Talk:Fetal Cells in Maternal Blood

From Embryology
Revision as of 12:08, 28 May 2014 by Z8600021 (talk | contribs) (Created page with "{{Talk Page}} ==2013== ===Non-invasive prenatal testing for aneuploidy: current status and future prospects=== Ultrasound Obstet Gynecol. 2013 Jul;42(1):15-33. doi: 10.1002/...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
About Discussion Pages  
Mark Hill.jpg
On this website the Discussion Tab or "talk pages" for a topic has been used for several purposes:
  1. References - recent and historic that relates to the topic
  2. Additional topic information - currently prepared in draft format
  3. Links - to related webpages
  4. Topic page - an edit history as used on other Wiki sites
  5. Lecture/Practical - student feedback
  6. Student Projects - online project discussions.
Links: Pubmed Most Recent | Reference Tutorial | Journal Searches

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, June 2) Embryology Fetal Cells in Maternal Blood. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Talk:Fetal_Cells_in_Maternal_Blood

2013

Non-invasive prenatal testing for aneuploidy: current status and future prospects

Ultrasound Obstet Gynecol. 2013 Jul;42(1):15-33. doi: 10.1002/uog.12513.

Benn P1, Cuckle H, Pergament E.

Abstract

Non-invasive prenatal testing (NIPT) for aneuploidy using cell-free DNA in maternal plasma is revolutionizing prenatal screening and diagnosis. We review NIPT in the context of established screening and invasive technologies, the range of cytogenetic abnormalities detectable, cost, counseling and ethical issues. Current NIPT approaches involve whole-genome sequencing, targeted sequencing and assessment of single nucleotide polymorphism (SNP) differences between mother and fetus. Clinical trials have demonstrated the efficacy of NIPT for Down and Edwards syndromes, and possibly Patau syndrome, in high-risk women. Universal NIPT is not cost-effective, but using NIPT contingently in women found at moderate or high risk by conventional screening is cost-effective. Positive NIPT results must be confirmed using invasive techniques. Established screening, fetal ultrasound and invasive procedures with microarray testing allow the detection of a broad range of additional abnormalities not yet detectable by NIPT. NIPT approaches that take advantage of SNP information potentially allow the identification of parent of origin for imbalances, triploidy, uniparental disomy and consanguinity, and separate evaluation of dizygotic twins. Fetal fraction enrichment, improved sequencing and selected analysis of the most informative sequences should result in tests for additional chromosomal abnormalities. Providing adequate prenatal counseling poses a substantial challenge given the broad range of prenatal testing options now available. Copyright © 2013 ISUOG. Published by John Wiley & Sons, Ltd. KEYWORDS: Down syndrome, amniocentesis, aneuploidy, chorionic villus sampling, fetal DNA, maternal plasma, screening, sequencing, trisomy

PMID 23765643