Talk:Uterine Gland: Difference between revisions

From Embryology
mNo edit summary
mNo edit summary
Line 14: Line 14:
PMID 24348153
PMID 24348153


==2011==
===Developmental biology of uterine glands===
Biol Reprod. 2001 Nov;65(5):1311-23.
Gray CA, Bartol FF, Tarleton BJ, Wiley AA, Johnson GA, Bazer FW, Spencer TE.
Author information
Abstract
All mammalian uteri contain endometrial glands that synthesize or transport and secrete substances essential for survival and development of the conceptus (embryo/fetus and associated extraembryonic membranes). In rodents, uterine secretory products of the endometrial glands are unequivocally required for establishment of uterine receptivity and conceptus implantation. Analyses of the ovine uterine gland knockout model support a primary role for endometrial glands and, by default, their secretions in peri-implantation conceptus survival and development. Uterine adenogenesis is the process whereby endometrial glands develop. In humans, this process begins in the fetus, continues postnatally, and is completed during puberty. In contrast, endometrial adenogenesis is primarily a postnatal event in sheep, pigs, and rodents. Typically, endometrial adenogenesis involves differentiation and budding of glandular epithelium from luminal epithelium, followed by invagination and extensive tubular coiling and branching morphogenesis throughout the uterine stroma to the myometrium. This process requires site-specific alterations in cell proliferation and extracellular matrix (ECM) remodeling as well as paracrine cell-cell and cell-ECM interactions that support the actions of specific hormones and growth factors. Studies of uterine development in neonatal ungulates implicate prolactin, estradiol-17 beta, and their receptors in mechanisms regulating endometrial adenogenesis. These same hormones appear to regulate endometrial gland morphogenesis in menstruating primates and humans during reconstruction of the functionalis from the basalis endometrium after menses. In sheep and pigs, extensive endometrial gland hyperplasia and hypertrophy occur during gestation, presumably to provide increasing histotrophic support for conceptus growth and development. In the rabbit, sheep, and pig, a servomechanism is proposed to regulate endometrial gland development and differentiated function during pregnancy that involves sequential actions of ovarian steroid hormones, pregnancy recognition signals, and lactogenic hormones from the pituitary or placenta. That disruption of uterine development during critical organizational periods can alter the functional capacity and embryotrophic potential of the adult uterus reinforces the importance of understanding the developmental biology of uterine glands. Unexplained high rates of peri-implantation embryonic loss in humans and livestock may reflect defects in endometrial gland morphogenesis due to genetic errors, epigenetic influences of endocrine disruptors, and pathological lesions.
PMID 11673245


===WNTs in the neonatal mouse uterus: potential regulation of endometrial gland development===
===WNTs in the neonatal mouse uterus: potential regulation of endometrial gland development===

Revision as of 11:49, 7 February 2014

About Discussion Pages  
Mark Hill.jpg
On this website the Discussion Tab or "talk pages" for a topic has been used for several purposes:
  1. References - recent and historic that relates to the topic
  2. Additional topic information - currently prepared in draft format
  3. Links - to related webpages
  4. Topic page - an edit history as used on other Wiki sites
  5. Lecture/Practical - student feedback
  6. Student Projects - online project discussions.
Links: Pubmed Most Recent | Reference Tutorial | Journal Searches

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, May 20) Embryology Uterine Gland. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Talk:Uterine_Gland

2013

Chondrocyte differentiation of human endometrial gland-derived MSCs in layered cell sheets

ScientificWorldJournal. 2013 Nov 18;2013:359109. doi: 10.1155/2013/359109. eCollection 2013.

Sekine W1, Haraguchi Y1, Shimizu T1, Yamato M1, Umezawa A2, Okano T1. Author information

Abstract Recently, regenerative medicine using engineered three-dimensional (3D) tissues has been focused. In the fields of cell therapy and regenerative medicine, mesenchymal stem cells (MSCs) are attractive autologous cell sources. While, in bioengineered tissues, a 3D environment may affect the differentiation of the stem cells, little is known regarding the effect of 3D environment on cellular differentiation. In this study, MSC differentiation in in vitro 3D tissue models was assessed by human endometrial gland-derived MSCs (hEMSCs) and cell sheet technology. hEMSC sheets were layered into cell-dense 3D tissues and were cultured on porous membranes. The tissue sections revealed that chondrocyte-like cells were found within the multilayered cell sheets even at 24 h after layering. Immunostainings of chondrospecific markers were positive within those cell sheet constructs. In addition, sulfated glycosaminoglycan accumulation within the tissues increased in proportion to the numbers of layered cell sheets. The findings suggested that a high cell density and hypoxic environment in 3D tissues by layering cell sheets might accelerate a rapid differentiation of hEMSCs into chondrocytes without the help of chondro-differentiation reagents. These tissue models using cell sheets would give new insights to stem cell differentiation in 3D environment and contribute to the future application of stem cells to cartilage regenerative therapy. PMID 24348153

2011

Developmental biology of uterine glands

Biol Reprod. 2001 Nov;65(5):1311-23.

