Book - Chemical embryology 2 (1900): Difference between revisions

From Embryology
(Created page with "{{Header}} {{Ref-Needham1900b}} {| class="wikitable mw-collapsible mw-collapsed" ! Online Editor   |- | 90px|left This historic 1900 volume 2 of a...")
 
mNo edit summary
 
(6 intermediate revisions by the same user not shown)
Line 6: Line 6:
| [[File:Mark_Hill.jpg|90px|left]] This historic 1900 volume 2 of a textbook by Needham describes chemical embryology.
| [[File:Mark_Hill.jpg|90px|left]] This historic 1900 volume 2 of a textbook by Needham describes chemical embryology.
<br><br>
<br><br>
[https://archive.org/details/chemicalembryolo01need Internet Archive]
[https://archive.org/details/chemicalembryolo02need Internet Archive]
<br><br>
<br><br>
Also by this author: {{Ref-Needham1900a}}
Also by this author: {{Ref-Needham1900a}}
Line 12: Line 12:
'''Modern Notes:'''  
'''Modern Notes:'''  
<br>
<br>
[[Historic Textbooks]]
[[Historic Embryology Textbooks]]
|}
|}
{{Historic Disclaimer}}
{{Historic Disclaimer}}
=Chemical Embryology =
=Chemical Embryology - Volume Two=
By
 
Joseph Needham
 
M.A., Ph.D.
 
Fellow of Gonville & Cains College, Cambridge, and University Demonstrator in  Biochemistry.
 
New York: The Macmillan Company Cambridge, England: At The University Press  1931  Printed In Great Britain
 
 
==Contents==
[[ Book - Chemical embryology 1 (1900)|VOLUME 1]]
 
[[ Book - Chemical embryology 2 (1900)|VOLUME 2]]
 
[[Book - Chemical embryology 2-4 (1900)|Section 4. The Respiration and Heat-production of the Embryo]]
 
4-1. Early Work on Embryonic Respiration
 
4-2. Respiration of Echinoderm Embryos in General
 
4-3. Rhythms in Respiratory Exchange
 
4-4. Heat Production and Calorific Quotients of Echinoderm Embryos
 
4-5. Respiration of Annelid, Nematode, Rotifer, and Mollusc Embryos
 
4-6. Respiration of Fish Embryos
 
4-7. Respiration of Amphibian Embryos
 
4-8. Heat-production of Amphibian Embryos
 
4-9. Respiration of Insect Embryos
 
4-10. Respiration of Reptile Embryos
 
4-11. Respiration of Avian Embryos in General
 
4-12. Heat-production of Avian Embryos
 
4-13. Later Work on the Chick's Respiratory Exchange
 
4-14. The Air-space and the Shell
 
4-15. Respiration of Mammalian Embryos
 
4-16. Heat-production of Mammalian Embryos
 
4-17. Anaerobiosis in Embryonic Life
 
4-18. Metabolic Rate in Embryonic Life
 
4-19. Respiratory Intensity of Embryonic Cells in vitro
 
4-20. Embryonic Tissue-respiration and Glycolysis
 
4-21. The Genesis of Heat Regulation
 
4-22. Light-production in Embryonic Life
 
 
[[Book - Chemical embryology 2-5 (1900)|Section 5. Biophysical Phenomena in Ontogenesis]]
 
5-1. The Osmotic Pressure of Amphibian Eggs
 
5-2. The Genesis of Volume Regulation
 
53. The Osmotic Pressure of Aquatic Arthropod Eggs
 
54. The Osmotic Pressure of Fish Eggs
 
5-5. Osmotic Pressure and Electrical Conductivity in Worm and Echinoderm Eggs
 
5-6. The Osmotic Pressure of Terrestrial Eggs
 
5-7. Specific Gravity
 
5-8. Potential Differences, Electrical Resistance, Blaze Currents and Cataphoresis
 
5-9. Refractive Index, Surface Tension and Viscosity
 
 
[[Book - Chemical embryology 2-6 (1900)|Section 6. General Metabolism of the Embryo]]
 
