File:Notch signalling in muscle regeneration cartoon.jpg: Difference between revisions

From Embryology
(Notch signalling activity during muscle regeneration. Upper panel: In wild type muscle, quiescent, G0-arrested satellite cells have high Notch activity (purple line), which maintains Pax7 and inhibits Myod (indirectly: dotted line) and Myogenin (direct...)
 
mNo edit summary
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
Notch signalling activity during muscle regeneration. Upper panel: In wild type muscle, quiescent, G0-arrested satellite cells have high Notch activity (purple line), which maintains Pax7 and inhibits Myod (indirectly: dotted line) and Myogenin (directly via Hey1) expression. Immediately after activation, satellite cells downregulate Notch activity and express Myod that is required for appropriate Cdc6 expression and S-phase entry. During the amplification phase high Notch activity is restricted to upstream, Pax7Hi cells that remain undifferentiated and self-renew to replenish the satellite cell pool. Notch activation is triggered by Dll1-bearing differentiating myoblasts. Non-muscle cells, like infiltrating inflammatory cells and fibro/adipogenic progenitors could also trigger or influence Notch activation. The expression of Dll ligands by the mature myofibres is likely, but remains to be demonstrated. Lower panel: Rbpj null satellite cells (no Notch activity: dotted purple line) enter the cell cycle normally and start proliferating. Mutant satellite cells differentiate faster (yellow cells) and fail to self-renew.
==Notch signalling activity during muscle regeneration==


Muscle quiescent, G0-arrested satellite cells have high Notch activity (purple line), which maintains Pax7 and inhibits Myod (indirectly: dotted line) and Myogenin (directly via Hey1) expression. Immediately after activation, satellite cells downregulate Notch activity and express Myod that is required for appropriate Cdc6 expression and S-phase entry. During the amplification phase high Notch activity is restricted to upstream, Pax7Hi cells that remain undifferentiated and self-renew to replenish the satellite cell pool. Notch activation is triggered by Dll1-bearing differentiating myoblasts. Non-muscle cells, like infiltrating inflammatory cells and fibro/adipogenic progenitors could also trigger or influence Notch activation. The expression of Dll ligands by the mature myofibres is likely, but remains to be demonstrated.
:'''Links:''' [[Developmental Signals - Notch|Notch]] | [[Musculoskeletal_System_-_Muscle_Development|Muscle Development]]
===Reference===
<pubmed>24472470</pubmed>| [http://www.biomedcentral.com/1471-213X/14/2 BMC Dev Biol.]
====Copyright====
© 2014 Mourikis and Tajbakhsh; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


1471-213X-14-2-1-l.jpg
1471-213X-14-2-1-l.jpg
[[Category:Muscle]] [[Category:Molecular]] [[Category:Notch]][[Category:Cartoon]]

Latest revision as of 14:03, 23 March 2014

Notch signalling activity during muscle regeneration

Muscle quiescent, G0-arrested satellite cells have high Notch activity (purple line), which maintains Pax7 and inhibits Myod (indirectly: dotted line) and Myogenin (directly via Hey1) expression. Immediately after activation, satellite cells downregulate Notch activity and express Myod that is required for appropriate Cdc6 expression and S-phase entry. During the amplification phase high Notch activity is restricted to upstream, Pax7Hi cells that remain undifferentiated and self-renew to replenish the satellite cell pool. Notch activation is triggered by Dll1-bearing differentiating myoblasts. Non-muscle cells, like infiltrating inflammatory cells and fibro/adipogenic progenitors could also trigger or influence Notch activation. The expression of Dll ligands by the mature myofibres is likely, but remains to be demonstrated.


Links: Notch | Muscle Development

Reference

<pubmed>24472470</pubmed>| BMC Dev Biol.

Copyright

© 2014 Mourikis and Tajbakhsh; licensee BioMed Central Ltd.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

1471-213X-14-2-1-l.jpg

File history

Yi efo/eka'e gwa ebo wo le nyangagi wuncin ye kamina wunga tinya nan

GwalagizhiNyangagiDimensionsUserComment
current13:56, 23 March 2014Thumbnail for version as of 13:56, 23 March 20141,000 × 588 (102 KB)Z8600021 (talk | contribs)Notch signalling activity during muscle regeneration. Upper panel: In wild type muscle, quiescent, G0-arrested satellite cells have high Notch activity (purple line), which maintains Pax7 and inhibits Myod (indirectly: dotted line) and Myogenin (direct...

The following page uses this file:

Metadata