Talk:Immune System Development: Difference between revisions

From Embryology
No edit summary
No edit summary
Line 1: Line 1:
{{Talk Page}}
{{Talk Page}}
Note much of the current immune research refers to the postnatal or adult system.


==2011==
==2011==

Revision as of 17:58, 22 February 2012

About Discussion Pages  
Mark Hill.jpg
On this website the Discussion Tab or "talk pages" for a topic has been used for several purposes:
  1. References - recent and historic that relates to the topic
  2. Additional topic information - currently prepared in draft format
  3. Links - to related webpages
  4. Topic page - an edit history as used on other Wiki sites
  5. Lecture/Practical - student feedback
  6. Student Projects - online project discussions.
Links: Pubmed Most Recent | Reference Tutorial | Journal Searches

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, June 1) Embryology Immune System Development. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Talk:Immune_System_Development

Note much of the current immune research refers to the postnatal or adult system.

2011

2010

Fetal and adult hematopoietic stem cells give rise to distinct T cell lineages in humans

Science. 2010 Dec 17;330(6011):1695-9.

Mold JE, Venkatasubrahmanyam S, Burt TD, Michaëlsson J, Rivera JM, Galkina SA, Weinberg K, Stoddart CA, McCune JM.

Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, CA 94143-1234, USA. Erratum in:

Science. 2011 Feb 4;331(6017):534. Comment in:

Science. 2010 Dec 17;330(6011):1635-6.

Abstract

Although the mammalian immune system is generally thought to develop in a linear fashion, findings in avian and murine species argue instead for the developmentally ordered appearance (or "layering") of distinct hematopoietic stem cells (HSCs) that give rise to distinct lymphocyte lineages at different stages of development. Here we provide evidence of an analogous layered immune system in humans. Our results suggest that fetal and adult T cells are distinct populations that arise from different populations of HSCs that are present at different stages of development. We also provide evidence that the fetal T cell lineage is biased toward immune tolerance. These observations offer a mechanistic explanation for the tolerogenic properties of the developing fetus and for variable degrees of immune responsiveness at birth.

PMID: 21164017 http://www.ncbi.nlm.nih.gov/pubmed/21164017

Platelets: covert regulators of lymphatic development

Arterioscler Thromb Vasc Biol. 2010 Dec;30(12):2368-71. Epub 2010 Nov 11.

Bertozzi CC, Hess PR, Kahn ML. Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia Pa 19104, USA.

Abstract

The field of platelet biology has rapidly expanded beyond the classical role of platelets in preventing blood loss and orchestrating clot formation. Despite the lack of transcriptional ability of these anuclear cell fragments, platelet function is now thought to encompass such diverse contexts as tissue repair, immune activation, primary tumor formation, and metastasis. Recent studies from multiple groups have turned the spotlight on an exciting new role for platelets in the formation of lymphatic vessels during embryonic development. Genetic experiments demonstrate that podoplanin, a transmembrane protein expressed on lymphatic endothelial cells, engages the platelet C-type lectin-like receptor 2 (CLEC-2) when exposed to blood, leading to SYK-SLP-76-dependent platelet activation. When components of this pathway are disrupted, aberrant vascular connections form, resulting in blood-lymphatic mixing. Furthermore, platelet-null embryos manifest identical blood-lymphatic mixing. The identification of platelets as the critical cell type mediating blood-lymphatic vascular separation raises new questions in our understanding of lymphatic development and platelet biology.

PMID: 21071706 http://www.ncbi.nlm.nih.gov/pubmed/21071706