6-1. The j&H of Aquatic Eggs
 
6-2. The j&H of Terrestrial Eggs
 
6-3. rH in Embryonic Life
 
6-4. Water-metabolism of the Avian Egg
 
Section 6-5. Water-content and Growth-rate page
 
6-6. Water-absorption and the Evolution of the Terrestrial Egg
 
6-7. Water-metabolism in Aquatic Eggs
 
6-8. The Chemical Constitution of the Embryonic Body in Birds and Mammals
 
6-9. Absorption-mechanisms and Absorption-intensity
 
6- 10. Storage and Combustion; the Plastic Efficiency Coefficient
 
6-11. Metabolism of the Avian Spare Yolk
 
6-12. Maternal Diet and Embryonic Constitution
 
 
[[Book - Chemical embryology 2-7 (1900)|Section 7. The Energetics and Energy-sources of Embryonic Development]]
 
7-1. The Energy Lost from the Egg during Development
 
7-2. Energy of Growth and Energy of Differentiation
 
7-3. The Relation between Energy Lost and Energy Stored
 
7-4. Real Energetic Efficiency
 
7-5. Apparent Energetic Efficiency
 
7-6. Synthetic Energetic Efficiency
 
7-7. The Sources of the Energy Lost from the Egg
 
 
[[Book - Chemical embryology 2-8 (1900)|Section 8. Carbohydrate Metabolism]]
 
8-1. General Observations on the Avian Egg
 
8-2. Total Carbohydrate, Free Glucose, and Glycogen
 
8-3. Ovomucoid and Combined Glucose
 
8-4. Carbohydrate and Fat
 
8-5. The Metabolism of Glycogen and the Transitory Liver
 
8-6. Free Glucose, Glycogen, and Insulin in the Embryonic Body
 
8-7. General Scheme of Carbohydrate Metabolism in the Avian Egg
 
8-8. Embryonic Tissue Glycogen
 
8-9. Embryonic Blood Sugar
 
8-10. Carbohydrate Metabolism in Amphibian Development
 
8-11. Carbohydrate Metabolism of Invertebrate Eggs
 
8-12. Pentoses
 
8-13. Lactic Acid
 
8-14. Fructose
 
 
[[Book - Chemical embryology 2-9 (1900)|Section 9. Protein Metabolism]]
 
9-1. The Structure of the Avian Egg-proteins before and after Development
 
9-2. Metabolism of the Individual Amino-Acids
 
9-3. The Relations between Protein and non-Protein Nitrogen
 
9-4. The Accumulation of Nitrogenous Waste Products
 
9-5. Protein Catabolism
 
9-6. Nitrogen-excretion; Mesonephros, Allantois, and Amnios
 
9-7. The Origin of Protective Syntheses
 
9*8. Protein Metabolism of Reptilian Eggs
 
9-9. Protein Metabolism of Amphibian Eggs
 
9' 10. Protein Metabolism in Teleostean Ontogeny
 
9-11. Protein Metabolism in Selachian Ontogeny
 
9-12. Protein Metabolism of Insect, Worm, and Echinoderm Eggs
 
9-13. Protein Utilisation in Mammalian Embryonic Life
 
9-14. Protein Utilisation of Explanted Embryonic Cells
 
9-15. Uricotelic Metabolism and the Evolution of the Terrestrial Egg
 
 
[[Book - Chemical embryology 2-10 (1900)|Section 10. The Metabolism of Nucleins and Nitrogenous Extractives]]
 
10-1. Nuclein Metabolism of the Chick Embryo
 
10-2. The Nucleoplasmatic Ratio
 
10-3. Nuclein Synthesis in Developing Eggs
 
10-4. Creatinine, Creatine, and Guanidine
 
 
[[Book - Chemical embryology 2-11 (1900)|Section 11. Fat Metabolism]]
 
