ | Română | русский | Español | Swahili | Svensk | ไทย | Türkçe | اردو | ייִדיש | Tiếng Việt    These external translations are automated and may not be accurate. (More? About Translations)

Introduction

Skin Cartoon

The integumentary system covers the surface of the embryo (skin) and its specialized skin structures including hair, nails, sweat glands, mammary glands and teeth. As a system it has contributions from all embryonic layers.


The skin provides a barrier between ourselves and our environment, it also contains specializations in different regions including hair, nails, glands and sensory receptors. In other species, additional specializations such as feathers, horns and shell can be seen.

The two major tissue organizations of epithelial (ectoderm, epidermis) and mesenchyme (mesoderm connective tissue, dermis and hypodermis) are shown within skin. In addition, we have aslo extensive populating by melanocytes (neural crest) and sensory nerve endings. It remains today as possibly the first epithelial specialization from which other epithelial specializations arose that are now located inside the body.

Ectoderm forms the surface epidermis and the associated glands. Mesoderm, from the somites, forms the underlying connective tissue of dermis and hypodermis. Neural crest cells also migrate into the forming epidermis and the skin is also populated by specialized sensory endings. Fetal skin also has the ability to heal wounds without a scar in contrast to adult skin, this may relate to differences in the fetal extracellular matrix structure. The adult epidermis contains keratinocytes, melanocytes and Langerhans cells.

Integumentary Links: integumentary | Lecture | hair | tooth | nail | integumentary gland | mammary gland | vernix caseosa | melanocyte | touch | Eyelid | outer ear | Histology | integumentary abnormalities | Category:Integumentary
Hair Links  
Hair Links: Overview | Lanugo | Neonatal | Vellus | Terminal | Hair Follicle | Follicle Phases | Stem Cells | Molecular | Pattern | Puberty | Histology | Hair Colour | Arrector Pili Muscle | Hair Loss | Integumentary
Touch Links  
Touch Links: Touch Receptors | Touch Pathway | Pacinian Corpuscle | Meissner's Corpuscle | Merkel Cell | Sensory Modalities | Neural Crest Development | Neural System Development | Student project | Integumentary | Sensory System
Historic Embryology - Integumentary  
1906 Papillary ridges | 1910 Manual of Human Embryology | 1914 Integumentary | 1923 Head Subcutaneous Plexus | 1921 Text-Book of Embryology | 1924 Developmental Anatomy | 1941 Skin Sensory | Historic Disclaimer
Tinycc  
http://tiny.cc/Integument_Development

Some Recent Findings

  • Mesenchymal cells beneath cornification of the fetal epithelium and epidermis at the face[1] "Fetal development of the face involves a specific type of cornification in which keratinocytes provide a mass or plug to fill a cavity. The epithelial-mesenchymal interaction was likely to be different from that in the usual skin. We examined expression of intermediate filaments and other mesenchymal markers beneath cornification in the fetal face. Using sections from 5 mid-term human fetuses at 14-16 weeks, immunohistochemistry was conducted for cytokeratins (CK), vimentin, nestin, glial fibrilary acidic protein, desmin, CD34, CD68 and proliferating cell nuclear antigen (PCNA). ...Being different from usual cornification of the skin, loss of a mesenchymal monolayer as well as superficial migration of mesenchymal cells might connect with a specific differentiation of keratinocyte to provide a plug at the fetal nose and ear."
  • Comparison between human fetal and adult skin[2] Healing of early-gestation fetal wounds results in scarless healing. Since the capacity for regeneration is probably inherent to the fetal skin itself, knowledge of the fetal skin composition may contribute to the understanding of fetal wound healing. The aim of this study was to analyze the expression profiles of different epidermal and dermal components in the human fetal and adult skin."
  • The integumentary skeleton of tetrapods: origin, evolution, and development[3] "Three types of tetrapod integumentary elements are recognized: (1) osteoderms, common to representatives of most major taxonomic lineages; (2) dermal scales, unique to gymnophionans; and (3) the lamina calcarea, an enigmatic tissue found only in some anurans."


More recent papers  
Mark Hill.jpg
PubMed logo.gif

This table allows an automated computer search of the external PubMed database using the listed "Search term" text link.

  • This search now requires a manual link as the original PubMed extension has been disabled.
  • The displayed list of references do not reflect any editorial selection of material based on content or relevance.
  • References also appear on this list based upon the date of the actual page viewing.


