Talk:Abnormal Development - Genetic: Difference between revisions

From Embryology
mNo edit summary
mNo edit summary
Line 8: Line 8:
<pubmed limit=5>Abnormal Genetic Development</pubmed>
<pubmed limit=5>Abnormal Genetic Development</pubmed>


==2018==
===Responsible innovation in human germline gene editing: Background document to the recommendations of ESHG and ESHRE===
Eur J Hum Genet. 2018 Jan 12. doi: 10.1038/s41431-017-0077-z. [Epub ahead of print]
De Wert G1, Heindryckx B2, Pennings G3, Clarke A4, Eichenlaub-Ritter U5, van El CG6, Forzano F7, Goddijn M8, Howard HC9, Radojkovic D10, Rial-Sebbag E11, Dondorp W12, Tarlatzis BC13, Cornel MC6; European Society of Human Genetics and the European Society of Human Reproduction and Embryology.
Abstract
Technological developments in gene editing raise high expectations for clinical applications, including editing of the germline. The European Society of Human Reproduction and Embryology (ESHRE) and the European Society of Human Genetics (ESHG) together developed a Background document and Recommendations to inform and stimulate ongoing societal debates. This document provides the background to the Recommendations. Germline gene editing is currently not allowed in many countries. This makes clinical applications in these countries impossible now, even if germline gene editing would become safe and effective. What were the arguments behind this legislation, and are they still convincing? If a technique could help to avoid serious genetic disorders, in a safe and effective way, would this be a reason to reconsider earlier standpoints? This Background document summarizes the scientific developments and expectations regarding germline gene editing, legal regulations at the European level, and ethics for three different settings (basic research, preclinical research and clinical applications). In ethical terms, we argue that the deontological objections (e.g., gene editing goes against nature) do not seem convincing while consequentialist objections (e.g., safety for the children thus conceived and following generations) require research, not all of which is allowed in the current legal situation in European countries. Development of this Background document and Recommendations reflects the responsibility to help society understand and debate the full range of possible implications of the new technologies, and to contribute to regulations that are adapted to the dynamics of the field while taking account of ethical considerations and societal concerns.
PMID: 29326429 DOI: 10.1038/s41431-017-0077-z


==2015==
==2015==

Revision as of 09:57, 18 January 2018

About Discussion Pages  
Mark Hill.jpg
On this website the Discussion Tab or "talk pages" for a topic has been used for several purposes:
  1. References - recent and historic that relates to the topic
  2. Additional topic information - currently prepared in draft format
  3. Links - to related webpages
  4. Topic page - an edit history as used on other Wiki sites
  5. Lecture/Practical - student feedback
  6. Student Projects - online project discussions.
Links: Pubmed Most Recent | Reference Tutorial | Journal Searches

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, May 3) Embryology Abnormal Development - Genetic. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Talk:Abnormal_Development_-_Genetic

10 Most Recent

Note - This sub-heading shows an automated computer PubMed search using the listed sub-heading term. References appear in this list based upon the date of the actual page viewing. Therefore the list of references do not reflect any editorial selection of material based on content or relevance. In comparison, references listed on the content page and discussion page (under the publication year sub-headings) do include editorial selection based upon relevance and availability. (More? Pubmed Most Recent)


Abnormal Genetic Development

<pubmed limit=5>Abnormal Genetic Development</pubmed>

2018

Responsible innovation in human germline gene editing: Background document to the recommendations of ESHG and ESHRE

Eur J Hum Genet. 2018 Jan 12. doi: 10.1038/s41431-017-0077-z. [Epub ahead of print]

De Wert G1, Heindryckx B2, Pennings G3, Clarke A4, Eichenlaub-Ritter U5, van El CG6, Forzano F7, Goddijn M8, Howard HC9, Radojkovic D10, Rial-Sebbag E11, Dondorp W12, Tarlatzis BC13, Cornel MC6; European Society of Human Genetics and the European Society of Human Reproduction and Embryology.