11-1. Fat Metabolism of Avian Eggs
 
11-2. Fat Metabolism of Reptilian Eggs
 
11-3. Fat Metabolism of Amphibian Eggs
 
11-4. Fat Metabolism of Selachian Eggs
 
11-5. Fat Metabolism of Teleostean Eggs
 
11-6. Fat Metabolism of Mollusc, Worm, and Echinoderm Eggs
 
11-7. Fat Metabolism of Insect Eggs
 
11-8. Combustion and Synthesis of Fatty Acids in Relation to Metabolic Water
 
11-9. Fat Metabolism of Mammalian Embryos
 
 
[[Book - Chemical embryology 2-12 (1900)|Section 12. The Metabolism ofLipoids, Sterols, Cycloses, Phosphorus and Sulphur]]
 
12-1. Phosphorus Metabolism of the Avian Egg
 
12-2. Tissue Phosphorus Coefficients
 
I2-3. Choline in Avian Development
 
12-4, The Metabolism of Sterols during Avian Development
 
12-5. The Relation between Lipoids and Sterols; the Lipocytic Coefficient
 
12-6. Cycloses and Alcohols in Avian Development
 
12-7. Sulphur Metabolism of the Avian Egg
 
12-8. Phosphorus, Sulphur, Choline, and Cholesterol in Reptile Eggs
 
Section 12-9. Lipoids and Sterols in Amphibian Eggs
 
12-10. Lipoids, Sterols, and Cycloses in Fish Eggs
 
i2-11. Phosphorus, Lipoids and Sterols in Arthropod Eggs
 
12-12. Phosphorus, Lipoids, and Sterols in Worm and Echinoderm Eggs
 
12-13. Lipoids and Sterols in Mammalian Development
 
 
[[Book - Chemical embryology 2-13 (1900)|Section 13. Inorganic Metabolism]]
 
13-1. Changes in the Distribution of Ash during Avian Development
 
13-2. Calcium Metabolism of the Avian Egg
 
13-3. Inorganic Metabolism of other Eggs
 
13-4. The Absorption of Ash from Sea-water by Marine Eggs
 
13-5. The Ani on/Cation Ratio
 
13-6. Inorganic Metabolism of Mammalian Embryos
 
13-7. Calcium Metabolism of Mammalian Embryos
 
[[Book - Chemical embryology 2-14 (1900)|Section 14. Enzymes in Ontogenesis]]
 
14-1. Introduction
 
4-2. Enzymes in Arthropod Eggs
 
4-3. Enzymes in Mollusc, Worm, and Echinoderm Eggs
 
4-4. Enzymes in Fish Eggs
 
4-5. Enzymes in Amphibian Eggs
 
4-6. Enzymes in Sauropsid Eggs
 
4-7. Changes in Enzymic Activity during Development
 
4-8. Enzymes of the Embryonic Body
 
4-9. Enzymes in Mammalian Embryos
 
4-10. The Genesis of Nucleases
 
4-11. Foetal Autolysis
 
 
[[Book - Chemical embryology 2-15 (1900)|Section 15. Hormones in Ontogenesis]]
 
15-1. Introduction
 
15-2. Adrenalin
 
15-3. Insulin
 
15-4. The Parathyroid Hormone
 
15-5. The Hormones of the Pituitary
 
15-6. Secretin
 
15-7. Thyroxin
 
15-8. Oestrin and other Sex Hormones
 
 
[[Book - Chemical embryology 2-16 (1900)|Section i6. Vitamins in Ontogenesis]]
 
16-1. Vitamin A
 
16-2. Vitamin B
 
16-3. Vitamin C
 
16-4. Vitamin D
 
16-5. Vitamins in Mammalian Development
 
16-6. Vitamin E
 
 
[[Book - Chemical embryology 2-17 (1900)|Section 17. Pigments in Ontogenesis]]
 
17-1. The Formation of Blood Pigments
 
17-2. The Formation of Bile Pigments
 
17-3. The Formation of Tissue Pigments
 
17-4. The Pigments of the Avian Egg-shell
 
17-5. The Pigments of the Avian Yolk
 
17-6. Egg-pigments of Aquatic Animals
 
17-7. Melanins in Ontogenesis
 
 
[[Book - Chemical embryology 2-18 (1900)|Section 18. Resistance and Susceptibility in Embryonic Life]]
 
