Talk:Jacob's syndrome: Difference between revisions

From Embryology
mNo edit summary
mNo edit summary
Line 2: Line 2:


==2019==
==2019==
===Changes in the cohort composition of turner syndrome and severe non-diagnosis of Klinefelter, 47,XXX and 47,XYY syndrome: a nationwide cohort study===
Orphanet J Rare Dis. 2019 Jan 14;14(1):16. doi: 10.1186/s13023-018-0976-2.
Berglund A1,2, Viuff MH3,4, Skakkebæk A3,5, Chang S6,7, Stochholm K3,8, Gravholt CH3,4.
Author information
Abstract
BACKGROUND:
Knowledge on the prevalence of sex chromosome abnormalities (SCAs) is limited, and delayed diagnosis or non-diagnosis of SCAs are a continuous concern. We aimed to investigate change over time in incidence, prevalence and age at diagnosis among Turner syndrome (TS), Klinefelter syndrome (KS), Triple X syndrome (Triple X) and Double Y syndrome (Double Y).
METHODS:
This study is a nationwide cohort study in a public health care system. The Danish Cytogenetic Central Registry (DCCR) holds information on all karyotypes performed in Denmark since 1961. We identified all individuals in the DCCR with a relevant SCA during 1961-2014; TS: n = 1156; KS: n = 1235; Triple X: n = 197; and Double Y: n = 287. From Statistics Denmark, which holds an extensive collection of data on the Danish population, complete data concerning dates of death and migrations in and out of Denmark were retrieved for all individuals.
RESULTS:
The prevalence among newborns was as follows: TS: 59 per 100,000 females; KS: 57 per 100,000 males; Triple X: 11 per 100,000 females; and Double Y: 18 per 100,000 males. Compared with the expected number among newborns, all TS, 38% of KS, 13% of Triple X, and 18% of Double Y did eventually receive a diagnosis. The incidence of TS with other karyotypes than 45,X (P < 0.0001), KS (P = 0.02), and Double Y (P = 0.03) increased during the study period whereas the incidence of 45,X TS decreased (P = 0.0006). The incidence of Triple X was stable (P = 0.22).
CONCLUSIONS:
The prevalence of TS is higher than previously identified, and the karyotypic composition of the TS population is changing. Non-diagnosis is extensive among KS, Triple X and Double Y, whereas all TS seem to become diagnosed. The diagnostic activity has increased among TS with other karyotypes than 45,X as well as among KS and Double Y.
KEYWORDS:
Age at diagnosis; Double Y syndrome; Incidence; Klinefelter syndrome; Prevalence; Triple X syndrome; Turner syndrome
PMID: 30642344 PMCID: PMC6332849 DOI: 10.1186/s13023-018-0976-2


===Auditory evoked response delays in children with 47,XYY syndrome===
===Auditory evoked response delays in children with 47,XYY syndrome===

Revision as of 11:24, 8 May 2019

About Discussion Pages  
Mark Hill.jpg
On this website the Discussion Tab or "talk pages" for a topic has been used for several purposes:
  1. References - recent and historic that relates to the topic
  2. Additional topic information - currently prepared in draft format
  3. Links - to related webpages
  4. Topic page - an edit history as used on other Wiki sites
  5. Lecture/Practical - student feedback
  6. Student Projects - online project discussions.
Links: Pubmed Most Recent | Reference Tutorial | Journal Searches

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, May 23) Embryology Jacob's syndrome. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Talk:Jacob%27s_syndrome

2019

Changes in the cohort composition of turner syndrome and severe non-diagnosis of Klinefelter, 47,XXX and 47,XYY syndrome: a nationwide cohort study

Orphanet J Rare Dis. 2019 Jan 14;14(1):16. doi: 10.1186/s13023-018-0976-2.

