Talk:Developmental Signals - Tbx: Difference between revisions

From Embryology
mNo edit summary
mNo edit summary
Line 13: Line 13:


==2014==
==2014==
===The T-box gene family: emerging roles in development, stem cells and cancer===
Development. 2014 Oct;141(20):3819-33. doi: 10.1242/dev.104471.
Papaioannou VE1.
Abstract
The T-box family of transcription factors exhibits widespread involvement throughout development in all metazoans. T-box proteins are characterized by a DNA-binding motif known as the T-domain that binds DNA in a sequence-specific manner. In humans, mutations in many of the genes within the T-box family result in developmental syndromes, and there is increasing evidence to support a role for these factors in certain cancers. In addition, although early studies focused on the role of T-box factors in early embryogenesis, recent studies in mice have uncovered additional roles in unsuspected places, for example in adult stem cell populations. Here, I provide an overview of the key features of T-box transcription factors and highlight their roles and mechanisms of action during various stages of development and in stem/progenitor cell populations.
© 2014. Published by The Company of Biologists Ltd.
KEYWORDS:
T-box genes; Tbx; Transcription factors
PMID 25294936


===Tbx1 controls the morphogenesis of pharyngeal pouch epithelia through mesodermal Wnt11r and Fgf8a===
===Tbx1 controls the morphogenesis of pharyngeal pouch epithelia through mesodermal Wnt11r and Fgf8a===

Revision as of 21:23, 17 May 2015

About Discussion Pages  
Mark Hill.jpg
On this website the Discussion Tab or "talk pages" for a topic has been used for several purposes:
  1. References - recent and historic that relates to the topic
  2. Additional topic information - currently prepared in draft format
  3. Links - to related webpages
  4. Topic page - an edit history as used on other Wiki sites
  5. Lecture/Practical - student feedback
  6. Student Projects - online project discussions.
Links: Pubmed Most Recent | Reference Tutorial | Journal Searches

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, May 2) Embryology Developmental Signals - Tbx. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Talk:Developmental_Signals_-_Tbx

10 Most Recent Papers

Note - This sub-heading shows an automated computer PubMed search using the listed sub-heading term. References appear in this list based upon the date of the actual page viewing. Therefore the list of references do not reflect any editorial selection of material based on content or relevance. In comparison, references listed on the content page and discussion page (under the publication year sub-headings) do include editorial selection based upon relevance and availability. (More? Pubmed Most Recent)


Tbx Development

<pubmed limit=5>Tbx Development</pubmed>


2015

2014

The T-box gene family: emerging roles in development, stem cells and cancer

Development. 2014 Oct;141(20):3819-33. doi: 10.1242/dev.104471.

Papaioannou VE1.

Abstract

The T-box family of transcription factors exhibits widespread involvement throughout development in all metazoans. T-box proteins are characterized by a DNA-binding motif known as the T-domain that binds DNA in a sequence-specific manner. In humans, mutations in many of the genes within the T-box family result in developmental syndromes, and there is increasing evidence to support a role for these factors in certain cancers. In addition, although early studies focused on the role of T-box factors in early embryogenesis, recent studies in mice have uncovered additional roles in unsuspected places, for example in adult stem cell populations. Here, I provide an overview of the key features of T-box transcription factors and highlight their roles and mechanisms of action during various stages of development and in stem/progenitor cell populations. © 2014. Published by The Company of Biologists Ltd. KEYWORDS: T-box genes; Tbx; Transcription factors

PMID 25294936

Tbx1 controls the morphogenesis of pharyngeal pouch epithelia through mesodermal Wnt11r and Fgf8a

Development. 2014 Sep;141(18):3583-93. doi: 10.1242/dev.111740. Epub 2014 Aug 19.

Choe CP1, Crump JG2.

Abstract

The pharyngeal pouches are a segmental series of epithelial structures that organize the embryonic vertebrate face. In mice and zebrafish that carry mutations in homologs of the DiGeorge syndrome gene TBX1, a lack of pouches correlates with severe craniofacial defects, yet how Tbx1 controls pouch development remains unclear. Using mutant and transgenic rescue experiments in zebrafish, we show that Tbx1 functions in the mesoderm to promote the morphogenesis of pouch-forming endoderm through wnt11r and fgf8a expression. Consistently, compound losses of wnt11r and fgf8a phenocopy tbx1 mutant pouch defects, and mesoderm-specific restoration of Wnt11r and Fgf8a rescues tbx1 mutant pouches. Time-lapse imaging further reveals that Fgf8a acts as a Wnt11r-dependent guidance cue for migrating pouch cells. We therefore propose a two-step model in which Tbx1 coordinates the Wnt-dependent epithelial destabilization of pouch-forming cells with their collective migration towards Fgf8a-expressing mesodermal guideposts. © 2014. Published by The Company of Biologists Ltd. KEYWORDS: Epithelial morphogenesis; Fgf8; Pharyngeal pouches; Tbx1; Wnt11r; Zebrafish

PMID 25142463

http://dev.biologists.org/content/141/18/3583.full?sid=4b6c88e2-1b81-4026-b37d-43ef3f7e9cbb

2013

Conditional and constitutive expression of a Tbx1-GFP fusion protein in mice

BMC Dev Biol. 2013 Aug 23;13(1):33. [Epub ahead of print] Freyer L, Nowotschin S, Pirity MK, Baldini A, Morrow BE.