18-1. Introduction
 
18-2. Standard Mortality Curves
 
18-3. Resistance to Mechanical Injury
 
18-4. Resistance to Thermal Injury
 
18-5. Resistance to Electrical Injury
 
18-6. Resistance to Injury caused by Abnormal j&H
 
18-7. Resistance to Injury caused by Abnormal Gas Concentrations (non-Avian Embryos)
 
18-8. Critical Points in Development
 
18-9. Resistance to Injury caused by Abnormal Gas Concentrations (Avian Embryos)
 
18-10. Resistance to Injury caused by Toxic Substances
 
18-11. Resistance to Injury caused by X-rays, Radium Emanation, and Ultra-violet Light
 
 
[[Book - Chemical embryology 2-19 (1900)|Section 19. Serology and Immunology in Embryonic Life]]
 
19-1. Antigenic Properties of Eggs and Embryos
 
19-2. The Formation of Natural Antibodies
 
19-3. The Natural Immunity of Egg-white
 
19-4. Inheritance of Immunity in Oviparous Animals
 
19-5. Serology and Pregnancy
 
19-6. Resistance of the Avian Embryo to Foreign Neoplasms
 
 
[[Book - Chemical embryology 2-20 (1900)|Section 20. Biochemistry of the Placenta]]
 
20-1. Introduction
 
20-2. General Metabolism of the Placenta
 
20-3. Placental Respiration
 
20-4. Nitrogen Metabolism of the Placenta
 
20-5. Carbohydrate Metabolism of the Placenta
 
20-6. Fat and Lipoid Metabolism of the Placenta
 
20-7. Placental Enzymes
 
 
[[Book - Chemical embryology 2-21 (1900)|Section 21. Biochemistry of the Placental Barrier]]
 
21-1. The Autonomy of the Foetal Blood
 
21-2. Evolution of the Placenta
 
21-3. Histotrophe and Haemotrophe
 
21-4. Mesonephros and Placenta
 
21-5. Colostrum and Placenta
 
21-6. Placental Transmission and Molecular Size
 
21-7. QuaHtative Experiments on Placental Permeability
 
21-8. The Passage of Hormones
 
21-9. Factors Governing Placental Transmission
 
2I-IO. Quantitative Experiments on the Passage of Nitrogenous Substances
 
21-11. Quantitative Experiments on the Passage of Phosphorus, Fats, and Sterols
 
21-12. Quantitative Experiments on the Passage of Carbohydrates
 
21-13. Quantitative Experiments on the Passage of Ash
 
21-14. The Passage of Enzymes
 
21-15. The Unequal Balance of Blood Constituents
 
 
[[Book - Chemical embryology 2-22 (1900)|Section 22. Biochemistry of the Amniotic and Allantoic Liquids]]
 
22-1. Introduction
 
22-2. Evolution of the Liquids
 
22-3. Avian Amniotic and Allantoic Liquids
 
22-4. Amount and Composition of Mammalian Amniotic and Allantoic Liquids
 
22-5. Maternal Transudation and Foetal Secretion
 
22-6. Interchange between Amniotic and Allantoic Liquids
 
22-7. Vernix Caseosa
 
 
[[Book - Chemical embryology 2-23 (1900)|Section 23. Blood and Tissue Chemistry of the Embryo]]
 
23-1. Blood
 
23-2. Lung
 
23-3. Muscle
 
23-4. Heart
 
23-5 Nervous Tissue
 
23-6. Connective Tissue
 
23-7. Lymph
 
23-8. Sense Organs
 
23-9 Intestinal Tract
 
 
[[Book - Chemical embryology 2-24 (1900)|Section 24. Hatching and Birth]]
 
