Talk:Musculoskeletal System - Skull Development

From Embryology
Revision as of 11:57, 21 December 2010 by S8600021 (talk | contribs)
About Discussion Pages  
Mark Hill.jpg
On this website the Discussion Tab or "talk pages" for a topic has been used for several purposes:
  1. References - recent and historic that relates to the topic
  2. Additional topic information - currently prepared in draft format
  3. Links - to related webpages
  4. Topic page - an edit history as used on other Wiki sites
  5. Lecture/Practical - student feedback
  6. Student Projects - online project discussions.
Links: Pubmed Most Recent | Reference Tutorial | Journal Searches

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, June 23) Embryology Musculoskeletal System - Skull Development. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Talk:Musculoskeletal_System_-_Skull_Development

The BMP antagonist noggin regulates cranial suture fusion STEPHEN M. WARREN, LISA J. BRUNET, RICHARD M. HARLAND, ARIS N.,ECONOMIDES & MICHAEL T. LONGAKER

"During skull development, the cranial connective tissue framework undergoes intramembranous ossification to form skull bones (calvaria). As the calvarial bones advance to envelop the brain, fibrous sutures form between the calvarial plates. Expansion of the brain is coupled with calvarial growth through a series of tissue interactions within the cranial suture complex. Craniosynostosis, or premature cranial suture fusion, results in an abnormal skull shape, blindness and mental retardation. Recent studies have demonstrated that gain-of-function mutations in fibroblast growth factor receptors ( fgfr ) are associated with syndromic forms of craniosynostosis. Noggin, an antagonist of bone morphogenetic proteins (BMPs), is required for embryonic neural tube, somites and skeleton patterning. Here we show that noggin is expressed postnatally in the suture mesenchyme of patent, but not fusing, cranial sutures, and that noggin expression is suppressed by FGF2 and syndromic fgfr signalling. Since noggin misexpression prevents cranial suture fusion in vitro and in vivo , we suggest that syndromic fgfr -mediated craniosynostoses may be the result of inappropriate downregulation of noggin expression."