Talk:Musculoskeletal System - Skull Development

From Embryology
Revision as of 15:24, 18 April 2013 by Z8600021 (talk | contribs)
About Discussion Pages  
Mark Hill.jpg
On this website the Discussion Tab or "talk pages" for a topic has been used for several purposes:
  1. References - recent and historic that relates to the topic
  2. Additional topic information - currently prepared in draft format
  3. Links - to related webpages
  4. Topic page - an edit history as used on other Wiki sites
  5. Lecture/Practical - student feedback
  6. Student Projects - online project discussions.
Links: Pubmed Most Recent | Reference Tutorial | Journal Searches

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, June 16) Embryology Musculoskeletal System - Skull Development. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Talk:Musculoskeletal_System_-_Skull_Development

2012

The BMP Ligand Gdf6 Prevents Differentiation of Coronal Suture Mesenchyme in Early Cranial Development

PLoS One. 2012;7(5):e36789. Epub 2012 May 31.

Clendenning DE, Mortlock DP. Source Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America.

Abstract

Growth Differentiation Factor-6 (Gdf6) is a member of the Bone Morphogenetic Protein (BMP) family of secreted signaling molecules. Previous studies have shown that Gdf6 plays a role in formation of a diverse subset of skeletal joints. In mice, loss of Gdf6 results in fusion of the coronal suture, the intramembranous joint that separates the frontal and parietal bones. Although the role of GDFs in the development of cartilaginous limb joints has been studied, limb joints are developmentally quite distinct from cranial sutures and how Gdf6 controls suture formation has remained unclear. In this study we show that coronal suture fusion in the Gdf6-/- mouse is due to accelerated differentiation of suture mesenchyme, prior to the onset of calvarial ossification. Gdf6 is expressed in the mouse frontal bone primordia from embryonic day (E) 10.5 through 12.5. In the Gdf6-/- embryo, the coronal suture fuses prematurely and concurrently with the initiation of osteogenesis in the cranial bones. Alkaline phosphatase (ALP) activity and Runx2 expression assays both showed that the suture width is reduced in Gdf6+/- embryos and is completely absent in Gdf6-/- embryos by E12.5. ALP activity is also increased in the suture mesenchyme of Gdf6+/- embryos compared to wild-type. This suggests Gdf6 delays differentiation of the mesenchyme occupying the suture, prior to the onset of ossification. Therefore, although BMPs are known to promote bone formation, Gdf6 plays an inhibitory role to prevent the osteogenic differentiation of the coronal suture mesenchyme.

PMID 22693558

The human calvaria: a review of embryology, anatomy, pathology, and molecular development

Childs Nerv Syst. 2012 Jan;28(1):23-31. Epub 2011 Nov 27.

Tubbs RS, Bosmia AN, Cohen-Gadol AA. Source Department of Neurosurgery, Children's Hospital, Ambulatory Care Center, 1600 7th Avenue South, Birmingham, AL 35294, USA. shane.tubbs@chsys.org

Abstract

INTRODUCTION: The human skull is a complex structure that deserves continued study. Few studies have directed their attention to the development, pathology, and molecular formation of the human calvaria. MATERIALS AND METHODS: A review of the medical literature using standard search engines was performed to locate studies regarding the human calvaria. RESULTS: The formation of the human calvaria is a complex interaction between bony and meningeal elements. Derailment of these interactions may result in deformation of this part of the skull. CONCLUSIONS: Knowledge of the anatomy, formation, and pathology of the human calvaria will be of use to the clinician that treats skull diseases. With an increased understanding of genetic and molecular biology, treatment paradigms for calvarial issues may change.

PMID 22120469

Principles of cranial base ossification in humans and rats

Acta Otolaryngol. 2012 Apr;132(4):349-54. doi: 10.3109/00016489.2011.642814. Epub 2011 Dec 27.