24-1. Introduction
 
24-2. Hatching Enzymes
 
24-3. Osmotic Hatching
 
24-4. Egg-breakers
 
24-5. Hatching of the Avian Egg
 
24-6. Mammalian Birth
 
 
[[Book - Chemical embryology 2-25 (1900)|Epilegomena]]
 
The Two Problems of Embryology
 
The Cleidoic Egg and its Evolution
 
Chemical Synthesis as an Aspect of Ontogeny
 
Biochemistry and Morphogenesis
 
Transitory Functions in Embryonic Life
 
The Theory of Recapitulation
 
Recapitulation and Substitution
 
Chemical Recapitulation
 
Provisional Generalisations for Chemical Embryology
 
The Organisation of Development and the Development of Organisation
 
The Future of Embryology
 
 
[[Book - Chemical embryology 2 (1900) 4|PART IV  Appendices]]
 
i. Normal Tables of Magnitudes in Embryonic Growth
 
ii. A Chemical Account of the Maturation of the Egg-cell
 
iii. The Chemical Changes during the Metamorphosis of Insects (by Dorothy Needham)
 
iv. The Development of the Plant Embryo from a Physico-chemical Viewpoint (by Muriel Robinson)
 
 
 
[[Book - Chemical embryology 2 (1900) 5|PART V Bibliography and Author-Index]]
 




{{Footer}}
{{Footer}}

Latest revision as of 16:15, 10 March 2020

Embryology - 16 Jun 2024    Facebook link Pinterest link Twitter link  Expand to Translate  
Google Translate - select your language from the list shown below (this will open a new external page)

العربية | català | 中文 | 中國傳統的 | français | Deutsche | עִברִית | हिंदी | bahasa Indonesia | italiano | 日本語 | 한국어 | မြန်မာ | Pilipino | Polskie | português | ਪੰਜਾਬੀ ਦੇ | Română | русский | Español | Swahili | Svensk | ไทย | Türkçe | اردو | ייִדיש | Tiếng Việt    These external translations are automated and may not be accurate. (More? About Translations)

Needham J. Chemical Embryology Vol. 2. (1900)

Online Editor  
Mark Hill.jpg
This historic 1900 volume 2 of a textbook by Needham describes chemical embryology.



Internet Archive

Also by this author: Needham J. Chemical Embryology Vol. 1. (1900)

Modern Notes:
Historic Embryology Textbooks

Historic Disclaimer - information about historic embryology pages 
Mark Hill.jpg
Pages where the terms "Historic" (textbooks, papers, people, recommendations) appear on this site, and sections within pages where this disclaimer appears, indicate that the content and scientific understanding are specific to the time of publication. This means that while some scientific descriptions are still accurate, the terminology and interpretation of the developmental mechanisms reflect the understanding at the time of original publication and those of the preceding periods, these terms, interpretations and recommendations may not reflect our current scientific understanding.     (More? Embryology History | Historic Embryology Papers)

Chemical Embryology - Volume Two

By

Joseph Needham

M.A., Ph.D.

Fellow of Gonville & Cains College, Cambridge, and University Demonstrator in Biochemistry.

New York: The Macmillan Company Cambridge, England: At The University Press 1931 Printed In Great Britain