References listed on the rest of the content page and the associated discussion page (listed under the publication year sub-headings) do include some editorial selection based upon both relevance and availability.

More? References | Discussion Page | Journal Searches | 2019 References | 2020 References

Search term: Integumentary Embryology | Integumentary Development

Older papers  
These papers originally appeared in the Some Recent Findings table, but as that list grew in length have now been shuffled down to this collapsible table.

See also the Discussion Page for other references listed by year and References on this current page.

  • Skin transcriptome reveals the dynamic changes in the Wnt pathway during integument morphogenesis of chick embryos[4] "Avian species have a unique integument covered with feathers. Skin morphogenesis is a successive and complex process. To date, most studies have focused on a single developmental point or stage. ...Hierarchical clustering showed that E6 to E14 is the critical period of feather follicle morphogenesis. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the DEGs, two kinds of Wnt signaling pathways (a canonical pathway and a non-canonical pathway) changed during feather follicle and feather morphogenesis. The gene expression level of inhibitors and ligands related to the Wnt signaling pathway varied significantly during embryonic development. The results revealed a staggered phase relationship between the canonical pathway and the non-canonical pathway from E9 to E14." Chicken Development

Textbooks

Adult epidermis structure. See also molecular markers[5]
  • Human Embryology (2nd ed.) Larson Chapter 14 p443-455
  • The Developing Human: Clinically Oriented Embryology (6th ed.) Moore and Persaud Chapter 20: P513-529
  • Before We Are Born (5th ed.) Moore and Persaud Chapter 21: P481-496
  • Essentials of Human Embryology Larson Chapter 14: P303-315
  • Human Embryology, Fitzgerald and Fitzgerald
  • Color Atlas of Clinical Embryology Moore Persaud and Shiota Chapter 15: p231-236

Objectives

  • Understand the differentiation of the epidermis and dermis.
  • Understand the formation of hair and nails.
  • Understand the formation of sweat glands, mammary glands.
  • Understand the formation of teeth.

Development Overview

Ectoderm and Mesoderm Origin

4 weeks

  • simple ectoderm epithelium over mesenchyme.

1-3 months

  • ectoderm - germinative (basal) cell repeated division of generates stratified epithelium.
  • mesoderm - differentiates into connective tissue and blood vessels.
  • week 11 - (GA week 13) blood vessels visible in the early fetal skin, small blood vessels in the upper papillary region and larger vessels in the deep reticular dermis.[2]
Human- Stage 22 integument 02.jpg

Integument Human Embryo (Week 8, Stage 22)

4 months

Fetal integumentary histology 01.jpg

Fetal human integumentary histology[2](Weeks in figure are from LMP)

  • Basal cell - proliferation generates folds in basement membrane.
  • Neural crest cells - melanoblasts migrate into epithelium. These are the future melanocyte pigment cell of the skin.
  • Embryonic connective tissue- differentiates into dermis, a loose ct layer over a dense ct layer. Beneath the dense ct layer is another loose ct layer that will form the subcutaneous layer.
  • Ectoderm contributes to nails, hair follictles and glands.
  • Nails form as thickening of ectoderm epidermis at the tips of fingers and toes. These form germinative cells of nail field.
  • Cords of these cells extend into mesoderm forming epithelial columns. These form hair follicles, sebaceous and sweat glands.

5 months

  • Hair growth initiated at base of cord, lateral outgrowths form associated sebaceous glands.
  • Other cords elongate and coil to form sweat glands.
  • Cords in mammary region branch as they elongate to form mammary glands. These glands will complete development in females at puberty. Functional maturity only occurs in late pregnancy.

Newborn Infant

The following newborn information is from a recent review of Newborn infant skin: physiology, development, and care.[6]

Full-term newborn infant (healthy)

  • skin well-developed and functional at birth, with a thick epidermis and well-formed stratum corneum layers.
  • Transepidermal water loss is very low at birth
    • equal to, or lower than adults, indicating a highly effective skin barrier.
  • Vernix facilitates stratum corneum development in full-term infants
    • through mechanisms including physical protection from amniotic fluid and enzymes, antimicrobial effects, skin surface pH lowering, provision of lipids, and hydration.
  • stratum corneum barrier develops rapidly after birth
    • complete maturation requires weeks to months.

Premature infants

  • particularly those of very low birth weight
  • have a poor skin barrier with few cornified layers and deficient dermal proteins.
  • increased risk for skin damage, increased permeability to exogenous agents and infection.

