Talk:Gastrointestinal Tract - Oesophagus Development

From Embryology
Revision as of 05:58, 3 May 2017 by Z8600021 (talk | contribs) (Created page with "{{Talk Page}} ==2012== ===Morphology of the developing muscularis externa in the mouse esophagus=== Dis Esophagus. 2012 Jan;25(1):10-6. doi: 10.1111/j.1442-2050.2011.01208....")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
About Discussion Pages  
Mark Hill.jpg
On this website the Discussion Tab or "talk pages" for a topic has been used for several purposes:
  1. References - recent and historic that relates to the topic
  2. Additional topic information - currently prepared in draft format
  3. Links - to related webpages
  4. Topic page - an edit history as used on other Wiki sites
  5. Lecture/Practical - student feedback
  6. Student Projects - online project discussions.
Links: Pubmed Most Recent | Reference Tutorial | Journal Searches

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, June 27) Embryology Gastrointestinal Tract - Oesophagus Development. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Talk:Gastrointestinal_Tract_-_Oesophagus_Development

2012

Morphology of the developing muscularis externa in the mouse esophagus

Dis Esophagus. 2012 Jan;25(1):10-6. doi: 10.1111/j.1442-2050.2011.01208.x. Epub 2011 May 19.

Cao XM1, Yang YP, Li HR, Cui HL, Ya J.

Abstract

Muscularis externa of mouse esophagus is composed of two skeletal muscle layers in the adult. But less attention is paid to the histogenesis of the muscularis externa of the esophagus, and controversies still exist about the developmental process and the spatio-temporal expression characteristics of muscle-specific proteins during the development of esophageal muscularis externa. To further probe into the developmental pattern of muscularis externa of the mouse esophagus and the expression characteristics of different muscle-specific proteins, immunohistochemical and terminal deoxyribonucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP)-digoxigenin nick-end labeling apoptotic staining methods are used to investigate the expression patterns of different muscle-specific proteins and to elucidate the relationship of these protein expressions with the development of muscularis externa of the mouse esophagus. Thus, an understanding of the developing esophageal muscularis externa may be important for developing therapeutic strategies for the treatment of human esophagus diseases. Serial sections of mouse embryos from embryonic day (ED) 12 to ED18, and full-length esophagi from postnatal first to 5th day were stained with monoclonal antibodies against α-smooth muscle actin (α-SMA), α-sarcomerical actin (α-SCA), desmin, and monoclonal anti-skeletal myosin (MHC), while apoptosis was determined using the terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick-end labeling assay. The expression of α-SMA was started at ED12. During the development of ED14-ED15, α-SMA positive cells were seen extending from the walls of left three, four, and six arch arteries toward the dorsal wall of esophagus. Stronger expression of α-SCA and desmin could be detected at ED14 and ED15, expression intensity in caudal segment and inner layer was stained stronger than that of cranial segment and outer layer, but after ED16, strong expression of α-SCA and desmin was found in the outer layer of muscularis externa. Expression of MHC was first detected in the outer layer of cranial segment of muscularis externa at ED17. At ED18, MHC had extended to the level of thyroid gland, staining intensity in the outer layer and cranial segment was stronger than that of inner layer and caudal segment. One to five days after birth, the thickness of the esophageal muscle layer was obviously increased. Most of the muscle cells in the cranial segment of esophagus showed strong expression of α-SCA and clear cross striations at higher magnification. With progression toward the caudal segment, expression intensity of α-SCA became weaker, but the expression intensity of desmin was the same at different levels of esophagus. The muscle fibers were arranged densely with high expression of MHC in the cranial segment. During the development of esophageal muscularis externa, few apoptotic cells were observed. α-SMA, α-SCA, desmin, and MHC show different expression patterns. The differentiation of outer layer of esophageal muscularis externa is quicker than that of inner layer, and the caudal segment is quicker than that of the cranial segment. Besides, apoptosis may not participate in the development of esophageal muscularis externa. The smooth muscle cells from arch arteries may participate in the development of esophageal muscularis externa. © 2011 Copyright the Authors. Journal compilation © 2011, Wiley Periodicals, Inc. and the International Society for Diseases of the Esophagus.

PMID 21595780 DOI: 10.1111/j.1442-2050.2011.01208.x

2000

Both smooth and skeletal muscle precursors are present in foetal mouse oesophagus and they follow different differentiation pathways

Dev Dyn. 2000 Aug;218(4):587-602.

Zhao W1, Dhoot GK.

Abstract

Muscularis externa of mouse oesophagus is composed of two skeletal muscle layers in the adult. Unlike rest of skeletal muscle in the body, the oesophageal skeletal muscle in the mouse has been proposed to be derived from fully differentiated smooth muscle cells by transdifferentiation during later foetal and early postnatal development (Patapoutian et al. [1995] Science 270:1818-1821). Here we characterised the nature of cells in muscularis externa of the mouse oesophagus by ultrastructural and immunoctyochemical analyses. The presence of differentiated skeletal muscle cells identified by positive staining for skeletal muscle specific myosin heavy chain became first apparent in the outer layer of cranial oesophagus at 14 days gestation. The transient expression of smooth muscle type alpha-actin in mouse oesophageal muscle was also apparent during foetal development. This isoform, however, was not smooth muscle specific during early development as it was also detected in foetal skeletal muscles. Compared with oesophagus, the suppression of this smooth muscle type alpha-actin during foetal development was faster in non-oesophageal skeletal muscle cells. The development of skeletal muscle in oesophagus showed a cranial to caudal and an outer layer to inner layer progression. During early foetal development, mouse oesophagus is composed of undifferentiated mesenchymal cells that formed cell clusters. Two types of cells with different staining densities could be distinguished within these cell clusters by electron microscopy. The centrally located pale staining cells gave rise to skeletal muscle cells while the peripherally positioned dense staining cells gave rise to smooth muscle cells, indicating the existence of both skeletal and smooth muscle cell precursors in mouse oesophagus during early foetal development. Further development showed an increase in the proportion of skeletal muscle cells and a decrease in size and number of the smooth muscle type cells. Apart from decrease in cell size, some other morphological features of smooth muscle cell degeneration were also observed during later foetal and early neonatal development. No smooth muscle cells undergoing transdifferentiation were observed. Both immunochemical and ultrastructural observations, thus, demonstrated the presence of skeletal muscle cells in early foetal oesophagus. It is concluded that the transient appearance of smooth muscle cells may provide a scaffold for the laying down of skeletal muscle layers in mouse oesophagus, the final disappearance of which may be triggered by lack of smooth muscle innervation. Copyright 2000 Wiley-Liss, Inc.

PMID 10906778 DOI: 10.1002/1097-0177(2000)9999:9999<::AID-DVDY1019>3.0.CO;2-3