Santaolalla-Montoya F, Martinez-Ibargüen A, Sánchez-Fernández JM, Sánchez-del-Rey A. Source Otorhinolaryngology Department, School of Medicine, University of the Basque Country, Spain. Francisco.santaolalla@ehu.es Abstract CONCLUSIONS: 1. The principle of bilateral symmetry depends on the chordal cartilage that is the keystone in cranial base ossification in rats and humans, due to its anatomical situation and for the production of the chordin protein that regulates the bone morphogenetic protein BMP-7. 2. In humans and in rats, foramen lacerum closure follows a line of intramembranous ossification that depends on BMP-7, regulated by the first branchial pouch. 3. The cranial base ossification patterns and centres are similar in humans and in rats, except in the otic capsule, palate and the lateral pterygoid plate. 4. The neural crest may induce cranial ossification through the cranial nerves. OBJECTIVES: To study the patterns of cranial base ossification in humans and in rats, considering the chordal cartilage, and the otic, nasal and orbit capsules, as well as the participation of the branchial arches and pouches. METHODS: This was a light microscopy study of human fetal specimens obtained from spontaneous abortions with the following crown-rump-lengths (crl) 45, 74, 90, 134, 145 and 270 mm, and a 1-day-old neonate (360 mm crl), who had died of sudden death syndrome. We also examined Webster albino rat embryos of 16, 18 and 20 days of gestation and a postnatal series of rats 8 h and 1, 3, 4, 6, 7, 10 and 13 days old, as well as adult animals. RESULTS: In the 45 mm human fetus, the chordal cartilage with the nasal, otic and orbit capsules initiates cranial base ossification. Foramen lacerum closure begins in the 16-day-old rat embryo, following a line of membranous ossification between the external pterygoid process and the lateral alisphenoidal wing at ovalis foramen level. This is not a timing symmetrical process, which may persist until the 10th postnatal day in the rat. In the human fetus of 74 mm, the foramen lacerum space is closed by a membranous fusion ossification between the chordal cartilage and otic capsule, finishing at the 270 mm specimen. Endochondral ossification of the human otic capsule first appeared in the 145 mm (18 weeks) fetal specimen with four ossifying centres. The rat otic cartilaginous capsule showed rapid endochondral ossification, in the third and fourth postnatal day specimens.

PMID 22201370

http://informahealthcare.com/doi/abs/10.3109/00016489.2011.642814

2011

Morphological and morphometric study on sphenoid and basioccipital ossification in normal human fetuses

Congenit Anom (Kyoto). 2011 Sep;51(3):138-48. doi: 10.1111/j.1741-4520.2011.00322.x.

Zhang Q, Wang H, Udagawa J, Otani H. Source Department of Developmental Biology, Shimane University, Izumo, Japan.

Abstract

Congenital anomalies of the brain frequently correspond to cranial base anomalies, and a detailed description of morphology and individual variations in the developing cranial base is of clinical importance for diagnosing anomalies. Development of the human cranial base has been studied using dissection, computed tomography, and magnetic resonance imaging, each of which has advantages and disadvantages. We here examined development of the normal human fetal cranial base using bone staining, which allows for direct observation of the ossification centers and precise three-dimensional measurements. We observed alizarin red S-stained sphenoids and basiocciputs of 22 normal formalin-fixed human fetuses with crown-rump lengths (CRL) of 115-175 mm. We defined landmarks and measured sphenoids and basiocciputs using a fine caliper. Growth patterns of these ossifying bones were obtained, and we found similarities and differences among the growth patterns. We also observed individual variations in the ossification patterns, in particular, single- or double-ossification center patterns for the basisphenoid. The orbitosphenoid and basisphenoid widths and ratios of the widths to the total cranial base width were significantly different between the two pattern groups, whereas the other measurements and their ratios to the total cranial base did not differ between the groups. We measured the cerebrum and pons in different sets of 22 human fetuses with CRLs of 105-186 mm and found close relationships with the development of corresponding parts of the cranial base. The results contribute to the quantitative and qualitative information about the growth patterns and variations during human fetal cranial base development. © 2011 The Authors. Congenital Anomalies © 2011 Japanese Teratology Society.

PMID 21848997

http://onlinelibrary.wiley.com/doi/10.1111/j.1741-4520.2011.00322.x/abstract;jsessionid=D215C1671CDF1C62716033D0D5E688F1.d04t04


Modeling of the human fetal skull base growth: interest in new volumetrics morphometric tools

Early Hum Dev. 2011 Apr;87(4):239-45. doi: 10.1016/j.earlhumdev.2011.01.022.

