Talk:X chromosome

From Embryology
Revision as of 08:55, 5 June 2015 by Z8600021 (talk | contribs) (Created page with "{{Talk Page}} ==1997== ===Male-driven evolution of DNA sequences in birds=== Nat Genet. 1997 Oct;17(2):182-4. Ellegren H1, Fridolfsson AK. Abstract Assuming that new mut...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
About Discussion Pages  
Mark Hill.jpg
On this website the Discussion Tab or "talk pages" for a topic has been used for several purposes:
  1. References - recent and historic that relates to the topic
  2. Additional topic information - currently prepared in draft format
  3. Links - to related webpages
  4. Topic page - an edit history as used on other Wiki sites
  5. Lecture/Practical - student feedback
  6. Student Projects - online project discussions.
Links: Pubmed Most Recent | Reference Tutorial | Journal Searches

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2021, September 19) Embryology X chromosome. Retrieved from


Male-driven evolution of DNA sequences in birds

Nat Genet. 1997 Oct;17(2):182-4.

Ellegren H1, Fridolfsson AK.


Assuming that new mutations arise mainly during DNA replication, sequence evolution in mammals has been seen as 'male driven' (ref. 1) because of the many more cell divisions in spermatogenesis than in oogenesis. Molecular support for this idea has been obtained from the observation of higher substitution rates in genes on the Y than on the X chromosome of primates and rodents, which are species with male heterogamety, but has not been confirmed by the reciprocal analysis of organisms with female heterogamety. The recent suggestion that an intrinsic reduction in the X-chromosome mutation rate may be confounded with male effects in previous comparisons, and the paradoxical finding of low levels of polymorphism on the primate Y chromosome indicate that the idea of male-biased mutation rate needs to be re-examined. We have analysed the molecular evolution of the gene CHD, which is present on the Z and W sex chromosomes of birds. The substitution rate at synonymous positions, as well as in intron DNA, was considerably higher on the Z chromosome than on the female-specific W chromosome, with an estimated male-to-female bias in mutation rate (alpha m) of 3.9-6.5. Thus, evolution appears to be male driven in birds--a situation that supports a neutral model of molecular evolution. PMID 9326938