Embryonic and Fetal Epidermis

Electron Micrographs of the Developing Human Epidermis[7]

Human embryo skin 8-9 week EGA.jpg

6 to 8 weeks (8-9 week EGA)

Human embryo skin 9-11 week EGA.jpg

7 to 9 weeks (9-11 week EGA)

Human embryo skin 24 week EGA.jpg

22 weeks (about 24 week EGA)

Dermis

Somite Components
Somite Components

The underlying connective tissue layers of the skin (dermis and hypodermis) arise from the dermatome component of the developing somite.

cartoon of the dermatome

Cartoon showing the dermatome component of the somite.[8]

Fetal Dermis

Fetal Dermis (18 wk LMP)[2]

The following data is from an immunohistological study of fetal skin dermis layer.[2]

  • Collagen type I is the principal component of extracellular matrix (ECM) (also in adult skin).
  • Collagen type III high ratio to collagen type I (than adult skin).
  • Glycosaminoglycans (GAGs) level higher (than adult skin).
  • Hyaluronic acid and chondroitin sulfate both higher.
  • Elastin was not present (found in adult skin).

Facial Skin

A recent study[1] has looked at the human fetus between GA 14-16 weeks specialised changes in face skin, the plugs in the nose and ear and the tongue surface.

Face Skin (zygomatic skin):

  • thin stratum corneum and a stratum basale (CK5/6+, CK14+, and CK19+)
  • intermediate layer, 2-3 layered large keratinocytes with nucleus.
  • basal layer was lined by mono-layered mesenchymal cells (CD34+ and nestin+). Some of basal cells were PCNA-positive.

Plugs - external ear and nose:

  • keratinocyte cell nuclei expressed PCNA, CK5/6, CK14, and CK19.
  • Vimentin-positive mesenchymal cells migrated into the plug.

Tongue

  • lingual epithelium CK7-positive stratum corneum as well as the thick mesenchymal papilla.

Vernix Caseosa

Newborn vernix caseosa
Newborn vernix caseosa

The vernix caseosa has several different potential functions and a variable composition.[9]

  • a highly variable coating of the fetal skin
  • high water content (80%) largely compartmentalized within fetal corneocytes (cells forming the stratum corneum)
  • develops cranio-caudally production coincides in utero with terminal differentiation of the epidermis and formation of the stratum corneum
  • primarily composed of sebum, cells that have sloughed off the fetus's skin and shed lanugo hair
  • can be absent in preterm infants
  • dehydration and rehydration processes occur two to four times faster at 37 degrees celcius than at room temperature[10]
  • towards term fragments of vernix can mix into the amniotic fluid resulting in (normal) turbidity
  • fetal swallowing of amniotic fluid mixed with fragments of vernix can also occur
  • cathelicidin LL-37, alpha-defensins, and LL-37 in neutrophils.[11]


Links: vernix caseosa | integumentary gland


Adult Epidermal Stem Cells

In adult human skin epithelium, keratinocytes take about a month to differentiate from the basal stem cell layer, through the different stages of differentiation and layers, to be finally sloughed off on the surface. As well as keratinocyte differentiation, this represents a specialised form of programmed cell death called "cornification".

Epidermis stem cell models[5]

The following information is from a recent study on mouse skin using a single cell labelling system with longitudinal tracing and confocal imaging.[12]

Organization of the epidermis. Hair follicles contain stem cells located in the bulge (b, green), with the potential to generate lower hair follicle (lf), sebaceous gland (sg, orange) upper follicle (uf) and interfollicular epidermis (IFE, beige). The schematic shows the organization of keratinocytes in the IFE, as proposed by the stem/TA cell hypothesis. The basal layer comprises stem cells (S, blue), transit amplifying cells (TA, dark green), and post-mitotic basal cells (red), which migrate out of the basal layer as they differentiate (arrows).

Hair follicle development.jpg

Projected Z-stack confocal images of IFE wholemounts from AhcreERT R26EYFP/wt mice viewed from the basal surface at the times shown following induction. Yellow, EYFP; blue, DAPI nuclear stain. Scale bar, 20 microns.

Reprinted by permission from Macmillan Publishers Ltd: Nature. 2007 Mar 8;446(7132):185-9, copyright (2007)

Adult epidermal stem cells[12] "According to the current model of adult epidermal homeostasis, skin tissue is maintained by two discrete populations of progenitor cells. ...Here we show that clone-size distributions are consistent with a new model of homeostasis involving only one type of progenitor cell. These cells are found to undergo both symmetric and asymmetric division at rates that ensure epidermal homeostasis."


