Talk:Endocrine - Gonad Development: Difference between revisions

From Embryology
(Created page with "{{Talk Page}} ==2011==")
 
No edit summary
Line 1: Line 1:
{{Talk Page}}
{{Talk Page}}


==2011==
==2012==
 
===Fetal Testosterone Influences Sexually Dimorphic Gray Matter in the Human Brain===
J Neurosci. 2012 Jan 11;32(2):674-680.
 
Lombardo MV, Ashwin E, Auyeung B, Chakrabarti B, Taylor K, Hackett G, Bullmore ET, Baron-Cohen S.
Source
Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge CB2 8AH, United Kingdom, Department of Psychology, University of Bath, Bath BA2 7AY, United Kingdom, Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences, University of Reading, Reading RG6 6AH, United Kingdom, Department of Clinical Biochemistry, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom, Department of Fetal Medicine, Rosie Maternity Hospital, Cambridge CB2 0SW, United Kingdom, and Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, United Kingdom.
Abstract
In nonhuman species, testosterone is known to have permanent organizing effects early in life that predict later expression of sex differences in brain and behavior. However, in humans, it is still unknown whether such mechanisms have organizing effects on neural sexual dimorphism. In human males, we show that variation in fetal testosterone (FT) predicts later local gray matter volume of specific brain regions in a direction that is congruent with sexual dimorphism observed in a large independent sample of age-matched males and females from the NIH Pediatric MRI Data Repository. Right temporoparietal junction/posterior superior temporal sulcus (RTPJ/pSTS), planum temporale/parietal operculum (PT/PO), and posterior lateral orbitofrontal cortex (plOFC) had local gray matter volume that was both sexually dimorphic and predicted in a congruent direction by FT. That is, gray matter volume in RTPJ/pSTS was greater for males compared to females and was positively predicted by FT. Conversely, gray matter volume in PT/PO and plOFC was greater in females compared to males and was negatively predicted by FT. Subregions of both amygdala and hypothalamus were also sexually dimorphic in the direction of Male > Female, but were not predicted by FT. However, FT positively predicted gray matter volume of a non-sexually dimorphic subregion of the amygdala. These results bridge a long-standing gap between human and nonhuman species by showing that FT acts as an organizing mechanism for the development of regional sexual dimorphism in the human brain.
 
PMID 22238103

Revision as of 14:17, 18 January 2012

About Discussion Pages  
Mark Hill.jpg
On this website the Discussion Tab or "talk pages" for a topic has been used for several purposes:
  1. References - recent and historic that relates to the topic
  2. Additional topic information - currently prepared in draft format
  3. Links - to related webpages
  4. Topic page - an edit history as used on other Wiki sites
  5. Lecture/Practical - student feedback
  6. Student Projects - online project discussions.
Links: Pubmed Most Recent | Reference Tutorial | Journal Searches

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, June 17) Embryology Endocrine - Gonad Development. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Talk:Endocrine_-_Gonad_Development

2012

Fetal Testosterone Influences Sexually Dimorphic Gray Matter in the Human Brain

J Neurosci. 2012 Jan 11;32(2):674-680.

Lombardo MV, Ashwin E, Auyeung B, Chakrabarti B, Taylor K, Hackett G, Bullmore ET, Baron-Cohen S. Source Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge CB2 8AH, United Kingdom, Department of Psychology, University of Bath, Bath BA2 7AY, United Kingdom, Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences, University of Reading, Reading RG6 6AH, United Kingdom, Department of Clinical Biochemistry, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom, Department of Fetal Medicine, Rosie Maternity Hospital, Cambridge CB2 0SW, United Kingdom, and Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, United Kingdom. Abstract In nonhuman species, testosterone is known to have permanent organizing effects early in life that predict later expression of sex differences in brain and behavior. However, in humans, it is still unknown whether such mechanisms have organizing effects on neural sexual dimorphism. In human males, we show that variation in fetal testosterone (FT) predicts later local gray matter volume of specific brain regions in a direction that is congruent with sexual dimorphism observed in a large independent sample of age-matched males and females from the NIH Pediatric MRI Data Repository. Right temporoparietal junction/posterior superior temporal sulcus (RTPJ/pSTS), planum temporale/parietal operculum (PT/PO), and posterior lateral orbitofrontal cortex (plOFC) had local gray matter volume that was both sexually dimorphic and predicted in a congruent direction by FT. That is, gray matter volume in RTPJ/pSTS was greater for males compared to females and was positively predicted by FT. Conversely, gray matter volume in PT/PO and plOFC was greater in females compared to males and was negatively predicted by FT. Subregions of both amygdala and hypothalamus were also sexually dimorphic in the direction of Male > Female, but were not predicted by FT. However, FT positively predicted gray matter volume of a non-sexually dimorphic subregion of the amygdala. These results bridge a long-standing gap between human and nonhuman species by showing that FT acts as an organizing mechanism for the development of regional sexual dimorphism in the human brain.

PMID 22238103