Talk:Developmental Mechanism - Epithelial Mesenchymal Transition

From Embryology
Revision as of 07:32, 15 November 2011 by S8600021 (talk | contribs) (Created page with "{{Talk Page}} ==2011== ===p53 coordinates cranial neural crest cell growth and epithelial-mesenchymal transition/delamination processes=== Development. 2011 May;138(9):1827-38....")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
About Discussion Pages  
Mark Hill.jpg
On this website the Discussion Tab or "talk pages" for a topic has been used for several purposes:
  1. References - recent and historic that relates to the topic
  2. Additional topic information - currently prepared in draft format
  3. Links - to related webpages
  4. Topic page - an edit history as used on other Wiki sites
  5. Lecture/Practical - student feedback
  6. Student Projects - online project discussions.
Links: Pubmed Most Recent | Reference Tutorial | Journal Searches

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, June 26) Embryology Developmental Mechanism - Epithelial Mesenchymal Transition. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Talk:Developmental_Mechanism_-_Epithelial_Mesenchymal_Transition

2011

p53 coordinates cranial neural crest cell growth and epithelial-mesenchymal transition/delamination processes

Development. 2011 May;138(9):1827-38. Epub 2011 Mar 29.

Rinon A, Molchadsky A, Nathan E, Yovel G, Rotter V, Sarig R, Tzahor E. Source Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel.

Abstract

Neural crest development involves epithelial-mesenchymal transition (EMT), during which epithelial cells are converted into individual migratory cells. Notably, the same signaling pathways regulate EMT function during both development and tumor metastasis. p53 plays multiple roles in the prevention of tumor development; however, its precise roles during embryogenesis are less clear. We have investigated the role of p53 in early cranial neural crest (CNC) development in chick and mouse embryos. In the mouse, p53 knockout embryos displayed broad craniofacial defects in skeletal, neuronal and muscle tissues. In the chick, p53 is expressed in CNC progenitors and its expression decreases with their delamination from the neural tube. Stabilization of p53 protein using a pharmacological inhibitor of its negative regulator, MDM2, resulted in reduced SNAIL2 (SLUG) and ETS1 expression, fewer migrating CNC cells and in craniofacial defects. By contrast, electroporation of a dominant-negative p53 construct increased PAX7(+) SOX9(+) CNC progenitors and EMT/delamination of CNC from the neural tube, although the migration of these cells to the periphery was impaired. Investigating the underlying molecular mechanisms revealed that p53 coordinates CNC cell growth and EMT/delamination processes by affecting cell cycle gene expression and proliferation at discrete developmental stages; disruption of these processes can lead to craniofacial defects.

PMID 21447558