Links: MRC - Phil Jones Laboratory

Melanocytes

Melanoblast migration.png
Mouse-melanoblast migration icon.jpg
 ‎‎Mouse Melanoblast
Page | Play

Neural crest cells lying lateral to a region between the dermamyotome and the surface ectoderm (migration staging area) further migrate to populate the embryonic skin as proliferating melanoblasts. These initial melanoblasts are unpigmented containing only immature melanosomes without functional tyrosinase (TYR), the enzyme required for melanin synthesis.

See also modeling melanoblast development.[13]


Gene Regulatory Network (GRN)

  • Sox10 in antagonising Mitfa-dependent melanocyte differentiation (zebrafish)[14]
  • Melanocyte differentiation controlled by microphthalmia transcription factor (MITF).
    • activates genes involved in pigment production - TYR, TRP-1 and TRP-2


Melanin pigments

The Fitzpatrick skin phototype (I-VI, light to dark) is used to classify skin colour based on the amount of melanin pigment in the skin. There are two mani forms of pigment:

  1. eumelanin - brown-black or dark insoluble polymer, (dark skin and hair)
  2. pheomelanin - red-yellow soluble polymer, formed by the conjugation of cysteine or glutathione. (red hair and skin phototypes I and II)
Fitzpatrick Skin Phototype 
Type Features Tanning ability
I Pale white skin, blue/green eyes, blond/red hair Always burns, does not tan
II Fair skin, blue eyes Burns easily, tans poorly
III Darker white skin Tans after initial burn
IV Light brown skin Burns minimally, tans easily
V Brown skin Rarely burns, tans darkly easily
VI Dark brown or black skin Never burns, always tans darkly
Reference: Fitzpatrick TB. Soleil et peau. (1975) J Med Esthet. 2: 33-34.
Links: Neural Crest Development | MITF

Keratin

Intermediate Filament protein family

Cytoskeleton intermediate filament protein of epithelial cells required for cell mechanical stability and integrity, humans have 54 functional keratin genes. The α-keratins are expressed in all vertebrates, while the β-keratins are specific to birds and reptiles.[15]

Integumentary Keratin Expression
Cell layer Expression
Basal layer K14, K5
Spinous layer K1, K10, caspase-14
Granular layer Filaggrin, involucrin, loricrin
Cornified layer aggregated keratin filaments

Intermediate Filaments Type I

Acidic keratins (pI < 5.7) 40–64 kDa (n = 28)

  • K9-28 (epithelia)
  • K31-40 (hair/nail)

Intermediate Filaments Type II

Basic keratins (pI ≥ 6.0) 53–67 kDa (n = 26)

  • K1-8, K71-80 (epithelia)
  • K81-86 (hair/nail)
  • Keratins form heterodimers that assemble into heteropolymeric keratin filaments

Elaine Fuchs

Elaine Fuchs

A key researcher in the understanding of skin and keratin development Elaine Fuchs: A love for science that's more than skin deep. Interviewed by Ben Short[16] "Elaine Fuchs has collected many awards in her 30 years researching mammalian skin development, but it's hard to beat the two prizes she received in late 2009. Shortly before winning the prestigious L'Oreál-UNESCO award for women in science, Fuchs was awarded the National Medal of Science—the US's highest honor for outstanding scientific contributions."

Links: Lecture Cytoskeleton - Intermediate Filaments

Integrin Expression

The data below form a research article identifies expression of integrin subunits during development of human palm and sole skin.[17]

  • All of the integrins expressed during development were also present in mature epidermis and were largely confined to the basal layer of keratinocytes in a pericellular distribution.
  • alpha 3 and beta 1 subunits - were expressed prior to the initiation of stratification and did not change in abundance or distribution during subsequent development.
  • alpha 4 and beta 3 - were not detected at any time in the epidermis.

Every other subunit examined showed spatial or temporal changes in expression.

  • alpha 1 - was strong before stratification and until mid-development, but was greatly decreased in neonatal epidermis.
  • alpha 2 - was first detected in small patches of basal cells prior to stratification, and thereafter was found in the entire basal layer, with greater staining in developing sweat glands.
  • alpha 5 - was not expressed until mid-development, and then primarily in developing sweat glands, with faint expression in neonatal epidermis.
  • alpha v - was detected following stratification, in developing sweat glands, and occasionally in neonatal epidermis.
  • alpha 6 and beta 4 - were peribasally expressed before stratification. After stratification became concentrated at the basal cell surface in contact with the basement membrane, co-localizing with hemidesmosomes.

