2015 Group Project 1: Difference between revisions

From Embryology
Line 347: Line 347:
Others hold an opposite opinion. They doubt the safety of mitochondrial gene transfer techniques and believe that other safe means of reproduction already exist can be used instead. They argue that, unlike the use of donor eggs or embryos, children born with mitochondrial gene transfer techniques would have a genetic connection to three parents due to the fact that such therapies involve modification of the germline. Some mothers may feel that it is important to have a genetic link with their future child and that having this genetic link outweighs most disadvantages (e.g. health risks and high financial cost) associated with mitochondrial gene transfer techniques. Thus for these intending mothers, using egg or embryo donation is not a suitable alternative. From the children's point of view, there are also two concerns. First, children may have a troubled relationship with their parents or struggle to develop their identities they are aware that they share a mitochondrial genome with a donor. Second, children conceived through mitochondrial gene transfer may be exposed to some risks to their physical wellbeing such as the failure of donor’s mtDNA to function properly with the nuclear genes contributed by the intending parents<ref><pubmed>26239841</pubmed></ref>.
Others hold an opposite opinion. They doubt the safety of mitochondrial gene transfer techniques and believe that other safe means of reproduction already exist can be used instead. They argue that, unlike the use of donor eggs or embryos, children born with mitochondrial gene transfer techniques would have a genetic connection to three parents due to the fact that such therapies involve modification of the germline. Some mothers may feel that it is important to have a genetic link with their future child and that having this genetic link outweighs most disadvantages (e.g. health risks and high financial cost) associated with mitochondrial gene transfer techniques. Thus for these intending mothers, using egg or embryo donation is not a suitable alternative. From the children's point of view, there are also two concerns. First, children may have a troubled relationship with their parents or struggle to develop their identities they are aware that they share a mitochondrial genome with a donor. Second, children conceived through mitochondrial gene transfer may be exposed to some risks to their physical wellbeing such as the failure of donor’s mtDNA to function properly with the nuclear genes contributed by the intending parents<ref><pubmed>26239841</pubmed></ref>.


=Legal Status=
=Legal status=
==Permitted==
==Permitted==


Britain is the only country that legally allows the inheritable genetic modification of humans. On February 24 2015, the House of Lords approved regulations. Earlier in the month, the UK House of Commons also approved the techniques that would allow the creation of an embryo with genetic material from three different people and result in inheritable genetic modification. It was passed with 382 votes in favor and 128 against. <ref> Gallagher, J. (2015). '''MPs say yes to three-person babies.''' retrieved from http://www.bbc.com/news/health-31069173 at 09 Oct 2015. </ref>
The United Kingdom is the only country that legally allows the inheritable genetic modification of humans. On 24 February 2015, the House of Lords approved regulations. Earlier in the month, the House of Commons also approved the techniques that would allow the creation of an embryo with genetic material from three different people and result in inheritable genetic modification. It was passed with 382 votes in favor and 128 against<ref> Gallagher, J. (2015). '''MPs say yes to three-person babies.''' retrieved from http://www.bbc.com/news/health-31069173 at 09 Oct 2015. </ref>.


==Under Discussion==
==Under discussion==


In USA the legality of mitochondrial manipulation techniques is still under discussion. On February 25 and 26, 2014, public meetings that included discussion of mitochondrial manipulation techniques were held by The US Food and Drug Administration (FDA). None of the seven members of the public who had contacted the FDA in advance spoke in favor of the techniques. There was no formal decision made on the efficacy of Cytoplasmic transfer, but agreements were made on further practice on animal models to provide scientific data. On January 27 2015, the Institute of Medicine (IOM) held the first in a series of meetings to fulfill the FDA’s request to consider the Ethical and Social Policy of Novel Techniques for Prevention of Maternal Transmission of Mitochondrial DNA Diseases.
In the United States, the legality of mitochondrial manipulation techniques is still under discussion. On 25 and 26 February 2014, public meetings that included discussion of mitochondrial manipulation techniques were held by The US Food and Drug Administration (FDA). None of the seven members of the public who had contacted the FDA in advance spoke in favor of the techniques. There was no formal decision made on the efficacy of Cytoplasmic transfer, but agreements were made on further practice on animal models to provide scientific data. On 27 January 2015, the Institute of Medicine (IOM) held the first in a series of meetings to fulfill the FDA’s request to consider the Ethical and Social Policy of Novel Techniques for Prevention of Maternal Transmission of Mitochondrial DNA Diseases.


==Prohibited==
==Prohibited==
Line 496: Line 496:
|}
|}


* These countries have the same law "Convention for the Protection of Human Rights and Dignity of the Human Being with regard to the Application of Biology and Medicine: Convention on Human Rights and Biomedicine" due to their ratification of the Council of Europe's Convention
*<nowiki> These countries have the same law, "Convention for the Protection of Human Rights and Dignity of the Human Being with regard to the Application of Biology and Medicine: Convention on Human Rights and Biomedicine" due to their ratification of the Council of Europe's Convention.


=Further Reading=
=Further Reading=

Revision as of 02:04, 24 October 2015

2015 Student Projects 
2015 Projects: Three Person Embryos | Ovarian Hyper-stimulation Syndrome | Polycystic Ovarian Syndrome | Male Infertility | Oncofertility | Preimplantation Genetic Diagnosis | Students
2015 Group Project Topic - Assisted Reproductive Technology
This page is an undergraduate science embryology student and may contain inaccuracies in either description or acknowledgements.

Three Person Embryos

Three Person Embryos are embryos from oocytes that contain maternal and paternal DNA, and mitochondria from a third donor. Collectively, the techniques for the creation of Three Person Embryos are referred to as Mitochondrial Donation or Mitochondrial replacement-assisted IVF. Mitochondrial donation is used for the prevention of maternal inheritance of Mitochondrial disorders that occur due to the mutation of mitochondrial DNA (mtDNA). It is considered a germ-line therapy, with the donated mitochondria being passed maternally to the next generation. Because of this it has generated debate in the media and scientific community over the ethics of its use, since the first techniques were developed in the 1980s. Recently, with the development of safer techniques, the United Kingdom and United States have begun the process of legalizing its clinical use.


<html5media width="560" height="315">https://www.youtube.com/embed/0Zs2KntZ7vU</html5media>

Teenage Girl Has Three Biological Parents [1]

History