File:Bailey142.jpg: Difference between revisions

From Embryology
(==Fig. 142. Lateral dissection of head of human foetus== Showing derivatives of branchial arches in natural position. Kollmann's Atlas. {{Template:Bailey 1921 Figures}} Category:Human Category:Bone Category:Head)
 
No edit summary
 
(One intermediate revision by the same user not shown)
Line 4: Line 4:


Kollmann's Atlas.  
Kollmann's Atlas.  
In the mandibular process of the first visceral arch, the mandible develops as a bone which is partly of intramembranous and partly of intracartilaginous origin. In the first place a rod of cartilage, known as Meckel's cartilage, forms the core of the mandibular process and extends from the distal end of the process to the temporal region of the skull, where it passes between the tympanic bone and the periotic capsule and ends in the tympanic cavity of the ear (Fig. 136). During the sixth week of foetal life, intramembranous bone begins to develop in the mandibular process. In the region of the body of the mandible the bone encloses the cartilage, but in the region of the ramus and coronoid process the cartilage lies to the inner side of the bone. Development is further complicated by the appearance of cartilage in the region of the middle incisor teeth and on the coronoid and condyloid processes. These pieces of cartilage form independently of Meckel's cartilage and subsequently are replaced by the bone which constitutes the corresponding parts of the mandible. The part of Meckel's cartilage enclosed in the bone disappears; the part to the inner side of the ramus is transformed into the sphenomandibular ligament. (See Fig. 142.) In each half of the second branchial arch a rod of cartilage develops, which extends from the ventro-medial line to the region of the periotic capsule. The proximal end of this rod is then replaced by bone which fuses with the temporal bone and forms the styloid process. The distal (ventral) end is replaced by bone which forms the lesser horn of the hyoid bone. Between the styloid process and the lesser horn, the cartilage is transformed into the stylohyoid ligament (see Figs. 139 and 142).
In each half of the third branchial arch a piece of cartilage develops and subsequently is replaced by bone to form the greater horn of the hyoid bone. The two horns become connected at their ventral ends by the body of the hyoid bone which is also a derivative of the third arch. Later the lesser horn fuses with the greater horn to bring about the adult condition (Fig. 142).
In the ventral parts of the fourth and fifth arches pieces of cartilage develop and form the skeletal elements, of the larynx. A more detailed account of these will be found under the head of the larynx.


{{Template:Bailey 1921 Figures}}
{{Template:Bailey 1921 Figures}}


[[Category:Human]] [[Category:Bone]] [[Category:Head]]
[[Category:Human]] [[Category:Bone]] [[Category:Head]] [[Category:Kollmann]]

Latest revision as of 17:24, 15 April 2011

Fig. 142. Lateral dissection of head of human foetus

Showing derivatives of branchial arches in natural position.

Kollmann's Atlas.

In the mandibular process of the first visceral arch, the mandible develops as a bone which is partly of intramembranous and partly of intracartilaginous origin. In the first place a rod of cartilage, known as Meckel's cartilage, forms the core of the mandibular process and extends from the distal end of the process to the temporal region of the skull, where it passes between the tympanic bone and the periotic capsule and ends in the tympanic cavity of the ear (Fig. 136). During the sixth week of foetal life, intramembranous bone begins to develop in the mandibular process. In the region of the body of the mandible the bone encloses the cartilage, but in the region of the ramus and coronoid process the cartilage lies to the inner side of the bone. Development is further complicated by the appearance of cartilage in the region of the middle incisor teeth and on the coronoid and condyloid processes. These pieces of cartilage form independently of Meckel's cartilage and subsequently are replaced by the bone which constitutes the corresponding parts of the mandible. The part of Meckel's cartilage enclosed in the bone disappears; the part to the inner side of the ramus is transformed into the sphenomandibular ligament. (See Fig. 142.) In each half of the second branchial arch a rod of cartilage develops, which extends from the ventro-medial line to the region of the periotic capsule. The proximal end of this rod is then replaced by bone which fuses with the temporal bone and forms the styloid process. The distal (ventral) end is replaced by bone which forms the lesser horn of the hyoid bone. Between the styloid process and the lesser horn, the cartilage is transformed into the stylohyoid ligament (see Figs. 139 and 142). In each half of the third branchial arch a piece of cartilage develops and subsequently is replaced by bone to form the greater horn of the hyoid bone. The two horns become connected at their ventral ends by the body of the hyoid bone which is also a derivative of the third arch. Later the lesser horn fuses with the greater horn to bring about the adult condition (Fig. 142).

In the ventral parts of the fourth and fifth arches pieces of cartilage develop and form the skeletal elements, of the larynx. A more detailed account of these will be found under the head of the larynx.


Text-Book of Embryology: Germ cells | Maturation | Fertilization | Amphioxus | Frog | Chick | Mammalian | External body form | Connective tissues and skeletal | Vascular | Muscular | Alimentary tube and organs | Respiratory | Coelom, Diaphragm and Mesenteries | Urogenital | Integumentary | Nervous System | Special Sense | Foetal Membranes | Teratogenesis | Gallery of All Figures
Historic Disclaimer - information about historic embryology pages 
Mark Hill.jpg
Pages where the terms "Historic" (textbooks, papers, people, recommendations) appear on this site, and sections within pages where this disclaimer appears, indicate that the content and scientific understanding are specific to the time of publication. This means that while some scientific descriptions are still accurate, the terminology and interpretation of the developmental mechanisms reflect the understanding at the time of original publication and those of the preceding periods, these terms, interpretations and recommendations may not reflect our current scientific understanding.     (More? Embryology History | Historic Embryology Papers)

Reference

Bailey FR. and Miller AM. Text-Book of Embryology (1921) New York: William Wood and Co.



Cite this page: Hill, M.A. (2024, April 26) Embryology Bailey142.jpg. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/File:Bailey142.jpg

What Links Here?
© Dr Mark Hill 2024, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current12:41, 18 January 2011Thumbnail for version as of 12:41, 18 January 2011778 × 479 (72 KB)S8600021 (talk | contribs)==Fig. 142. Lateral dissection of head of human foetus== Showing derivatives of branchial arches in natural position. Kollmann's Atlas. {{Template:Bailey 1921 Figures}} Category:Human Category:Bone Category:Head