Three known ligands for keratinocyte integrins

  • laminin and collagen type IV - present in the basement membrane zone at all stages of development
  • fibronectin - only evident until about 13 weeks estimated gestational age.


Langerhans Cells

Langerhans cells (LCs) are immune system dendritic cells (myeloid antigen-presenting immune cells) found in the basal/suprabasal layers of stratified epidermis (and also in epithelia of the corneal and mucosal tissues). These migratory dendritic cells belong to the same cell family as microglia (see review[18])

In the embryo, LC precursors first form from the primitive yolk sac macrophages, and later in the fetal liver from a monocyte-like precursor. Langerhans cells then populate the single-layered epidermis and undergo local proliferation before birth.[19]

Postnatally, local self-renewal maintains or restores LC numbers following low grade or chronic inflammation.

Langerhans cells and Merkel cells within human hair follicle potentially interact with each other.[20]


History - Paul Langerhans (1847 – 1888)[21] in 1868 first (mis)identified these cells as neurons.

Links: Immune System Development | Search Pubmed

Other Species

Chicken

The avian integumentary system includes integumentary specialisations such as feathers, scales, claws, and beaks.

  • β-keratin - expressed in embryonic feathers[22]
Links: Chicken Development


References

  1. 1.0 1.1 Kim JH, Jin ZW, Murakami G & Cho BH. (2016). Characterization of mesenchymal cells beneath cornification of the fetal epithelium and epidermis at the face: an immunohistochemical study using human fetal specimens. Anat Cell Biol , 49, 50-60. PMID: 27051567 DOI.
  2. 2.0 2.1 2.2 2.3 2.4 Coolen NA, Schouten KC, Middelkoop E & Ulrich MM. (2010). Comparison between human fetal and adult skin. Arch. Dermatol. Res. , 302, 47-55. PMID: 19701759 DOI.
  3. Vickaryous MK & Sire JY. (2009). The integumentary skeleton of tetrapods: origin, evolution, and development. J. Anat. , 214, 441-64. PMID: 19422424 DOI.
  4. Gong H, Wang H, Wang Y, Bai X, Liu B, He J, Wu J, Qi W & Zhang W. (2018). Skin transcriptome reveals the dynamic changes in the Wnt pathway during integument morphogenesis of chick embryos. PLoS ONE , 13, e0190933. PMID: 29351308 DOI.
  5. 5.0 5.1 Fuchs E. (2008). Skin stem cells: rising to the surface. J. Cell Biol. , 180, 273-84. PMID: 18209104 DOI.
  6. Visscher MO, Adam R, Brink S & Odio M. (2015). Newborn infant skin: physiology, development, and care. Clin. Dermatol. , 33, 271-80. PMID: 25889127 DOI.
  7. Dale BA, Holbrook KA, Kimball JR, Hoff M & Sun TT. (1985). Expression of epidermal keratins and filaggrin during human fetal skin development. J. Cell Biol. , 101, 1257-69. PMID: 2413039
  8. Blake JA & Ziman MR. (2014). Pax genes: regulators of lineage specification and progenitor cell maintenance. Development , 141, 737-51. PMID: 24496612 DOI.
  9. Pickens WL, Warner RR, Boissy YL, Boissy RE & Hoath SB. (2000). Characterization of vernix caseosa: water content, morphology, and elemental analysis. J. Invest. Dermatol. , 115, 875-81. PMID: 11069626 DOI.
  10. Rissmann R, Groenink HW, Gooris GS, Oudshoorn MH, Hennink WE, Ponec M & Bouwstra JA. (2008). Temperature-induced changes in structural and physicochemical properties of vernix caseosa. J. Invest. Dermatol. , 128, 292-9. PMID: 17671513 DOI.
  11. Yoshio H, Lagercrantz H, Gudmundsson GH & Agerberth B. (2004). First line of defense in early human life. Semin. Perinatol. , 28, 304-11. PMID: 15565791
  12. 12.0 12.1 Clayton E, Doupé DP, Klein AM, Winton DJ, Simons BD & Jones PH. (2007). A single type of progenitor cell maintains normal epidermis. Nature , 446, 185-9. PMID: 17330052 DOI.
  13. Larue L, de Vuyst F & Delmas V. (2013). Modeling melanoblast development. Cell. Mol. Life Sci. , 70, 1067-79. PMID: 22915137 DOI.
  14. Greenhill ER, Rocco A, Vibert L, Nikaido M & Kelsh RN. (2011). An iterative genetic and dynamical modelling approach identifies novel features of the gene regulatory network underlying melanocyte development. PLoS Genet. , 7, e1002265. PMID: 21909283 DOI.
  15. Greenwold MJ, Bao W, Jarvis ED, Hu H, Li C, Gilbert MT, Zhang G & Sawyer RH. (2014). Dynamic evolution of the alpha (α) and beta (β) keratins has accompanied integument diversification and the adaptation of birds into novel lifestyles. BMC Evol. Biol. , 14, 249. PMID: 25496280 DOI.
  16. Fuchs E. (2009). Elaine Fuchs: A love for science that's more than skin deep. Interviewed by Ben Short. J. Cell Biol. , 187, 938-9. PMID: 20038675 DOI.
  17. <pubmed>1769328</pubmed>
  18. Collin M & Milne P. (2016). Langerhans cell origin and regulation. Curr. Opin. Hematol. , 23, 28-35. PMID: 26554892 DOI.
  19. Yasmin N, Bauer T, Modak M, Wagner K, Schuster C, Köffel R, Seyerl M, Stöckl J, Elbe-Bürger A, Graf D & Strobl H. (2013). Identification of bone morphogenetic protein 7 (BMP7) as an instructive factor for human epidermal Langerhans cell differentiation. J. Exp. Med. , 210, 2597-610. PMID: 24190429 DOI.
  20. Taira K, Narisawa Y, Nakafusa J, Misago N & Tanaka T. (2002). Spatial relationship between Merkel cells and Langerhans cells in human hair follicles. J. Dermatol. Sci. , 30, 195-204. PMID: 12443842
  21. Jolles S. (2002). Paul Langerhans. J. Clin. Pathol. , 55, 243. PMID: 11919207
  22. Wu P, Ng CS, Yan J, Lai YC, Chen CK, Lai YT, Wu SM, Chen JJ, Luo W, Widelitz RB, Li WH & Chuong CM. (2015). Topographical mapping of α- and β-keratins on developing chicken skin integuments: Functional interaction and evolutionary perspectives. Proc. Natl. Acad. Sci. U.S.A. , 112, E6770-9. PMID: 26598683 DOI.


