2009 Lecture 22: Difference between revisions

From Embryology
Line 35: Line 35:


[http://embryology.med.unsw.edu.au/Defect/page10.htm Fetal Origins Hypothesis]
[http://embryology.med.unsw.edu.au/Defect/page10.htm Fetal Origins Hypothesis]
Maternal derived abnormalities relate to lifestyle, environment and nutrition and while some of these directly effect embryonic development. There is also growing evidence that some effects are more subtle and relate to later life health events. This theory is based on the early statistical analysis carried out by Barker of low birth weight data collected in the early 1900's in the south east of England which he then compared with these same babies later health outcomes. The theory was therefore originally called the "Barker Hypothesis" and has recently been renamed as "fetal origins" or "programming".


{{Template:2009ANAT2341}}
{{Template:2009ANAT2341}}

Revision as of 14:25, 11 October 2009

Fetal Development

Introduction

Size comparison embryo-fetus actual.jpg

The fetal period (9-36 weeks) is about continued differentiation of organs and tissues, most importantly this period is about growth both in size and weight.

The long Fetal period (4x the embryonic period) is a time of extensive growth in size and mass as well as ongoing differentiation of organ systems established in the embryonic period and do so at different times. For example, the brain continues to grow and develop extensively during this period (and postnatally), the respiratory system differentiates (and completes only just before birth), the urogenital system further differentiates between male/female, endocrine and gastrointestinal tract begins to function.

Fetal length and weight changes

Textbooks

  • Human Embryology (3rd ed.) Larson Ch15: Fetal development and the Fetus as Patient p481-499
  • The Developing Human: Clinically Oriented Embryology (6th ed.) Moore and Persaud
  • Color Atlas of Clinical Embryology (2nd ed.) Moore, Persaud and Shiota Ch3: 9th to 38th weeks of human development p50-68

Fetal Size

Fetal size change.jpg Fetal length change is greatest in the middle period (second trimester).

Fetal length change.jpg

Fetal Weight

Fetal weight change.jpg

Fetal Neural

Fetal Cardiovascular

Fetal Genital

Abnormalities

Critical Periods

Fetal Origins Hypothesis

Fetal Origins Hypothesis


Maternal derived abnormalities relate to lifestyle, environment and nutrition and while some of these directly effect embryonic development. There is also growing evidence that some effects are more subtle and relate to later life health events. This theory is based on the early statistical analysis carried out by Barker of low birth weight data collected in the early 1900's in the south east of England which he then compared with these same babies later health outcomes. The theory was therefore originally called the "Barker Hypothesis" and has recently been renamed as "fetal origins" or "programming".

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Course Content 2009

Embryology Introduction | Cell Division/Fertilization | Cell Division/Fertilization | Week 1&2 Development | Week 3 Development | Lab 2 | Mesoderm Development | Ectoderm, Early Neural, Neural Crest | Lab 3 | Early Vascular Development | Placenta | Lab 4 | Endoderm, Early Gastrointestinal | Respiratory Development | Lab 5 | Head Development | Neural Crest Development | Lab 6 | Musculoskeletal Development | Limb Development | Lab 7 | Kidney | Genital | Lab 8 | Sensory - Ear | Integumentary | Lab 9 | Sensory - Eye | Endocrine | Lab 10 | Late Vascular Development | Fetal | Lab 11 | Birth, Postnatal | Revision | Lab 12 | Lecture Audio | Course Timetable


Cite this page: Hill, M.A. (2024, June 25) Embryology 2009 Lecture 22. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/2009_Lecture_22

What Links Here?
© Dr Mark Hill 2024, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G