Talk:Respiratory System - Diaphragm: Difference between revisions

From Embryology
(Created page with "{{Talk Page}} ==2012== ===Congenital diaphragmatic hernia candidate genes derived from embryonic transcriptomes=== Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):2978-83. Epub...")
 
No edit summary
Line 15: Line 15:


PMID 22315423
PMID 22315423
==2011==
===Pleuroperitoneal canal closure and the fetal adrenal gland===
Anat Rec (Hoboken). 2011 Apr;294(4):633-44. doi: 10.1002/ar.21351. Epub 2011 Mar 2.
Hayashi S, Fukuzawa Y, Rodríguez-Vázquez JF, Cho BH, Verdugo-López S, Murakami G, Nakano T.
Source
Medical Education Center, Aichi Medical University School of Medicine, Nagakute, Japan. shogo@aichi-med-u.ac.jp
Abstract
Pleuroperitoneal canal (PP canal) closure is generally considered to result from an increase in the height, and subsequent fusion, of the bilateral pleuroperitoneal folds (PP folds). However, the folds develop in the area ventral to the adrenal, in contrast to the final position of the diaphragm, which extends to the dorsal side of the adrenal (the "retro-adrenal" diaphragm). We examined the semiserial histology of 20 human embryos and fetuses (crown-rump length 11-40 mm). We started observations of the canal at the stage through which the lung bud extends far caudally along the dorsal body wall to the level of the future adrenal, and the phrenic nerve has already reached the PP fold. Subsequently, the developing adrenal causes narrowing of the dorsocaudal parts of the canal, and provides the bilateral midsagittal recesses or "false" bottoms of the pleural cavity. However, at this stage, the PP fold mesenchymal cells are still restricted to the ventral side of the adrenal, especially along the liver and esophagus. Thereafter, in accordance with ascent of the lung, possibly due to anchoring of the liver to the adrenal, the PP fold mesenchymal cells seem to migrate laterally along the coelomic mesothelium covering some sheet-like loose mesenchymal tissue behind the adrenal. Final closure of the PP canal by lateral migration to provide the "retro-adrenal" diaphragm is a process quite different from the common dogma. It is likely that the sheet-like loose mesenchymal tissue becomes the caudal part of the pleural cavity through a process involving cell death.
Copyright © 2011 Wiley-Liss, Inc.
PMID 21370493

Revision as of 15:28, 9 July 2012

About Discussion Pages  
Mark Hill.jpg
On this website the Discussion Tab or "talk pages" for a topic has been used for several purposes:
  1. References - recent and historic that relates to the topic
  2. Additional topic information - currently prepared in draft format
  3. Links - to related webpages
  4. Topic page - an edit history as used on other Wiki sites
  5. Lecture/Practical - student feedback
  6. Student Projects - online project discussions.
Links: Pubmed Most Recent | Reference Tutorial | Journal Searches

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, June 26) Embryology Respiratory System - Diaphragm. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Talk:Respiratory_System_-_Diaphragm

2012

Congenital diaphragmatic hernia candidate genes derived from embryonic transcriptomes

Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):2978-83. Epub 2012 Feb 6.

Russell MK, Longoni M, Wells J, Maalouf FI, Tracy AA, Loscertales M, Ackerman KG, Pober BR, Lage K, Bult CJ, Donahoe PK. Source Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02114, USA.

Abstract

Congenital diaphragmatic hernia (CDH) is a common (1 in 3,000 live births) major congenital malformation that results in significant morbidity and mortality. The discovery of CDH loci using standard genetic approaches has been hindered by its genetic heterogeneity. We hypothesized that gene expression profiling of developing embryonic diaphragms would help identify genes likely to be associated with diaphragm defects. We generated a time series of whole-transcriptome expression profiles from laser captured embryonic mouse diaphragms at embryonic day (E)11.5 and E12.5 when experimental perturbations lead to CDH phenotypes, and E16.5 when the diaphragm is fully formed. Gene sets defining biologically relevant pathways and temporal expression trends were identified by using a series of bioinformatic algorithms. These developmental sets were then compared with a manually curated list of genes previously shown to cause diaphragm defects in humans and in mouse models. Our integrative filtering strategy identified 27 candidates for CDH. We examined the diaphragms of knockout mice for one of the candidate genes, pre-B-cell leukemia transcription factor 1 (Pbx1), and identified a range of previously undetected diaphragmatic defects. Our study demonstrates the utility of genetic characterization of normal development as an integral part of a disease gene identification and prioritization strategy for CDH, an approach that can be extended to other diseases and developmental anomalies.

PMID 22315423

2011

Pleuroperitoneal canal closure and the fetal adrenal gland

Anat Rec (Hoboken). 2011 Apr;294(4):633-44. doi: 10.1002/ar.21351. Epub 2011 Mar 2.

Hayashi S, Fukuzawa Y, Rodríguez-Vázquez JF, Cho BH, Verdugo-López S, Murakami G, Nakano T. Source Medical Education Center, Aichi Medical University School of Medicine, Nagakute, Japan. shogo@aichi-med-u.ac.jp

Abstract

Pleuroperitoneal canal (PP canal) closure is generally considered to result from an increase in the height, and subsequent fusion, of the bilateral pleuroperitoneal folds (PP folds). However, the folds develop in the area ventral to the adrenal, in contrast to the final position of the diaphragm, which extends to the dorsal side of the adrenal (the "retro-adrenal" diaphragm). We examined the semiserial histology of 20 human embryos and fetuses (crown-rump length 11-40 mm). We started observations of the canal at the stage through which the lung bud extends far caudally along the dorsal body wall to the level of the future adrenal, and the phrenic nerve has already reached the PP fold. Subsequently, the developing adrenal causes narrowing of the dorsocaudal parts of the canal, and provides the bilateral midsagittal recesses or "false" bottoms of the pleural cavity. However, at this stage, the PP fold mesenchymal cells are still restricted to the ventral side of the adrenal, especially along the liver and esophagus. Thereafter, in accordance with ascent of the lung, possibly due to anchoring of the liver to the adrenal, the PP fold mesenchymal cells seem to migrate laterally along the coelomic mesothelium covering some sheet-like loose mesenchymal tissue behind the adrenal. Final closure of the PP canal by lateral migration to provide the "retro-adrenal" diaphragm is a process quite different from the common dogma. It is likely that the sheet-like loose mesenchymal tissue becomes the caudal part of the pleural cavity through a process involving cell death. Copyright © 2011 Wiley-Liss, Inc.

PMID 21370493