Talk:Episcopic Fluorescence Image Capture: Difference between revisions

From Embryology
(Created page with "{{Talk Page}} ==2002== ===Phenotyping transgenic embryos: a rapid 3-D screening method based on episcopic fluorescence image capturing=== Nat Genet. 2002 Jan;30(1):59-65. Epu...")
 
mNo edit summary
Line 1: Line 1:
{{Talk Page}}
{{Talk Page}}
==2010==
===Developmental atlas of the early first trimester human embryo===
Dev Dyn. 2010 Jun;239(6):1585-95. doi: 10.1002/dvdy.22316.
Yamada S1, Samtani RR, Lee ES, Lockett E, Uwabe C, Shiota K, Anderson SA, Lo CW.
Abstract
Rapid advances in medical imaging are facilitating the clinical assessment of first-trimester human embryos at increasingly earlier stages. To obtain data on early human development, we used magnetic resonance (MR) imaging and episcopic fluorescence capture (EFIC) to acquire digital images of human embryos spanning the time of dynamic tissue remodeling and organogenesis (Carnegie stages 13 to 23). These imaging data sets are readily resectioned digitally in arbitrary planes, suitable for rapid high-resolution three-dimensional (3D) observation. Using these imaging datasets, a web-accessible digital Human Embryo Atlas (http://apps.devbio.pitt.edu/humanatlas/) was created containing serial 2D images of human embryos in three standard histological planes: sagittal, frontal, and transverse. In addition, annotations and 3D reconstructions were generated for visualizing different anatomical structures. Overall, this Human Embryo Atlas is a unique resource that provides morphologic data of human developmental anatomy that can accelerate basic research investigations into developmental mechanisms that underlie human congenital anomalies.
PMID 20503356 PMCID: PMC3401072 DOI: 10.1002/dvdy.22316


==2002==
==2002==

Revision as of 12:04, 17 August 2016

About Discussion Pages  
Mark Hill.jpg
On this website the Discussion Tab or "talk pages" for a topic has been used for several purposes:
  1. References - recent and historic that relates to the topic
  2. Additional topic information - currently prepared in draft format
  3. Links - to related webpages
  4. Topic page - an edit history as used on other Wiki sites
  5. Lecture/Practical - student feedback
  6. Student Projects - online project discussions.
Links: Pubmed Most Recent | Reference Tutorial | Journal Searches

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, May 23) Embryology Episcopic Fluorescence Image Capture. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Talk:Episcopic_Fluorescence_Image_Capture

2010

Developmental atlas of the early first trimester human embryo

Dev Dyn. 2010 Jun;239(6):1585-95. doi: 10.1002/dvdy.22316.

Yamada S1, Samtani RR, Lee ES, Lockett E, Uwabe C, Shiota K, Anderson SA, Lo CW.

Abstract

Rapid advances in medical imaging are facilitating the clinical assessment of first-trimester human embryos at increasingly earlier stages. To obtain data on early human development, we used magnetic resonance (MR) imaging and episcopic fluorescence capture (EFIC) to acquire digital images of human embryos spanning the time of dynamic tissue remodeling and organogenesis (Carnegie stages 13 to 23). These imaging data sets are readily resectioned digitally in arbitrary planes, suitable for rapid high-resolution three-dimensional (3D) observation. Using these imaging datasets, a web-accessible digital Human Embryo Atlas (http://apps.devbio.pitt.edu/humanatlas/) was created containing serial 2D images of human embryos in three standard histological planes: sagittal, frontal, and transverse. In addition, annotations and 3D reconstructions were generated for visualizing different anatomical structures. Overall, this Human Embryo Atlas is a unique resource that provides morphologic data of human developmental anatomy that can accelerate basic research investigations into developmental mechanisms that underlie human congenital anomalies.

PMID 20503356 PMCID: PMC3401072 DOI: 10.1002/dvdy.22316

2002

Phenotyping transgenic embryos: a rapid 3-D screening method based on episcopic fluorescence image capturing

Nat Genet. 2002 Jan;30(1):59-65. Epub 2001 Dec 17.

Weninger WJ1, Mohun T.

Abstract

We describe a technique suitable for routine three-dimensional (3-D) analysis of mouse embryos that is based on episcopic fluorescence images captured during serial sectioning of wax-embedded specimens. We have used this procedure to describe the cardiac phenotype and associated blood vessels of trisomic 16 (Ts16) and Cited2-null mutant mice, as well as the expression pattern of an Myf5 enhancer/beta-galactosidase transgene. The consistency of the images and their precise alignment are ideally suited for 3-D analysis using video animations, virtual resectioning or commercial 3-D reconstruction software packages. Episcopic fluorescence image capturing (EFIC) provides a simple and powerful tool for analyzing embryo and organ morphology in normal and transgenic embryos.

PMID 11743576 DOI: 10.1038/ng785