Abstract

Technological developments in gene editing raise high expectations for clinical applications, including editing of the germline. The European Society of Human Reproduction and Embryology (ESHRE) and the European Society of Human Genetics (ESHG) together developed a Background document and Recommendations to inform and stimulate ongoing societal debates. This document provides the background to the Recommendations. Germline gene editing is currently not allowed in many countries. This makes clinical applications in these countries impossible now, even if germline gene editing would become safe and effective. What were the arguments behind this legislation, and are they still convincing? If a technique could help to avoid serious genetic disorders, in a safe and effective way, would this be a reason to reconsider earlier standpoints? This Background document summarizes the scientific developments and expectations regarding germline gene editing, legal regulations at the European level, and ethics for three different settings (basic research, preclinical research and clinical applications). In ethical terms, we argue that the deontological objections (e.g., gene editing goes against nature) do not seem convincing while consequentialist objections (e.g., safety for the children thus conceived and following generations) require research, not all of which is allowed in the current legal situation in European countries. Development of this Background document and Recommendations reflects the responsibility to help society understand and debate the full range of possible implications of the new technologies, and to contribute to regulations that are adapted to the dynamics of the field while taking account of ethical considerations and societal concerns. PMID: 29326429 DOI: 10.1038/s41431-017-0077-z

2015

Sex ratios among infants with birth defects, National Birth Defects Prevention Study, 1997-2009

Am J Med Genet A. 2015 May;167A(5):1071-81. doi: 10.1002/ajmg.a.36865. Epub 2015 Feb 25.

Michalski AM1, Richardson SD, Browne ML, Carmichael SL, Canfield MA, VanZutphen AR, Anderka MT, Marshall EG, Druschel CM.

Abstract

A small number of population-based studies have examined sex differences among infants with birth defects. This study presents estimates of sex ratio for both isolated cases and those with multiple congenital anomalies, as well as by race/ethnicity. Male-female sex ratios and their 95% confidence intervals were calculated for 25,952 clinically reviewed case infants included in the National Birth Defects Prevention Study (1997-2009), a large population-based case-control study of birth defects. The highest elevations in sex ratios (i.e., male preponderance) among isolated non-cardiac defects were for craniosynostosis (2.12), cleft lip with cleft palate (2.01), and cleft lip without cleft palate (1.78); the lowest sex ratios (female preponderance) were for choanal atresia (0.45), cloacal exstrophy (0.46), and holoprosencephaly (0.64). Among isolated cardiac defects, the highest sex ratios were for aortic stenosis (2.88), coarctation of the aorta (2.51), and d-transposition of the great arteries (2.34); the lowest were multiple ventricular septal defects (0.52), truncus arteriosus (0.63), and heterotaxia with congenital heart defect (0.64). Differences were observed by race/ethnicity for some but not for most types of birth defects. The sex differences we observed for specific defects, between those with isolated versus multiple defects, as well as by race/ethnicity, demonstrate patterns that may suggest etiology and improve classification.


PMID 25711982

2012

Biallelic expression of Tbx1 protects the embryo from developmental defects caused by increased receptor tyrosine kinase signaling

Abstract

Background: 22q11.2 deletion syndrome (22q11DS) is the most common microdeletion syndrome in humans, characterized by cardiovascular defects such as interrupted aortic arch, outflow tract defects, thymus and parathyroid hypo- or aplasia, and cleft palate. Heterozygosity of Tbx1, the mouse homolog of the candidate TBX1 gene, results in mild defects dependent on genetic background, whereas complete inactivation results in severe malformations in multiple tissues. Results: The loss of function of two Sprouty genes, which encode feedback antagonists of receptor tyrosine kinase (RTK) signaling, phenocopy many defects associated with 22q11DS in the mouse. The stepwise reduction of Sprouty gene dosage resulted in different phenotypes emerging at specific steps, suggesting that the threshold up to which a given developmental process can tolerate increased RTK signaling is different. Tbx1 heterozygosity significantly exacerbated the severity of all these defects, which correlated with a substantial increase in RTK signaling. Conclusions: Our findings suggest that TBX1 functions as an essential component of a mechanism that protects the embryo against perturbations in RTK signaling that may lead to developmental defects characteristic of 22q11DS. We propose that genetic factors that enhance RTK signaling ought to be considered as potential genetic modifiers of this syndrome. Developmental Dynamics, 2012. © 2012 Wiley Periodicals, Inc.