Contents

VOLUME 1

VOLUME 2

Section 4. The Respiration and Heat-production of the Embryo

4-1. Early Work on Embryonic Respiration

4-2. Respiration of Echinoderm Embryos in General

4-3. Rhythms in Respiratory Exchange

4-4. Heat Production and Calorific Quotients of Echinoderm Embryos

4-5. Respiration of Annelid, Nematode, Rotifer, and Mollusc Embryos

4-6. Respiration of Fish Embryos

4-7. Respiration of Amphibian Embryos

4-8. Heat-production of Amphibian Embryos

4-9. Respiration of Insect Embryos

4-10. Respiration of Reptile Embryos

4-11. Respiration of Avian Embryos in General

4-12. Heat-production of Avian Embryos

4-13. Later Work on the Chick's Respiratory Exchange

4-14. The Air-space and the Shell

4-15. Respiration of Mammalian Embryos

4-16. Heat-production of Mammalian Embryos

4-17. Anaerobiosis in Embryonic Life

4-18. Metabolic Rate in Embryonic Life

4-19. Respiratory Intensity of Embryonic Cells in vitro

4-20. Embryonic Tissue-respiration and Glycolysis

4-21. The Genesis of Heat Regulation

4-22. Light-production in Embryonic Life


Section 5. Biophysical Phenomena in Ontogenesis

5-1. The Osmotic Pressure of Amphibian Eggs

5-2. The Genesis of Volume Regulation

53. The Osmotic Pressure of Aquatic Arthropod Eggs

54. The Osmotic Pressure of Fish Eggs

5-5. Osmotic Pressure and Electrical Conductivity in Worm and Echinoderm Eggs

5-6. The Osmotic Pressure of Terrestrial Eggs

5-7. Specific Gravity

5-8. Potential Differences, Electrical Resistance, Blaze Currents and Cataphoresis