Reviews

Visscher MO, Adam R, Brink S & Odio M. (2015). Newborn infant skin: physiology, development, and care. Clin. Dermatol. , 33, 271-80. PMID: 25889127 DOI.

Singh G & Archana G. (2008). Unraveling the mystery of vernix caseosa. Indian J Dermatol , 53, 54-60. PMID: 19881987 DOI.


Articles

Peltonen S, Raiko L & Peltonen J. (2010). Desmosomes in developing human epidermis. Dermatol Res Pract , 2010, 698761. PMID: 20592759 DOI.

Malminen M, Peltonen S, Koivunen J & Peltonen J. (2002). Functional expression of NF1 tumor suppressor protein: association with keratin intermediate filaments during the early development of human epidermis. BMC Dermatol. , 2, 10. PMID: 12199909

Dale BA, Holbrook KA, Kimball JR, Hoff M & Sun TT. (1985). Expression of epidermal keratins and filaggrin during human fetal skin development. J. Cell Biol. , 101, 1257-69. PMID: 2413039

Search PubMed

Search Pubmed: Integumentary Development | Skin Development | Hair Development | Tooth Development | Vernix Caseosa

NCBI - Policies and Guidelines | PubMed | Help:Reference Tutorial

Additional Images

Category:Integumentary

Historic

Historic Disclaimer - information about historic embryology pages 
Mark Hill.jpg
Pages where the terms "Historic" (textbooks, papers, people, recommendations) appear on this site, and sections within pages where this disclaimer appears, indicate that the content and scientific understanding are specific to the time of publication. This means that while some scientific descriptions are still accurate, the terminology and interpretation of the developmental mechanisms reflect the understanding at the time of original publication and those of the preceding periods, these terms, interpretations and recommendations may not reflect our current scientific understanding.     (More? Embryology History | Historic Embryology Papers)