Gray CA, Bartol FF, Tarleton BJ, Wiley AA, Johnson GA, Bazer FW, Spencer TE. Author information

Abstract

All mammalian uteri contain endometrial glands that synthesize or transport and secrete substances essential for survival and development of the conceptus (embryo/fetus and associated extraembryonic membranes). In rodents, uterine secretory products of the endometrial glands are unequivocally required for establishment of uterine receptivity and conceptus implantation. Analyses of the ovine uterine gland knockout model support a primary role for endometrial glands and, by default, their secretions in peri-implantation conceptus survival and development. Uterine adenogenesis is the process whereby endometrial glands develop. In humans, this process begins in the fetus, continues postnatally, and is completed during puberty. In contrast, endometrial adenogenesis is primarily a postnatal event in sheep, pigs, and rodents. Typically, endometrial adenogenesis involves differentiation and budding of glandular epithelium from luminal epithelium, followed by invagination and extensive tubular coiling and branching morphogenesis throughout the uterine stroma to the myometrium. This process requires site-specific alterations in cell proliferation and extracellular matrix (ECM) remodeling as well as paracrine cell-cell and cell-ECM interactions that support the actions of specific hormones and growth factors. Studies of uterine development in neonatal ungulates implicate prolactin, estradiol-17 beta, and their receptors in mechanisms regulating endometrial adenogenesis. These same hormones appear to regulate endometrial gland morphogenesis in menstruating primates and humans during reconstruction of the functionalis from the basalis endometrium after menses. In sheep and pigs, extensive endometrial gland hyperplasia and hypertrophy occur during gestation, presumably to provide increasing histotrophic support for conceptus growth and development. In the rabbit, sheep, and pig, a servomechanism is proposed to regulate endometrial gland development and differentiated function during pregnancy that involves sequential actions of ovarian steroid hormones, pregnancy recognition signals, and lactogenic hormones from the pituitary or placenta. That disruption of uterine development during critical organizational periods can alter the functional capacity and embryotrophic potential of the adult uterus reinforces the importance of understanding the developmental biology of uterine glands. Unexplained high rates of peri-implantation embryonic loss in humans and livestock may reflect defects in endometrial gland morphogenesis due to genetic errors, epigenetic influences of endocrine disruptors, and pathological lesions.

PMID 11673245

WNTs in the neonatal mouse uterus: potential regulation of endometrial gland development

Biol Reprod. 2011 Feb;84(2):308-19. doi: 10.1095/biolreprod.110.088161. Epub 2010 Oct 20.

Hayashi K, Yoshioka S, Reardon SN, Rucker EB 3rd, Spencer TE, DeMayo FJ, Lydon JP, MacLean JA 2nd. Author information

Abstract The WNTs are secreted proteins that control essential developmental processes, such as embryonic patterning, cell growth, migration, and differentiation. In mice, three members of the Wnt gene family (Wnt4, Wnt5a, and Wnt7a) have been studied extensively in the female reproductive tract. The present study determined effects of postnatal day and exposure to diethylstilbestrol (DES) on Wnt and Fzd gene expression in the mouse uterus as well as the biological role of Wnt11 in postnatal mouse uterine development and function. Wnt4, Wnt5a, Wnt7a, Wnt7b, Wnt11, Wnt16, Fzd6, and Fzd10 were detected by in situ hybridization in the neonatal mouse uterus. In situ hybridization analyses revealed that Wnt4, Wnt5a, and Wnt16 were localized in the endometrial stroma, whereas Wnt7a, Wnt7b, Wnt11, Fzd6, and Fzd10 were in the uterine epithelia of neonatal mice. Exposure of mice to estrogen or estrogen receptor agonists during critical development periods inhibits endometrial adenogenesis. In the present study, DES-induced disruption of endometrial gland development was associated with reduction or suppression of Wnt4, Wnt5a, Wnt7a, Wnt11, Wnt16, and Fzd10. Ablation of Wnt11, an epithelial-expressed, DES-regulated gene, in the neonatal uterus did not affect endometrial adenogenesis or expression of other Wnt genes. Interestingly, Wnt11-deleted uteri had more endometrial glands on Postnatal Day 10. Although CTNNB1 expression was not affected by ablation of Wnt11, Vangl2 was inhibited in the uteri of Wnt11(d/d) mice. These results support the idea that a number of different Wnt genes are potential regulators for uterine morphogenesis; however, Wnt11 does not have a direct effect on uterine development. PMID: 20962251