http://onlinelibrary.wiley.com/doi/10.1002/dvdy.23812/abstract

2011

An update of preimplantation genetic diagnosis in gene diseases, chromosomal translocation, and aneuploidy screening

Clin Exp Reprod Med. 2011 Sep;38(3):126-34. Epub 2011 Sep 30.

Chang LJ, Chen SU, Tsai YY, Hung CC, Fang MY, Su YN, Yang YS. Source Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan. Abstract Preimplantation genetic diagnosis (PGD) is gradually widely used in prevention of gene diseases and chromosomal abnormalities. Much improvement has been achieved in biopsy technique and molecular diagnosis. Blastocyst biopsy can increase diagnostic accuracy and reduce allele dropout. It is cost-effective and currently plays an important role. Whole genome amplification permits subsequent individual detection of multiple gene loci and screening all 23 pairs of chromosomes. For PGD of chromosomal translocation, fluorescence in-situ hybridization (FISH) is traditionally used, but with technical difficulty. Array comparative genomic hybridization (CGH) can detect translocation and 23 pairs of chromosomes that may replace FISH. Single nucleotide polymorphisms array with haplotyping can further distinguish between normal chromosomes and balanced translocation. PGD may shorten time to conceive and reduce miscarriage for patients with chromosomal translocation. PGD has a potential value for mitochondrial diseases. Preimplantation genetic haplotyping has been applied for unknown mutation sites of single gene disease. Preimplantation genetic screening (PGS) using limited FISH probes in the cleavage-stage embryo did not increase live birth rates for patients with advanced maternal age, unexplained recurrent abortions, and repeated implantation failure. Polar body and blastocyst biopsy may circumvent the problem of mosaicism. PGS using blastocyst biopsy and array CGH is encouraging and merit further studies. Cryopreservation of biopsied blastocysts instead of fresh transfer permits sufficient time for transportation and genetic analysis. Cryopreservation of embryos may avoid ovarian hyperstimulation syndrome and possible suboptimal endometrium.

PMID 22384431

2010

Polymorphic cis- and trans-regulation of human gene expression

PLoS Biol. 2010 Sep 14;8(9). pii: e1000480.

Cheung VG, Nayak RR, Wang IX, Elwyn S, Cousins SM, Morley M, Spielman RS.

Howard Hughes Medical Institute, Philadelphia, Pennsylvania, USA. vcheung@mail.med.upenn.edu Abstract Expression levels of human genes vary extensively among individuals. This variation facilitates analyses of expression levels as quantitative phenotypes in genetic studies where the entire genome can be scanned for regulators without prior knowledge of the regulatory mechanisms, thus enabling the identification of unknown regulatory relationships. Here, we carried out such genetic analyses with a large sample size and identified cis- and trans-acting polymorphic regulators for about 1,000 human genes. We validated the cis-acting regulators by demonstrating differential allelic expression with sequencing of transcriptomes (RNA-Seq) and the trans-regulators by gene knockdown, metabolic assays, and chromosome conformation capture analysis. The majority of the regulators act in trans to the target (regulated) genes. Most of these trans-regulators were not known to play a role in gene expression regulation. The identification of these regulators enabled the characterization of polymorphic regulation of human gene expression at a resolution that was unattainable in the past.

PMID 20856902