Herlin C, Largey A, deMatteï C, Daurès JP, Bigorre M, Captier G. Source Craniofacial and Plastic Pediatric Surgery Unit, Lapeyronie Hospital, Montpellier, 371 Av Doyen Gaston Giraud, 34 295 Montpellier, France. christian.herl@free.fr Abstract BACKGROUND: Research on the skull base is important to improve our understanding of the growth and development of the modern human skull. To study the growth of the human fetal skull base, we assessed a new geometric morphometric tool, which does not require the use of bone landmarks. MATERIAL AND METHODS: Seven dry fetal skulls of an estimated gestational age ranging from 15 to 27 weeks were studied. Each skull was scanned using a standard CT scan and the image sets were post-processed to extract volumetric data by segmenting the skull base into predefined regions of interest. Our method of analysis was based on the inertial properties of reconstructed volumes. RESULTS: The volumetric study of the skulls highlighted an asynchronous speed of growth between the pre and post-chordal parts of the skull base whose preferential growth are in the vertical and horizontal planes. We also found different speeds of growth in the pre-chordal part depending on the type of ossification (endochondral or membranous). The overall shape of the skull base bones were preserved during the period studied except for the petrous pyramids. The expansion of bone parts was isometric with reference to a central point that was located at the intrasphenoidal synchondrosis. Finally, the analysis of the basicranial angles corroborated data from the literature in the sagittal plane and allowed their study also in the frontal and horizontal planes. CONCLUSIONS: This three-dimensional volumetric approach is a necessary complement to studies that are performed in the sagittal plane and are based on the identification of landmarks. The geometric morphometric method used by authors permitted to obtain original informations on the growth kinetics and bone tridimensional movements of the human fetal skull base.

Copyright © 2011 Elsevier Ltd. All rights reserved.

PMID 21300487

2010

Design and construction of a brain phantom to simulate neonatal MR images

Comput Med Imaging Graph. 2010 Dec 10. [Epub ahead of print]

Kazemi K, Moghaddam HA, Grebe R, Gondry-Jouet C, Wallois F.

Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, Iran; GRAMFC EA 4293, Faculty of Medicine, University of Picardie Jules Verne, 80036 Amiens, France. Abstract This paper presents the design and construction of a 3D digital neonatal neurocranial phantom and its application for the simulation of brain magnetic resonance (MR) images. Commonly used digital brain phantoms (e.g. BrainWeb) are based on the adult brain. With the growing interest in computer-aided methods for neonatal MR image processing, there is a growing demand a digital phantom and brain MR image simulator especially for the neonatal brains. This is due to the pronounced differences between adult and neonatal brains not only in terms of size but also, more importantly, in terms of geometrical proportions and the need to subdivide white matter into two different tissue types in neonates. Therefore the neonatal brain phantom created in the here presented work consists of 9 different tissue types: skin, fat, muscle, skull, dura mater, gray matter, myelinated white matter, nonmyelinated white matter and cerebrospinal fluid. Each voxel has a vector consisting of 9 components, one for each of these nine tissue types. This digital phantom can be used to map simulated magnetic resonance signal intensities resulting in simulated MR images of the newborns head. These images with controlled degradation of the image data present a representative, reproducible data set ideal for development and evaluation of neonatal MRI analysis methods, e.g. segmentation and registration algorithms.

Copyright © 2010 Elsevier Ltd. All rights reserved. PMID 21146956


Fibroblast growth factor receptor signaling crosstalk in skeletogenesis

Sci Signal. 2010 Nov 2;3(146):re9.

Miraoui H, Marie PJ.

Laboratory of Osteoblast Biology and Pathology, INSERM UMR606 and University Paris Diderot, Paris 75475, Cedex 10, France. Abstract Fibroblast growth factors (FGFs) play important roles in the control of embryonic and postnatal skeletal development by activating signaling through FGF receptors (FGFRs). Germline gain-of-function mutations in FGFR constitutively activate FGFR signaling, causing chondrocyte and osteoblast dysfunctions that result in skeletal dysplasias. Crosstalk between the FGFR pathway and other signaling cascades controls skeletal precursor cell differentiation. Genetic analyses revealed that the interplay of WNT and FGFR1 determines the fate and differentiation of mesenchymal stem cells during mouse craniofacial skeletogenesis. Additionally, interactions between FGFR signaling and other receptor tyrosine kinase networks, such as those mediated by the epidermal growth factor receptor and platelet-derived growth factor receptor α, were associated with excessive osteoblast differentiation and bone formation in the human skeletal dysplasia called craniosynostosis, which is a disorder of skull development. We review the roles of FGFR signaling and its crosstalk with other pathways in controlling skeletal cell fate and discuss how this crosstalk could be pharmacologically targeted to correct the abnormal cell phenotype in skeletal dysplasias caused by aberrant FGFR signaling.