Terms

Integumentary Terms  
Integumentary Development
  • acrosyringium - coiled intra-epidermal region of the eccrine gland sweat duct.
  • apocrine gland - (sweat gland) proteinaceous secretion associated with hair (axilla, areola, genital and anal regions). Additional glands associated with eyelashes are called the glands of Moll (ciliary gland). (More? image - apocrine secretion)
  • arrector pili muscle - bundle of smooth muscle associated with hair follicle, inserts into the papillary layer of the dermis and attaches to the dermal sheath of the hair follicle. (More? image - arrector pili muscle)
  • Blaschko lines - (lines of Blaschko) may represent pathways of epidermal cell migration and proliferation during development. Specific type of lupus erythematosus shows this distinctive pattern. Named after Alfred Blaschko a German dermatologist who first described the feature in 1901. (More? PMID 21396561 | Historic Terminology)
  • bulb - the hair follicle enlargement located at its deepest end, dividing cells form the hair and the root sheath.
  • café-aut-lait macule - (French, cafe-au-lait = coffee with milk; birthmark) describes the characteristic colour of the skin hyperpigmented patch present at birth (congenital) or appearing in early infancy. Common single feature, multiple are associated with various genetic syndromes including Neurofibromatosis type 1 and 2.
  • corneocytes - terminally differentiated keratinocytes forming the stratum corneum.
  • cutis - alternative term for the epidermis and the dermis layers of the skin.
  • dermal papillae - interdigitation of the dermis with the epidermis.
  • dermatoglyphic patterns - (Greek, derma = "skin", glyph = "carving") fingers, palms, toes, and soles skin patterns.
  • dermis - connective tissue middle layer of the skin, consists of two sublayers (papillary and reticular layers) that do not have a clear boundary. Embryologically derived from the somite dermatome.
  • dermomyotome - Early embryonic dorsolateral half of the somite that will later divide to form both the dermatome and myotome. The dermatome will contribute the dermis and hypodermis of the skin. The myotome will contribute the skeletal muscle of muscoloskeletal system. Development sequence: mesoderm to paraxial mesoderm to somite to "dermomyotome" then dermatome and myotome. (More? Somitogenesis | Musculoskeletal System Development | Integumentary System Development)
  • eccrine gland (Greek, ekkrinein = "secrete"; merocrine glands) sweat glands unique to some primates and used in humans for thermoregulation. Adult body has 2 to 4 million sweat glands with concentrations (700/cm) on the palms of the hand, soles of the feet and forehead. Secretion is timulated by sympathetic nervous system, post-ganglionic cholinergic branch, and other stimuli
  • ephilis - (pl., ephilides; freckle) Clinical term describing a "freckle", that is a small brown or tan mark on the skin. These inherited features result from a copy of variant Melanocortin 1 Receptor (MC1R) gene and are common on fair skinned Celtic children. Melanocytes produce locally more melanin, this can also increase following exposure to ultraviolet radiation in sunlight. (More? Integumentary | Neural Crest | OMIM MC1R)
  • epidermis - Histological term describing the external cellular epithelial layer of the integumentary (skin) covering the entire body. This surface layer of keratinocytes is ectoderm in origin, while the underlying connective tissue layers of dermis and hypodermis are mesoderm in origin. (More? Integumentary Development)
  • epidermal differentiation complex - (EDC) human chromosome (1q2) containing linked 63 genes within four gene families that are molecular markers for stratified epidermis terminal differentiation.
  • epidermal growth factor receptor - expressed on cells in the epidermis basal layer, signaling stimulates both epidermal growth and wound healing and also mediates an inhibition of differentiation.
  • glabrous skin - skin without hair, refers to the palms of hands and soles of feet.
  • hair - (pili) in humans consists of vellus and terminal hairs.
  • holocrine - form of gland secretion where the secretory cells eventually lyse (rupture) and are lost. On the skin, these cells release sebum consisting mainly of lipid. (More? image - holocrine secretion)
  • hypodermis - (subcutis, subcutaneous adipose) a connective tissue ilower layer of the skin that binds it to underlying structures.
  • integumentary - term for the skin and its appendages.
  • involucrin - protein that binds loricrin in the development of the cell envelope protecting corneocytes in the skin.
  • keratinocyte - the main cell type forming the layers of the epidermis, derived from ectoderm.
  • keratohyalin granule - found in the stratum granulosum consist of profilaggrin and loricrin.
  • Langerhans cell - skin dendritic cell (antigen presenting cell) develops initially from fetal liver monocytes and yolk sac macrophages. May, depending on the immunological setting, elicit immunity or tolerance. Named after Paul Langerhans.