5-9. Refractive Index, Surface Tension and Viscosity


Section 6. General Metabolism of the Embryo

6-1. The j&H of Aquatic Eggs

6-2. The j&H of Terrestrial Eggs

6-3. rH in Embryonic Life

6-4. Water-metabolism of the Avian Egg

Section 6-5. Water-content and Growth-rate page

6-6. Water-absorption and the Evolution of the Terrestrial Egg

6-7. Water-metabolism in Aquatic Eggs

6-8. The Chemical Constitution of the Embryonic Body in Birds and Mammals

6-9. Absorption-mechanisms and Absorption-intensity

6- 10. Storage and Combustion; the Plastic Efficiency Coefficient

6-11. Metabolism of the Avian Spare Yolk

6-12. Maternal Diet and Embryonic Constitution


Section 7. The Energetics and Energy-sources of Embryonic Development

7-1. The Energy Lost from the Egg during Development

7-2. Energy of Growth and Energy of Differentiation

7-3. The Relation between Energy Lost and Energy Stored

7-4. Real Energetic Efficiency

7-5. Apparent Energetic Efficiency

7-6. Synthetic Energetic Efficiency

7-7. The Sources of the Energy Lost from the Egg


Section 8. Carbohydrate Metabolism

8-1. General Observations on the Avian Egg

8-2. Total Carbohydrate, Free Glucose, and Glycogen

8-3. Ovomucoid and Combined Glucose

8-4. Carbohydrate and Fat

8-5. The Metabolism of Glycogen and the Transitory Liver

8-6. Free Glucose, Glycogen, and Insulin in the Embryonic Body

8-7. General Scheme of Carbohydrate Metabolism in the Avian Egg

8-8. Embryonic Tissue Glycogen

8-9. Embryonic Blood Sugar

8-10. Carbohydrate Metabolism in Amphibian Development

8-11. Carbohydrate Metabolism of Invertebrate Eggs

8-12. Pentoses

8-13. Lactic Acid

8-14. Fructose


Section 9. Protein Metabolism

9-1. The Structure of the Avian Egg-proteins before and after Development

9-2. Metabolism of the Individual Amino-Acids

9-3. The Relations between Protein and non-Protein Nitrogen

9-4. The Accumulation of Nitrogenous Waste Products

9-5. Protein Catabolism

9-6. Nitrogen-excretion; Mesonephros, Allantois, and Amnios

9-7. The Origin of Protective Syntheses

9*8. Protein Metabolism of Reptilian Eggs

9-9. Protein Metabolism of Amphibian Eggs

9' 10. Protein Metabolism in Teleostean Ontogeny

9-11. Protein Metabolism in Selachian Ontogeny

9-12. Protein Metabolism of Insect, Worm, and Echinoderm Eggs

9-13. Protein Utilisation in Mammalian Embryonic Life

9-14. Protein Utilisation of Explanted Embryonic Cells

9-15. Uricotelic Metabolism and the Evolution of the Terrestrial Egg


Section 10. The Metabolism of Nucleins and Nitrogenous Extractives

10-1. Nuclein Metabolism of the Chick Embryo

10-2. The Nucleoplasmatic Ratio

10-3. Nuclein Synthesis in Developing Eggs

10-4. Creatinine, Creatine, and Guanidine


Section 11. Fat Metabolism

11-1. Fat Metabolism of Avian Eggs

11-2. Fat Metabolism of Reptilian Eggs

11-3. Fat Metabolism of Amphibian Eggs

11-4. Fat Metabolism of Selachian Eggs

11-5. Fat Metabolism of Teleostean Eggs

11-6. Fat Metabolism of Mollusc, Worm, and Echinoderm Eggs

11-7. Fat Metabolism of Insect Eggs

11-8. Combustion and Synthesis of Fatty Acids in Relation to Metabolic Water

11-9. Fat Metabolism of Mammalian Embryos


Section 12. The Metabolism ofLipoids, Sterols, Cycloses, Phosphorus and Sulphur

12-1. Phosphorus Metabolism of the Avian Egg

12-2. Tissue Phosphorus Coefficients

I2-3. Choline in Avian Development

12-4, The Metabolism of Sterols during Avian Development

12-5. The Relation between Lipoids and Sterols; the Lipocytic Coefficient

12-6. Cycloses and Alcohols in Avian Development

12-7. Sulphur Metabolism of the Avian Egg

12-8. Phosphorus, Sulphur, Choline, and Cholesterol in Reptile Eggs

Section 12-9. Lipoids and Sterols in Amphibian Eggs

12-10. Lipoids, Sterols, and Cycloses in Fish Eggs

i2-11. Phosphorus, Lipoids and Sterols in Arthropod Eggs

12-12. Phosphorus, Lipoids, and Sterols in Worm and Echinoderm Eggs

12-13. Lipoids and Sterols in Mammalian Development


Section 13. Inorganic Metabolism

13-1. Changes in the Distribution of Ash during Avian Development

13-2. Calcium Metabolism of the Avian Egg

13-3. Inorganic Metabolism of other Eggs

13-4. The Absorption of Ash from Sea-water by Marine Eggs

13-5. The Ani on/Cation Ratio

13-6. Inorganic Metabolism of Mammalian Embryos

13-7. Calcium Metabolism of Mammalian Embryos

Section 14. Enzymes in Ontogenesis

14-1. Introduction

4-2. Enzymes in Arthropod Eggs

4-3. Enzymes in Mollusc, Worm, and Echinoderm Eggs

4-4. Enzymes in Fish Eggs

4-5. Enzymes in Amphibian Eggs

4-6. Enzymes in Sauropsid Eggs

4-7. Changes in Enzymic Activity during Development

4-8. Enzymes of the Embryonic Body

4-9. Enzymes in Mammalian Embryos

4-10. The Genesis of Nucleases

4-11. Foetal Autolysis


Section 15. Hormones in Ontogenesis

15-1. Introduction

15-2. Adrenalin

15-3. Insulin

15-4. The Parathyroid Hormone

15-5. The Hormones of the Pituitary

15-6. Secretin

15-7. Thyroxin

15-8. Oestrin and other Sex Hormones


Section i6. Vitamins in Ontogenesis

16-1. Vitamin A

16-2. Vitamin B

16-3. Vitamin C

16-4. Vitamin D

16-5. Vitamins in Mammalian Development

16-6. Vitamin E


Section 17. Pigments in Ontogenesis

17-1. The Formation of Blood Pigments

17-2. The Formation of Bile Pigments

17-3. The Formation of Tissue Pigments

17-4. The Pigments of the Avian Egg-shell

17-5. The Pigments of the Avian Yolk

17-6. Egg-pigments of Aquatic Animals

17-7. Melanins in Ontogenesis


Section 18. Resistance and Susceptibility in Embryonic Life

18-1. Introduction

18-2. Standard Mortality Curves

18-3. Resistance to Mechanical Injury

18-4. Resistance to Thermal Injury

18-5. Resistance to Electrical Injury

18-6. Resistance to Injury caused by Abnormal j&H

18-7. Resistance to Injury caused by Abnormal Gas Concentrations (non-Avian Embryos)

