Talk:Sheep Development

From Embryology
Revision as of 15:26, 12 December 2010 by S8600021 (talk | contribs) (→‎2010)
About Discussion Pages  
Mark Hill.jpg
On this website the Discussion Tab or "talk pages" for a topic has been used for several purposes:
  1. References - recent and historic that relates to the topic
  2. Additional topic information - currently prepared in draft format
  3. Links - to related webpages
  4. Topic page - an edit history as used on other Wiki sites
  5. Lecture/Practical - student feedback
  6. Student Projects - online project discussions.
Links: Pubmed Most Recent | Reference Tutorial | Journal Searches

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, May 2) Embryology Sheep Development. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Talk:Sheep_Development

2010

Development of morulae from the oocytes of cultured sheep preantral follicles

Arunakumari G, Shanmugasundaram N, Rao VH. Theriogenology. 2010 Sep 15;74(5):884-94. Epub 2010 Jul 7. PMID: 20615540

2009

LH pulse frequency and the emergence and growth of ovarian antral follicular waves in the ewe during the luteal phase of the estrous cycle

Seekallu SV, Toosi BM, Rawlings NC. Reprod Biol Endocrinol. 2009 Jul 28;7:78. PMID: 19638235

2004

Implantation mechanisms: insights from the sheep

Reproduction. 2004 Dec;128(6):657-68.

Spencer TE, Johnson GA, Bazer FW, Burghardt RC.

Center for Animal Biotechnology and Genomics, Animal Science and Veterinary Anatomy and Public Health, Texas A&M University, College Station, Texas 77843, USA. tspencer@tamu.edu Abstract Implantation in all mammals involves shedding of the zona pellucida, followed by orientation, apposition, attachment and adhesion of the blastocyst to the endometrium. Endometrial invasion does not occur in domestic ruminants; thus, definitive implantation is achieved by adhesion of the mononuclear trophoblast cells to the endometrial lumenal epithelium (LE) and formation of syncytia by the fusion of trophoblast binucleate cells with the LE. This review highlights new information on mechanisms regulating the implantation cascade in sheep. The embryo enters the uterus on day 4 at the morula stage of development and then develops into a blastocyst by day 6. The blastocyst sheds the zona pellucida (day 8), elongates to a filamentous form (days 11-16), and adheres to the endometrial LE (day 16). Between days 14 and 16, the binucleate cells begin to differentiate in the trophoblast and subsequently migrate and fuse with the endometrial LE to form syncytia. Continuous exposure of the endometrium to progesterone in early pregnancy downregulates the progesterone receptors in the epithelia, a process which is associated with loss of the cell-surface mucin MUC1 and induction of several secreted adhesion proteins. Recurrent early pregnancy loss in the uterine gland knockout ewe model indicates that secretions of the endometrial epithelia have a physiologic role in blastocyst elongation and implantation. A number of endometrial proteins have been identified as potential regulators of blastocyst development and implantation in sheep, including glycosylated cell adhesion molecule 1 (GlyCAM-1), galectin-15, integrins and osteopontin. The epithelial derived secreted adhesion proteins (GlyCAM-1, galectin-15 and osteopontin) are expressed in a dynamic temporal and spatial manner and regulated by progesterone and/or interferon tau, which is the pregnancy recognition signal produced by the trophoblast during blastocyst elongation. The noninvasive and protracted nature of implantation in domestic animals provides valuable opportunities to investigate fundamental processes of implantation that are shared among all mammals. Understanding of the cellular and molecular signals that regulate uterine receptivity and implantation can be used to diagnose and identify causes of recurrent pregnancy loss and to improve pregnancy outcome in domestic animals and humans.

PMID: 15579583

2002

Biology of progesterone action during pregnancy recognition and maintenance of pregnancy

Front Biosci. 2002 Sep 1;7:d1879-98.

Spencer TE, Bazer FW.

Center for Animal Biotechnology and Genomics and Department of Animal Science, Texas AM University, College Station, Texas 77843-2471, USA. Abstract Progesterone is the hormone of pregnancy and unequivocally required in all mammals for maternal support of conceptus (embryo/fetus and associated membranes) survival and development. The actions of progesterone are mediated by the progesterone receptor (PR). However, the endometrial lumenal (LE) and glandular epithelia (GE) of a number of species exhibit a loss of PR expression prior to the stages of uterine receptivity and implantation. In sheep, PR expression becomes undetectable in the endometrial LE after Day 11 and then in the GE after Day 13. Loss of PR in the GE appears to be required for onset of differentiated functions in terms of production of secretory proteins, such as uterine milk proteins (UTMP) and osteopontin (OPN). Therefore, the actions of progesterone on endometrial epithelia during most of gestation appear to be mediated by the endometrial stroma that remains PR-positive throughout pregnancy. Stromal cells produce several growth factors, such as hepatocyte growth factor (HGF) and fibroblast growth factors-7 and -10 (FGF-7, FGF-10), that have receptors expressed specifically in the endometrial epithelia. These factors may be progesterone-responsive and mediate epithelial-mesenchymal interactions that are crucial for support of pregnancy. Studies of the uterine gland knockout (UGKO) ewe indicate that uterine glands and, by default, their secretions are required for peri-implantation conceptus survival and growth. A complex servomechanism, involving hormones from the ovary and conceptus as well as endogenous betaretroviruses expressed in the endometrial LE and GE, is proposed to regulate endometrial gland differentiation and function during gestation. At estrus, estrogen increases PR expression in the endometrial epithelia. High levels of endogenous Jaagsiekte sheep retroviruses (enJSRVs) are expressed in the PR-positive endometrial LE and GE in response to increasing progesterone and are hypothesized to stimulate trophoblast proliferation and production of interferon (IFN) tau. IFN tau, the pregnancy recognition hormone produced by the trophoblast from Days 10 to 21, acts in a paracrine manner on the PR-negative endometrial LE and superficial GE to inhibit transcription of estrogen receptor alpha (ER) and oxytocin receptor (OTR) genes. These actions of IFN tau maintain progesterone production from the corpus luteum by abrogating release of luteolytic pulses of prostaglandin F2 alpha (PGF) from the endometrial epithelium. The antiluteolytic effects of IFN tau are dependent on progesterone. Progesterone stimulation over 8-10 days suppresses expression of the PR gene in the LE and then GE. Loss of the PR in the LE is concomitant with decreases in mucin glycoprotein one (MUC-1), an inhibitor of blastocyst implantation. As the conceptus begins implantation on Day 15, the binucleate trophectodermal cells then differentiate and produce placental lactogen (PL), a member of the prolactin (PRL) and growth hormone (GH) family. PL stimulates GE proliferation and production of secretory proteins, such as UTMP and OPN. Interestingly, the effects of PL on the GE appear to require the absence of PR and prior exposure to IFN tau. During mid-pregnancy, the mononuclear trophectodermal cells produce GH that can also act on a progestinized uterus to stimulate GE hypertrophy and secretory function. The actions of this servomechanism are proposed to stimulate GE hyperplasia from Days 20 to 50 and then GE hypertrophy and maximal differentiated function after Day 50 when the majority of fetal growth and development occurs during gestation.

PMID: 12161340

Fetal sheep development on ultrasound and magnetic resonance imaging

http://www.ncbi.nlm.nih.gov/pubmed/16912495

Fetal sheep development on ultrasound and magnetic resonance imaging: a standard for the in utero assessment of models of congenital abnormalities.