PMID 21045207 The BMP antagonist noggin regulates cranial suture fusion STEPHEN M. WARREN, LISA J. BRUNET, RICHARD M. HARLAND, ARIS N.,ECONOMIDES & MICHAEL T. LONGAKER

"During skull development, the cranial connective tissue framework undergoes intramembranous ossification to form skull bones (calvaria). As the calvarial bones advance to envelop the brain, fibrous sutures form between the calvarial plates. Expansion of the brain is coupled with calvarial growth through a series of tissue interactions within the cranial suture complex. Craniosynostosis, or premature cranial suture fusion, results in an abnormal skull shape, blindness and mental retardation. Recent studies have demonstrated that gain-of-function mutations in fibroblast growth factor receptors ( fgfr ) are associated with syndromic forms of craniosynostosis. Noggin, an antagonist of bone morphogenetic proteins (BMPs), is required for embryonic neural tube, somites and skeleton patterning. Here we show that noggin is expressed postnatally in the suture mesenchyme of patent, but not fusing, cranial sutures, and that noggin expression is suppressed by FGF2 and syndromic fgfr signalling. Since noggin misexpression prevents cranial suture fusion in vitro and in vivo , we suggest that syndromic fgfr -mediated craniosynostoses may be the result of inappropriate downregulation of noggin expression."

2009

Pediatric craniofacial surgery for craniosynostosis: Our experience and current concepts: Part -1

J Pediatr Neurosci. 2009 Jul;4(2):86-99. doi: 10.4103/1817-1745.57327.

Anantheswar YN, Venkataramana NK. Source Department of Plastic Surgery, Manipal Hospital, Kengeri, Bangalore, India.

Abstract

Craniostenosis is a disease characterized by untimely fusion of cranial sutures resulting in a variety of craniofacial deformities and neurological sequelae due to alteration in cranial volume and restriction of brain growth. This involves vault sutures predominantly, but cranial base is not immune. Association with a variety of syndromes makes the management decision complex. These children need careful evaluation by multiple specialists to have strategic treatment options. Parental counseling is an important and integral part of the treatment. Recent advancements in the surgical techniques and concept of team approach have significantly enhanced the safety and outcome of these children. We had an opportunity of treating 57 children with craniostenosis in the last 15 years at our craniofacial service. Out of them, 40 were nonsyndromic and 17 were syndromic variety. We describe our successful results along with individualized operative technical modifications adopted based on the current understanding of the disease.

PMID 21887189

Pediatric craniofacial surgery for craniosynostosis: Our experience and current concepts: Parts -2

J Pediatr Neurosci. 2009 Jul;4(2):100-7. doi: 10.4103/1817-1745.57328.

Anantheswar YN, Venkataramana NK. Source Department of Plastic Surgery, Manipal Hospital, Kengeri, Bangalore, India.

Abstract

Craniostenosis associated with other syndromes poses several clinical and management challenges. Involvement of cranial, facial, and systemic defects with an underlying genetic abnormality needs comprehensive understanding, to plan appropriate and safe treatment modalities. Often, these children require staging involving several/multiple surgical procedures. Unsuccessful outcomes and retrusion of the deformities are common in comparison to the nonsyndromic variety. We present our experience in treating 17 children with syndromic craniostenosis with successful outcomes and minimal morbidity. We also describe the principles behind the staging. Technology adoption has improved the results as well as reduced the complications to an acceptable minimum.

PMID 21887190

2008

Development and tissue origins of the mammalian cranial base

Dev Biol. 2008 Oct 1;322(1):121-32. doi: 10.1016/j.ydbio.2008.07.016. Epub 2008 Jul 22.

McBratney-Owen B, Iseki S, Bamforth SD, Olsen BR, Morriss-Kay GM. Source Harvard School of Dental Medicine, Department of Developmental Biology, 190 Longwood Avenue, Boston, MA, 02115, USA. bmcbratneyowen@post.harvard.edu Abstract The vertebrate cranial base is a complex structure composed of bone, cartilage and other connective tissues underlying the brain; it is intimately connected with development of the face and cranial vault. Despite its central importance in craniofacial development, morphogenesis and tissue origins of the cranial base have not been studied in detail in the mouse, an important model organism. We describe here the location and time of appearance of the cartilages of the chondrocranium. We also examine the tissue origins of the mouse cranial base using a neural crest cell lineage cell marker, Wnt1-Cre/R26R, and a mesoderm lineage cell marker, Mesp1-Cre/R26R. The chondrocranium develops between E11 and E16 in the mouse, beginning with development of the caudal (occipital) chondrocranium, followed by chondrogenesis rostrally to form the nasal capsule, and finally fusion of these two parts via the midline central stem and the lateral struts of the vault cartilages. X-Gal staining of transgenic mice from E8.0 to 10 days post-natal showed that neural crest cells contribute to all of the cartilages that form the ethmoid, presphenoid, and basisphenoid bones with the exception of the hypochiasmatic cartilages. The basioccipital bone and non-squamous parts of the temporal bones are mesoderm derived. Therefore the prechordal head is mostly composed of neural crest-derived tissues, as predicted by the New Head Hypothesis. However, the anterior location of the mesoderm-derived hypochiasmatic cartilages, which are closely linked with the extra-ocular muscles, suggests that some tissues associated with the visual apparatus may have evolved independently of the rest of the "New Head".

