Talk:Neural System Development: Difference between revisions

From Embryology
Line 38: Line 38:
|-bgcolor="CEDFF2"   
|-bgcolor="CEDFF2"   
|  valign=top| '''Neural Tube'''
|  valign=top| '''Neural Tube'''
|  valign=top| '''Primary'''<br>'''Vesicles'''<br>
|  valign=top| '''Primary Vesicles'''
|  valign=top| '''Secondary Vesicles'''
|  valign=top| '''Secondary Vesicles'''
|  valign=top| '''Adult Structures'''
|  valign=top| '''Adult Structures'''

Revision as of 10:51, 4 November 2010

Neural Development Journal - http://www.neuraldevelopment.com/articles/browse.asp

2010

Developmental changes in cerebral grey and white matter volume from infancy to adulthood.

Int J Dev Neurosci. 2010 Oct;28(6):481-9. Epub 2010 Jun 30. Groeschel S, Vollmer B, King MD, Connelly A.

Radiology and Physics Unit, UCL Institute of Child Health, London, UK. s.groeschel@gmx.org Abstract

In order to quantify human brain development in vivo, high resolution magnetic resonance images of 158 normal subjects from infancy to young adulthood were studied (age range 3 months-30 years, 71 males, 87 females). Data were analysed using algorithms based on voxel-based morphometry (VBM) (an objective whole brain processing technique) to generate global volume measures of whole brain, grey matter (GM) and white matter (GM). Gender-specific development of WM and GM volumes is characterised using a piecewise polynomial growth curve model to account for the non-linear nature of human brain development, implemented using Markov chain Monte Carlo simulation. The statistical method employed in this study proved to be successful and robust in the characterisation of brain development. The resulting growth curve parameter estimates lead to the following observations: total brain volume is demonstrated to undergo an initial rapid spurt. The total GM volume peaks during childhood and decreases thereafter, whereas total WM volume increases up to young adulthood. Relative to brain size, GM decreases and WM increases markedly over this age range in a non-linear manner, resulting in an increasing WM-to-GM ratio over much of the observed age range. In addition, significant gender differences are found. In general, brain volume and total white and grey matter volume are larger in males than in females, with a time-dependent difference over the age range studied. Over part of the observed age range females tend to have more GM volume relative to brain size and lower WM-to-GM ratio than males. The presented findings should be taken into account when investigating physiological and pathological changes during brain development.

http://www.ncbi.nlm.nih.gov/pubmed/20600789

2009

Heterogeneity in subcortical brain development: A structural magnetic resonance imaging study of brain maturation from 8 to 30 years.

J Neurosci. 2009 Sep 23;29(38):11772-82.

Ostby Y, Tamnes CK, Fjell AM, Westlye LT, Due-Tønnessen P, Walhovd KB.

Center for the Study of Human Cognition, Department of Psychology, University of Oslo, Norway. ylva.ostby@psykologi.uio.no Abstract Brain development during late childhood and adolescence is characterized by decreases in gray matter (GM) and increases in white matter (WM) and ventricular volume. The dynamic nature of development across different structures is, however, not well understood, and the present magnetic resonance imaging study took advantage of a whole-brain segmentation approach to describe the developmental trajectories of 16 neuroanatomical volumes in the same sample of children, adolescents, and young adults (n = 171; range, 8-30 years). The cerebral cortex, cerebral WM, caudate, putamen, pallidum, accumbens area, hippocampus, amygdala, thalamus, brainstem, cerebellar GM, cerebellar WM, lateral ventricles, inferior lateral ventricles, third ventricle, and fourth ventricle were studied. The cerebral cortex was further analyzed in terms of lobar thickness and surface area. The results revealed substantial heterogeneity in developmental trajectories. GM decreased nonlinearly in the cerebral cortex and linearly in the caudate, putamen, pallidum, accumbens, and cerebellar GM, whereas the amygdala and hippocampus showed slight, nonlinear increases in GM volume. WM increased nonlinearly in both the cerebrum and cerebellum, with an earlier maturation in cerebellar WM. In addition to similarities in developmental trajectories within subcortical regions, our results also point to differences between structures within the same regions: among the basal ganglia, the caudate showed a weaker relationship with age than the putamen and pallidum, and in the cerebellum, differences were found between GM and WM development. These results emphasize the importance of studying a wide range of structural variables in the same sample, for a broader understanding of brain developmental principles.

http://www.ncbi.nlm.nih.gov/pubmed/19776264 http://www.jneurosci.org/cgi/content/full/29/38/11772

A structural MRI study of human brain development from birth to 2 years.

Knickmeyer RC, Gouttard S, Kang C, Evans D, Wilber K, Smith JK, Hamer RM, Lin W, Gerig G, Gilmore JH. J Neurosci. 2008 Nov 19;28(47):12176-82. PMID: 19020011

Neural Development Table

Neural Tube Primary Vesicles Secondary Vesicles Adult Structures
Brain Prosencephalon Telencephalon Rhinencephalon, Amygdala, Hippocampus, Neocortex, Basal Ganglia, Lateral Ventricles
Diencephalon Epithalamus, Thalamus, Hypothalamus, Subthalamus, Pituitary, Pineal, Third ventricle
Mesencephalon Mesencephalon Tectum, Cerebral peduncle, Pretectum, Cerebral aqueduct
Rhombencephalon Metencephalon Pons, Cerebellum
Myelencephalon Medulla oblongata
Spinal Cord

Neural Table Linked

Neural Development Table

Neural Tube Primary
Vesicles
Secondary Vesicles Adult Structures
Brain Prosencephalon Telencephalon Rhinencephalon, Amygdala, Hippocampus, Neocortex, Basal Ganglia, lateral ventricles
Diencephalon Epithalamus, Thalamus, Hypothalamus, Subthalamus, Pituitary, Pineal, third ventricle
Mesencephalon Mesencephalon Tectum, Cerebral peduncle, Pretectum, cerebral aqueduct
Rhombencephalon Metencephalon Pons, Cerebellum
Myelencephalon Medulla Oblongata
Spinal Cord