Talk:Buccopharyngeal membrane: Difference between revisions

From Embryology
(Created page with "{{Talk Page}}")
 
mNo edit summary
Line 1: Line 1:
{{Talk Page}}
{{Talk Page}}
==2017==
===Role of JNK during buccopharyngeal membrane perforation, the last step of embryonic mouth formation===
Dev Dyn. 2017 Feb;246(2):100-115. doi: 10.1002/dvdy.24470. Epub 2016 Dec 29.
Houssin NS1, Bharathan NK2, Turner SD3, Dickinson AJ1.
Abstract
BACKGROUND:
The buccopharyngeal membrane is a thin layer of cells covering the embryonic mouth. The perforation of this structure creates an opening connecting the external and the digestive tube which is essential for oral cavity formation. In humans, persistence of the buccopharyngeal membrane can lead to orofacial defects such as choanal atresia, oral synechiaes, and cleft palate. Little is known about the causes of a persistent buccopharyngeal membrane and, importantly, how this structure ruptures.
RESULTS:
We have determined, using antisense and pharmacological approaches, that Xenopus embryos deficient c-Jun N-terminal kinase (JNK) signaling have a persistent buccopharyngeal membrane. JNK deficient embryos have decreased cell division and increased cellular stress and apoptosis. However, altering these processes independently of JNK did not affect buccopharyngeal membrane perforation. JNK deficient embryos also have increased intercellular adhesion and defects in e-cadherin localization. Conversely, embryos with overactive JNK have epidermal fragility, increased E-cadherin internalization, and increased membrane localized clathrin. In the buccopharyngeal membrane, clathrin is colocalized with active JNK. Furthermore, inhibition of endocytosis results in a persistent buccopharyngeal membrane, mimicking the JNK deficient phenotype.
CONCLUSIONS:
The results of this study suggest that JNK has a role in the disassembly adherens junctions by means of endocytosis that is required during buccopharyngeal membrane perforation. Developmental Dynamics 246:100-115, 2017. © 2016 Wiley Periodicals, Inc.
© 2016 Wiley Periodicals, Inc.
KEYWORDS:
JNK; buccopharyngeal membrane; embryonic mouth; intercellular adhesion
PMID: 28032936 PMCID: PMC5261731 DOI: 10.1002/dvdy.24470

Revision as of 13:47, 17 April 2019

About Discussion Pages  
Mark Hill.jpg
On this website the Discussion Tab or "talk pages" for a topic has been used for several purposes:
  1. References - recent and historic that relates to the topic
  2. Additional topic information - currently prepared in draft format
  3. Links - to related webpages
  4. Topic page - an edit history as used on other Wiki sites
  5. Lecture/Practical - student feedback
  6. Student Projects - online project discussions.
Links: Pubmed Most Recent | Reference Tutorial | Journal Searches

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, May 19) Embryology Buccopharyngeal membrane. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Talk:Buccopharyngeal_membrane

2017

Role of JNK during buccopharyngeal membrane perforation, the last step of embryonic mouth formation

Dev Dyn. 2017 Feb;246(2):100-115. doi: 10.1002/dvdy.24470. Epub 2016 Dec 29.

Houssin NS1, Bharathan NK2, Turner SD3, Dickinson AJ1.


Abstract

BACKGROUND: The buccopharyngeal membrane is a thin layer of cells covering the embryonic mouth. The perforation of this structure creates an opening connecting the external and the digestive tube which is essential for oral cavity formation. In humans, persistence of the buccopharyngeal membrane can lead to orofacial defects such as choanal atresia, oral synechiaes, and cleft palate. Little is known about the causes of a persistent buccopharyngeal membrane and, importantly, how this structure ruptures.

RESULTS: We have determined, using antisense and pharmacological approaches, that Xenopus embryos deficient c-Jun N-terminal kinase (JNK) signaling have a persistent buccopharyngeal membrane. JNK deficient embryos have decreased cell division and increased cellular stress and apoptosis. However, altering these processes independently of JNK did not affect buccopharyngeal membrane perforation. JNK deficient embryos also have increased intercellular adhesion and defects in e-cadherin localization. Conversely, embryos with overactive JNK have epidermal fragility, increased E-cadherin internalization, and increased membrane localized clathrin. In the buccopharyngeal membrane, clathrin is colocalized with active JNK. Furthermore, inhibition of endocytosis results in a persistent buccopharyngeal membrane, mimicking the JNK deficient phenotype.

CONCLUSIONS: The results of this study suggest that JNK has a role in the disassembly adherens junctions by means of endocytosis that is required during buccopharyngeal membrane perforation. Developmental Dynamics 246:100-115, 2017. © 2016 Wiley Periodicals, Inc.

© 2016 Wiley Periodicals, Inc.

KEYWORDS: JNK; buccopharyngeal membrane; embryonic mouth; intercellular adhesion PMID: 28032936 PMCID: PMC5261731 DOI: 10.1002/dvdy.24470