  • Langer's lines - (skin cleavage lines, cleavage lines) Clinical term for the orientation of reticular dermis collagen bundles causing tensions on skin and subcutaneous tissues. Lines tend to be horizontal in the trunk and neck, and longitudinal in the skin and limbs. (More? PMID 15791423)
  • Meissner corpuscle - sensory structure acting as a rapidly-adapting mechanoreceptor mainly in the dermal papillae of (digital) skin. (More?Touch
  • melanin - (Greek, melanos = black) The pigment produced by melanocytes that provides photoprotection, preventing cellular DNA damage, and colouring of the basal epithelial cells that absorb the pigment.
  • melanodermia - hyperpigmentation causing abnormal darkening (brown/black) of the skin due to excess melanin or by metallic substances. See also the abnormality ceruloderma (blue/grey). (More? PMID 23522626)
  • melanocyte - (Greek, melanos = black) A pigmented cell, neural crest in origin, differentiating from melanoblasts located in the skin and other tissues that produces melanin. The melanocytes within the integument (skin) transfer melanin to keratinocytes to give skin colour and to the hair follicle to give hair colour. Melanocytes are also located within "non-cutaneous" tissues in the eye (for eye colour), harderian gland and inner ear. This is the cell type that proliferates in the cancer melanoma. (More? Neural Crest Development | Integumentary System Development)
  • Merkel cell - An epidermal-derived cell in touch-sensitive area of the epidermis and mediate mechanotransduction in the skin. Previously thought to be neural crest in origin, but recently shown to arise from the embryonic epithelium. The cells are named after Friedrich Sigmund Merkel, a German anatomist who was the first to describe them in 1875. (More? Touch | Lecture - Integumentary Development | PMID 19786578 | PMID 3782861)
  • merocrine gland - (sweat gland, eccrine sweat) simple tubular glands located at the border between the dermis and hypodermis. These glands regulate the body temperature. (More? image - merocrine secretion)
  • nestin - (neuroectodermal stem cell marker) an intermediate filament protein (type VI) expressed in stem cells and transiently during development, and in cells within hair follicles, sebaceous and sweat glands.
  • papillary layer - dermis sublayer that appears less dense and contains more cells lying close beneath the epidermis. (More? image)
  • pilosebaceous unit - term used to describe a hair and its associated structures: hair follicle, arrector pili muscle and sebaceous gland.
  • rete ridge - the extensions of the epidermis into the dermis. These epidermal surface thickenings extend downward between underlying connective tissue dermal papillae. This is also the site of initial eccrine gland differentiation.
  • reticular layer - dermis sublayer that appears denser and contains fewer cells with thick collagen bundles lying beneath the papillary layer parallel to the skin surface. (More? image)
  • root sheath - cell layers that surround the hair.
  • sebaceous gland - holocrine gland associated with both the hair follicle and hairless parts of the skin (lips, cheek oral surface and external genitalia). Embedded in the dermis and are sites of infections (acne).
  • simple - consisting of a single cell layer.
  • terminal hairs - hair seen in obviously hairy parts of the body.
  • thick skin - refers to the skin histology found on the palms of the hand and soles of the feet, does not contain hair. Note that this is used as a histological term not a measurement of overall skin thickness.
  • thin skin - refers to the skin histology found on skin on all body regions, other than palms and soles (thick skin).
  • vellus hairs - fine short hairs only lightly pigmented covering the body.
  • vernix caseosa - (vernix, Latin, "caseosa" = cheese-like) a fetal protective coating consisting of sebum, skin cells and lanugo hair. Forming late in fetal development in a rostra-caudal sequence associated with epithelium differentiation.
  • Voigt's lines - clinical term to describe the skin borders between areas of innervations by specific peripheral cutaneous nerves. (More? Sensory Touch | Historic Terminology)
Other Terms Lists  
Terms Lists: ART | Birth | Bone | Cardiovascular | Cell Division | Endocrine | Gastrointestinal | Genital | Genetic | Head | Hearing | Heart | Immune | Integumentary | Neonatal | Neural | Oocyte | Palate | Placenta | Radiation | Renal | Respiratory | Spermatozoa | Statistics | Tooth | Ultrasound | Vision | Historic | Drugs | Glossary

External Links

External Links Notice - The dynamic nature of the internet may mean that some of these listed links may no longer function. If the link no longer works search the web with the link text or name. Links to any external commercial sites are provided for information purposes only and should never be considered an endorsement. UNSW Embryology is provided as an educational resource with no clinical information or commercial affiliation.


Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, March 19) Embryology Integumentary System Development. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Integumentary_System_Development

What Links Here?
© Dr Mark Hill 2024, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G