Berglund A1,2, Viuff MH3,4, Skakkebæk A3,5, Chang S6,7, Stochholm K3,8, Gravholt CH3,4. Author information Abstract BACKGROUND: Knowledge on the prevalence of sex chromosome abnormalities (SCAs) is limited, and delayed diagnosis or non-diagnosis of SCAs are a continuous concern. We aimed to investigate change over time in incidence, prevalence and age at diagnosis among Turner syndrome (TS), Klinefelter syndrome (KS), Triple X syndrome (Triple X) and Double Y syndrome (Double Y).

METHODS: This study is a nationwide cohort study in a public health care system. The Danish Cytogenetic Central Registry (DCCR) holds information on all karyotypes performed in Denmark since 1961. We identified all individuals in the DCCR with a relevant SCA during 1961-2014; TS: n = 1156; KS: n = 1235; Triple X: n = 197; and Double Y: n = 287. From Statistics Denmark, which holds an extensive collection of data on the Danish population, complete data concerning dates of death and migrations in and out of Denmark were retrieved for all individuals.

RESULTS: The prevalence among newborns was as follows: TS: 59 per 100,000 females; KS: 57 per 100,000 males; Triple X: 11 per 100,000 females; and Double Y: 18 per 100,000 males. Compared with the expected number among newborns, all TS, 38% of KS, 13% of Triple X, and 18% of Double Y did eventually receive a diagnosis. The incidence of TS with other karyotypes than 45,X (P < 0.0001), KS (P = 0.02), and Double Y (P = 0.03) increased during the study period whereas the incidence of 45,X TS decreased (P = 0.0006). The incidence of Triple X was stable (P = 0.22).

CONCLUSIONS: The prevalence of TS is higher than previously identified, and the karyotypic composition of the TS population is changing. Non-diagnosis is extensive among KS, Triple X and Double Y, whereas all TS seem to become diagnosed. The diagnostic activity has increased among TS with other karyotypes than 45,X as well as among KS and Double Y.

KEYWORDS: Age at diagnosis; Double Y syndrome; Incidence; Klinefelter syndrome; Prevalence; Triple X syndrome; Turner syndrome PMID: 30642344 PMCID: PMC6332849 DOI: 10.1186/s13023-018-0976-2

Auditory evoked response delays in children with 47,XYY syndrome

Neuroreport. 2019 May 1;30(7):504-509. doi: 10.1097/WNR.0000000000001233.

Bloy L1, Ku M1, Edgar JC1, Miller JS2, Blaskey L1,2, Ross J3,4, Roberts TPL1. Author information Abstract 47,XYY syndrome (XYY) is a male sex chromosome disorder where individuals have an X chromosome and two copies of the Y chromosome. XYY is associated with a physical phenotype and carries increased risk of neurodevelopmental disorders such as autism spectrum disorder (ASD). Latencies of auditory evoked responses measured by magnetoencephalography have shown atypical prolongations in several neuropsychiatric and genetic disorders; specifically, delayed auditory responses have been observed in ASD. In this study, we investigated the associations of genotype and clinical phenotype with auditory processing. Whole cortex magnetoencephalography recorded during a passive auditory paradigm (500 Hz tones) was used to assess the auditory evoked response in three groups of male children: idiopathic ASD, typically developing, and XYY boys. Response waveforms were computed for left and right auditory cortex and latencies of the ∼50 ms (M50) and ∼100 ms (M100) components were determined. M50 latencies were significantly delayed compared with typically developing controls in children with ASD in the right hemisphere only, and in children with XYY in the left hemisphere only, irrespective of whether they met diagnostic criteria for ASD. Findings on the later M100 component trended in the same directions but did not attain significance, due to increased variance. Replicating previous findings, decreased M50 and M100 latencies with age were observed bilaterally. Overall, while XYY shares an electrophysiological phenotype (delayed evoked response latency) with idiopathic ASD, the hemispheric differences warrant further investigation.

PMID: 30896674 DOI: 10.1097/WNR.0000000000001233