PMID 18680740

Three-dimensional ontogenetic shape changes in the human cranium during the fetal period

J Anat. 2008 May;212(5):627-35. doi: 10.1111/j.1469-7580.2008.00884.x.

Morimoto N, Ogihara N, Katayama K, Shiota K. Source Laboratory of Physical Anthropology, Graduate School of Science, Kyoto University, Japan. morimoto@aim.uzh.ch <morimoto@aim.uzh.ch> Abstract Knowledge of the pattern of human craniofacial development in the fetal period is important for understanding the mechanisms underlying the emergence of variations in human craniofacial morphology. However, the precise character of the prenatal ontogenetic development of the human cranium has yet to be fully established. This study investigates ontogenetic changes in cranial shape in the fetal period, as exhibited in Japanese fetal specimens housed at Kyoto University. A total of 31 human fetal specimens aged from approximately 8 to 42 weeks of gestation underwent helical computed tomographic scanning, and 68 landmarks were digitized on the internal and external surfaces of the extracted crania. Ontogenetic shape change was then analyzed cross-sectionally and three-dimensionally using a geometric morphometric technique. The results of the present study are generally consistent with previously reported findings. It was found that during the prenatal ontogenetic process, the growth rate of the length of the cranium is greater than that of the width and height, and the growth rate of the length of the posterior cranial base is smaller than that of the anterior cranial base. Furthermore, it was observed that the change in shape of the human viscerocranium is smaller than that of the neurocranium during the fetal period, and that concurrently the basicranium extends by approximately 8 degrees due to the relative elevation of the basilar and lateral parts of occipital bone. These specific growth-related changes are the opposite of those reported for the postnatal period. Our findings therefore indicate that the allometric pattern of the human cranium is not a simple continuous transformation, but changes drastically from before to after birth.

PMID 18430090

2000

MR, CT, and plain film imaging of the developing skull base in fetal specimens

AJNR Am J Neuroradiol. 2000 Oct;21(9):1699-706.

Nemzek WR, Brodie HA, Hecht ST, Chong BW, Babcook CJ, Seibert JA. Source Department of Radiology, University of California, Davis Medical Center, Sacramento 95817, USA. Abstract BACKGROUND AND PURPOSE: The developing fetal skull base has previously been studied via dissection and low-resolution CT. Most of the central skull base develops from endochondral ossification through an intermediary chondrocranium. We traced the development of the normal fetal skull base by using plain radiography, MR imaging, and CT. METHODS: Twenty-nine formalin-fixed fetal specimens ranging from 9 to 24 weeks' gestational age were examined with mammographic plain radiography, CT, and MR imaging. Skull base development and ossification were assessed. RESULTS: The postsphenoid cartilages enclose the pituitary and fuse to form the basisphenoid, from which the sella turcica and the posterior body of the sphenoid bone originate. The presphenoid cartilages will form the anterior body of the sphenoid bone. Portions of the presphenoid cartilage give rise to the mesethmoid cartilage, which forms the central portion of the anterior skull base. Ossification begins in the occipital bone (12 weeks) and progresses anteriorly. The postsphenoid (14 weeks) and then the presphenoid portion (17 weeks) of the sphenoid bone ossify. Ossification is seen laterally (16 weeks) in the orbitosphenoid, which contributes to the lesser wing of the sphenoid, and the alisphenoid (15 weeks), which forms the greater wing. CONCLUSION: MR imaging can show early progressive ossification of the cartilaginous skull base and its relation to intracranial structures. The study of fetal developmental anatomy may lead to a better understanding of abnormalities of the skull base. PMID 11039353