18-8. Critical Points in Development

18-9. Resistance to Injury caused by Abnormal Gas Concentrations (Avian Embryos)

18-10. Resistance to Injury caused by Toxic Substances

18-11. Resistance to Injury caused by X-rays, Radium Emanation, and Ultra-violet Light


Section 19. Serology and Immunology in Embryonic Life

19-1. Antigenic Properties of Eggs and Embryos

19-2. The Formation of Natural Antibodies

19-3. The Natural Immunity of Egg-white

19-4. Inheritance of Immunity in Oviparous Animals

19-5. Serology and Pregnancy

19-6. Resistance of the Avian Embryo to Foreign Neoplasms


Section 20. Biochemistry of the Placenta

20-1. Introduction

20-2. General Metabolism of the Placenta

20-3. Placental Respiration

20-4. Nitrogen Metabolism of the Placenta

20-5. Carbohydrate Metabolism of the Placenta

20-6. Fat and Lipoid Metabolism of the Placenta

20-7. Placental Enzymes


Section 21. Biochemistry of the Placental Barrier

21-1. The Autonomy of the Foetal Blood

21-2. Evolution of the Placenta

21-3. Histotrophe and Haemotrophe

21-4. Mesonephros and Placenta

21-5. Colostrum and Placenta

21-6. Placental Transmission and Molecular Size

21-7. QuaHtative Experiments on Placental Permeability

21-8. The Passage of Hormones

21-9. Factors Governing Placental Transmission

2I-IO. Quantitative Experiments on the Passage of Nitrogenous Substances

21-11. Quantitative Experiments on the Passage of Phosphorus, Fats, and Sterols

21-12. Quantitative Experiments on the Passage of Carbohydrates

21-13. Quantitative Experiments on the Passage of Ash

21-14. The Passage of Enzymes

21-15. The Unequal Balance of Blood Constituents


Section 22. Biochemistry of the Amniotic and Allantoic Liquids

22-1. Introduction

22-2. Evolution of the Liquids

22-3. Avian Amniotic and Allantoic Liquids

22-4. Amount and Composition of Mammalian Amniotic and Allantoic Liquids

22-5. Maternal Transudation and Foetal Secretion

22-6. Interchange between Amniotic and Allantoic Liquids

22-7. Vernix Caseosa


Section 23. Blood and Tissue Chemistry of the Embryo

23-1. Blood

23-2. Lung

23-3. Muscle

23-4. Heart

23-5 Nervous Tissue

23-6. Connective Tissue

23-7. Lymph

23-8. Sense Organs

23-9 Intestinal Tract


Section 24. Hatching and Birth

24-1. Introduction

24-2. Hatching Enzymes

24-3. Osmotic Hatching

24-4. Egg-breakers

24-5. Hatching of the Avian Egg

24-6. Mammalian Birth


Epilegomena

The Two Problems of Embryology

The Cleidoic Egg and its Evolution

Chemical Synthesis as an Aspect of Ontogeny

Biochemistry and Morphogenesis

Transitory Functions in Embryonic Life

The Theory of Recapitulation

Recapitulation and Substitution

Chemical Recapitulation

Provisional Generalisations for Chemical Embryology

The Organisation of Development and the Development of Organisation

The Future of Embryology


PART IV Appendices

i. Normal Tables of Magnitudes in Embryonic Growth

ii. A Chemical Account of the Maturation of the Egg-cell

iii. The Chemical Changes during the Metamorphosis of Insects (by Dorothy Needham)

iv. The Development of the Plant Embryo from a Physico-chemical Viewpoint (by Muriel Robinson)


PART V Bibliography and Author-Index



Cite this page: Hill, M.A. (2024, June 16) Embryology Book - Chemical embryology 2 (1900). Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Book_-_Chemical_embryology_2_(1900)

What Links Here?
© Dr Mark Hill 2024, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G