Talk:Neural - Meninges Development

From Embryology
Revision as of 20:18, 27 March 2018 by Z8600021 (talk | contribs)
About Discussion Pages  
Mark Hill.jpg
On this website the Discussion Tab or "talk pages" for a topic has been used for several purposes:
  1. References - recent and historic that relates to the topic
  2. Additional topic information - currently prepared in draft format
  3. Links - to related webpages
  4. Topic page - an edit history as used on other Wiki sites
  5. Lecture/Practical - student feedback
  6. Student Projects - online project discussions.
Links: Pubmed Most Recent | Reference Tutorial | Journal Searches

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, May 8) Embryology Neural - Meninges Development. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Talk:Neural_-_Meninges_Development


10 Most Recent Papers

Note - This sub-heading shows an automated computer PubMed search using the listed sub-heading term. References appear in this list based upon the date of the actual page viewing. Therefore the list of references do not reflect any editorial selection of material based on content or relevance. In comparison, references listed on the content page and discussion page (under the publication year sub-headings) do include editorial selection based upon relevance and availability. (More? Pubmed Most Recent)


Meninges Embryology

<pubmed limit=5>Meninges Embryology</pubmed>


Meninges Development

<pubmed limit=5>Meninges Development</pubmed>

Search PMC Images: Meninges Development


2018

Postnatal development of lymphatic vasculature in the brain meninges

Dev Dyn. 2018 Mar 1. doi: 10.1002/dvdy.24624. [Epub ahead of print]

Izen RM1, Yamazaki T1, Nishinaka-Arai Y1,2, Hong YK3, Mukouyama YS1.

Abstract BACKGROUND: Traditionally, the central nervous system (CNS) has been viewed as an immune-privileged environment with no lymphatic vessels. This view was partially overturned by the discovery of lymphatic vessels in the dural membrane that surrounds the brain, in contact with the interior surface of the skull. We here examine the distribution and developmental timing of these lymphatic vessels. RESULTS: Using the Prox1-GFP BAC transgenic reporter and immunostaining with antibodies to lymphatic markers LYVE-1, Prox1, and Podoplanin, we have carried out whole-mount imaging of dural lymphatic vasculature at postnatal stages. We have found that between birth and postnatal day (P) 13, lymphatic vessels extend alongside dural blood vessels from the side of the skull toward the midline. Between P13 and P20, lymphatic vessels along the transverse sinuses reach the superior sagittal sinus (SSS) and extend along the SSS toward the olfactory bulb. CONCLUSIONS: Compared with the embryonic developmental timing of lymphatic vessels in other tissues, e.g. skin, dural lymphatic vessel development is dramatically delayed. This study provides useful anatomical data for continuing investigations of the fundamental mechanisms that underlie dural lymphatic vessel development. Developmental Dynamics, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

KEYWORDS: Prox1; dura mater; lymphatic vessels; meningeal lymphatics PMID: 29493038 DOI: 10.1002/dvdy.24624

2014

Intermediate filament protein nestin is expressed in developing meninges

Bratisl Lek Listy. 2014;115(11):718-22.

Yay A, Ozdamar S, Canoz O, Baran M, Tucer B, Sonmez MF.

Abstract

BACKGROUND: Nestin is a type VI intermediate filament protein known as a marker for progenitor cells that can be mostly found in tissues during the embryonic and fetal periods. In our study, we aimed to determine the expression of nestin in meninges covering the brain tissue at different developmental stages and in the new born. METHODS: In this study 10 human fetuses in different development stages between developmental weeks 9-34 and a newborn brain tissue were used. Fetuses in paraffin section were stained with H+E and nestin immunohistochemical staining protocol was performed. RESULTS: In this study, in the human meninges intense nestin expression was detected as early as in the 9th week of development. Intensity of this expression gradually decreased in later stages of development and nestin expression still persisted in a small population of newborn meningeal cells. CONCLUSION: In the present study, nestin positive cells gradually diminished in the developing and maturing meninges during the fetal period. This probably depends on initiation of a decrease in nestin expression and replacement with other tissue-specific intermediate filaments while the differentiation process continues. These differences can make significant contributions to the investigation and diagnosis of various pathological disorders (Tab. 1, Fig. 3, Ref. 36). PMID 25428542


2013

Hand in glove: brain and skull in development and dysmorphogenesis

Acta Neuropathol. 2013 Apr;125(4):469-89. doi: 10.1007/s00401-013-1104-y. Epub 2013 Mar 23.

Richtsmeier JT, Flaherty K. Source Department of Anthropology, Pennsylvania State University, 409 Carpenter Building, University Park, Pennsylvania, 16802, USA, jta10@psu.edu.

Abstract

The brain originates relatively early in development from differentiated ectoderm that forms a hollow tube and takes on an exceedingly complex shape with development. The skull is made up of individual bony elements that form from neural crest- and mesoderm-derived mesenchyme that unite to provide support and protection for soft tissues and spaces of the head. The meninges provide a protective and permeable membrane between brain and skull. Across evolutionary and developmental time, dynamic changes in brain and skull shape track one another so that their integration is evidenced in two structures that fit soundly regardless of changes in biomechanical and physiologic functions. Evidence for this tight correspondence is also seen in diseases of the craniofacial complex that are often classified as diseases of the skull (e.g., craniosynostosis) or diseases of the brain (e.g., holoprosencephaly) even when both tissues are affected. Our review suggests a model that links brain and skull morphogenesis through coordinated integration of signaling pathways (e.g., FGF, TGFβ, Wnt) via processes that are not currently understood, perhaps involving the meninges. Differences in the earliest signaling of biological structure establish divergent designs that will be enhanced during morphogenesis. Signaling systems that pattern the developing brain are also active in patterning required for growth and assembly of the skull and some members of these signaling families have been indicated as causal for craniofacial diseases. Because cells of early brain and skull are sensitive to similar signaling families, variation in the strength or timing of signals or shifts in patterning boundaries that affect one system (neural or skull) could also affect the other system and appropriate co-adjustments in development would be made. Interactions of these signaling systems and of the tissues that they pattern are fundamental to the consistent but labile functional and structural association of brain and skull conserved over evolutionary time obvious in the study of development and disease.

PMID 23525521