Abstract

BACKGROUND: Velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS) is caused by a 1.5-3 Mb microdeletion of chromosome 22q11.2, frequently referred to as 22q11.2 deletion syndrome (22q11DS). This region includes TBX1, a T-box transcription factor gene that contributes to the etiology of 22q11DS. The requirement for TBX1 in mammalian development is dosage-sensitive, such that loss-of-function (LOF) and gain-of-function (GOF) of TBX1 in both mice and humans results in disease relevant congenital malformations. RESULTS: To further gain insight into the role of Tbx1 in development, we have targeted the Rosa26 locus to generate a new GOF mouse model in which a Tbx1-GFP fusion protein is expressed conditionally using the Cre/LoxP system. Tbx1-GFP expression is driven by the endogenous Rosa26 promoter resulting in ectopic and persistent expression. Tbx1 is pivotal for proper ear and heart development; ectopic activation of Tbx1-GFP in the otic vesicle by Pax2-Cre and Foxg1-Cre represses neurogenesis and produces morphological defects of the inner ear. Overexpression of a single copy of Tbx1-GFP using Tbx1Cre/+ was viable, while overexpression of both copies resulted in neonatal lethality with cardiac outflow tract defects. We have partially rescued inner ear and heart anomalies in Tbx1Cre/- null embryos by expression of Tbx1-GFP. CONCLUSIONS: We have generated a new mouse model to conditionally overexpress a GFP-tagged Tbx1 protein in vivo. This provides a useful tool to investigate in vivo direct downstream targets and protein binding partners of Tbx1.

PMID 23971992

2012

Tbx1 regulates oral epithelial adhesion and palatal development

Hum Mol Genet. 2012 Jun 1;21(11):2524-37. doi: 10.1093/hmg/dds071. Epub 2012 Feb 27.

Funato N, Nakamura M, Richardson JA, Srivastava D, Yanagisawa H. Source Human Gene Sciences Center, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.

Abstract

Cleft palate, the most frequent congenital craniofacial birth defect, is a multifactorial condition induced by the interaction of genetic and environmental factors. In addition to complete cleft palate, a large number of human cases involve soft palate cleft and submucosal cleft palate. However, the etiology of these forms of cleft palate has not been well understood. T-box transcriptional factor (Tbx) family of transcriptional factors has distinct roles in a wide range of embryonic differentiation or response pathways. Here, we show that genetic disruption of Tbx1, a major candidate gene for the human congenital disorder 22q11.2 deletion syndrome (Velo-cardio-facial/DiGeorge syndrome), led to abnormal epithelial adhesion between the palate and mandible in mouse, resulting in various forms of cleft palate similar to human conditions. We found that hyperproliferative epithelium failed to undergo complete differentiation in Tbx1-null mice (Tbx1(-/-)). Inactivation of Tbx1 specifically in the keratinocyte lineage (Tbx1(KCKO)) resulted in an incomplete cleft palate confined to the anterior region of the palate. Interestingly, Tbx1 overexpression resulted in decreased cell growth and promoted cell-cycle arrest in MCF7 epithelial cells. These findings suggest that Tbx1 regulates the balance between proliferation and differentiation of keratinocytes and is essential for palatal fusion and oral mucosal differentiation. The impaired adhesion separation of the oral epithelium together with compromised palatal mesenchymal growth is an underlying cause for various forms of cleft palate phenotypes in Tbx1(-/-) mice. Our present study reveals new pathogenesis of incomplete and submucous cleft palate during mammalian palatogenesis.

PMID 22371266

Tbx1 is a negative modulator of Mef2c

Hum Mol Genet. 2012 Jun 1;21(11):2485-96. doi: 10.1093/hmg/dds063. Epub 2012 Feb 24.

Pane LS, Zhang Z, Ferrentino R, Huynh T, Cutillo L, Baldini A. Source Institute of Genetics and Biophysics, National Research Council, 80131 Naples, Italy.

Abstract

The developmental role of the T-box transcription factor Tbx1 is exquisitely dosage-sensitive. In this study, we performed a microarray-based transcriptome analysis of E9.5 embryo tissues across a previously generated Tbx1 mouse allelic series. This analysis identified several genes whose expression was affected by Tbx1 dosage. Interestingly, we found that the expression of the gene encoding the cardiogenic transcription factor Mef2c was negatively correlated to Tbx1 dosage. In vivo data revealed Mef2c up-regulation in the second heart field (SHF) of Tbx1 null mutant embryos compared with wild-type littermates at E9.5. Conversely, Mef2c expression was decreased in the SHF and in somites of Tbx1 gain-of-function mutants. These results are consistent with the described role of Tbx1 in suppressing cardiac progenitor cell differentiation and indicate also a negative effect of Tbx1 on Mef2c during skeletal muscle differentiation. We show that Tbx1 occupies conserved regulatory regions of the Mef2c locus, suggesting a direct effect on Mef2c transcription. However, we also show that Tbx1 interferes with the Gata4→ Mef2c regulatory pathway. Overall, our study uncovered a target of Tbx1 with critical developmental roles, so highlighting the power of the dosage gradient approach that we used.

PMID 22367967