Talk:Developmental Signals - Vascular Endothelial Growth Factor

From Embryology
About Discussion Pages  
Mark Hill.jpg
On this website the Discussion Tab or "talk pages" for a topic has been used for several purposes:
  1. References - recent and historic that relates to the topic
  2. Additional topic information - currently prepared in draft format
  3. Links - to related webpages
  4. Topic page - an edit history as used on other Wiki sites
  5. Lecture/Practical - student feedback
  6. Student Projects - online project discussions.
Links: Pubmed Most Recent | Reference Tutorial | Journal Searches

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2021, May 18) Embryology Developmental Signals - Vascular Endothelial Growth Factor. Retrieved from


NOTCH regulation of the endothelial cell phenotype

Curr Opin Hematol. 2018 Mar 14. doi: 10.1097/MOH.0000000000000425. [Epub ahead of print]

Mack JJ1, Iruela-Arispe ML2.

Abstract PURPOSE OF REVIEW: The formation of a hierarchical vascular network is a complex process that requires precise temporal and spatial integration of several signaling pathways. Amongst those, Notch has emerged as a key regulator of multiple steps that expand from endothelial sprouting to arterial specification and remains relevant in the adult. This review aims to summarize major concepts and rising hypotheses on the role of Notch signaling in the endothelium. RECENT FINDINGS: A wealth of new information has helped to clarify how Notch signaling cooperates with other pathways to orchestrate vascular morphogenesis, branching, and function. Endothelial vascular endothelial growth factor, C-X-C chemokine receptor type 4, and nicotinamide adenine dinucleotide phosphate oxidase 2 have been highlighted as key regulators of the pathway. Furthermore, blood flow forces during vascular development induce Notch1 signaling to suppress endothelial cell proliferation, enhance barrier function, and promote arterial specification. Importantly, Notch1 has been recently recognized as an endothelial mechanosensor that is highly responsive to the level of shear stress to enable differential Notch activation in distinct regions of the vessel wall and suppress inflammation. SUMMARY: Although it is well accepted that the Notch signaling pathway is essential for vascular morphogenesis, its contributions to the homeostasis of adult endothelium were uncovered only recently. Furthermore, its exquisite regulation by flow and impressive interface with multiple signaling pathways indicates that Notch is at the center of a highly interactive web that integrates both physical and chemical signals to ensure vascular stability.This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. PMID: 29547401 DOI: 10.1097/MOH.0000000000000425


Transcriptional profiling of mouse uterus at pre-implantation stage under VEGF repression

PLoS One. 2013;8(2):e57287. doi: 10.1371/journal.pone.0057287. Epub 2013 Feb 28.

Ji Y, Lu X, Zhong Q, Liu P, An Y, Zhang Y, Zhang S, Jia R, Tesfamariam IG, Kahsay AG, Zhang L, Zhu W, Zheng Y. Source Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China.


Uterus development during pre-implantation stage affects implantation process and embryo growth. Aberrant uterus development is associated with many human reproductive diseases. Among the factors regulating uterus development, vascular remodeling promoters are critical for uterus function and fertility. Vascular endothelial growth factor (VEGF), as one of the major members, has been found to be important in endothelial cell growth and blood vessel development, as well as in non-endothelial cells. VEGF mediation in reproduction has been broadly studied, but VEGF-induced transcriptional machinery during implantation window has not been systematically studied. In this study, a genetically repressed VEGF mouse model was used to analyze uterus transcriptome at gestation 2.5 (G2.5) by Solexa/Illumina's digital gene expression (DGE) system. A number of 831 uterus-specific and 2398 VEGF-regulated genes were identified. Gene ontology (GO) analysis indicated that genes actively involved in uterus development were members of collagen biosynthesis, cell proliferation and cell apoptosis. Uterus-specific genes were enriched in activities of phosphatidyl inositol phosphate kinase, histone H3-K36 demethylation and protein acetylation. Among VEGF-regulated genes, up-regulated were associated with RNA polymerase III activity while down-regulated were strongly related with muscle development. Comparable numbers of antisense transcripts were identified. Expression levels of the antisense transcripts were found tightly correlated with their sense expression levels, an indication of possibly non-specific transcripts generated around the active promoters and enhancers. The antisense transcripts with exceptionally high or low expression levels and the antisense transcripts under VEGF regulation were also identified. These transcripts may be important candidates in regulation of uterus development. This study provides a global survey on genes and antisense transcripts regulated by VEGF in the pre-implantation stage. Results will contribute to further study the candidate genes and pathways in regulating implantation process and related diseases. PMID 23468957

A truncation allele in vascular endothelial growth factor c reveals distinct modes of signaling during lymphatic and vascular development

Development. 2013 Apr;140(7):1497-506. doi: 10.1242/dev.084152. Epub 2013 Mar 5.

Villefranc JA, Nicoli S, Bentley K, Jeltsch M, Zarkada G, Moore JC, Gerhardt H, Alitalo K, Lawson ND. Source Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA.


Vascular endothelial growth factor C (Vegfc) is a secreted protein that guides lymphatic development in vertebrate embryos. However, its role during developmental angiogenesis is not well characterized. Here, we identify a mutation in zebrafish vegfc that severely affects lymphatic development and leads to angiogenesis defects on sensitized genetic backgrounds. The um18 mutation prematurely truncated Vegfc, blocking its secretion and paracrine activity but not its ability to activate its receptor Flt4. When expressed in endothelial cells, vegfc(um18) could not rescue lymphatic defects in mutant embryos, but induced ectopic blood vessel branching. Furthermore, vegfc-deficient endothelial cells did not efficiently contribute to tip cell positions in developing sprouts. Computational modeling together with assessment of endothelial cell dynamics by time-lapse analysis suggested that an autocrine Vegfc/Flt4 loop plays an important role in migratory persistence and filopodia stability during sprouting. Our results suggest that Vegfc acts in two distinct modes during development: as a paracrine factor secreted from arteries to guide closely associated lymphatic vasculature and as an autocrine factor to drive migratory persistence during angiogenesis. PMID 23462469

A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy

EMBO J. 2013 Mar 6;32(5):629-44. doi: 10.1038/emboj.2012.340. Epub 2013 Jan 8.

Hägerling R, Pollmann C, Andreas M, Schmidt C, Nurmi H, Adams RH, Alitalo K, Andresen V, Schulte-Merker S, Kiefer F. Source Mammalian Cell Signaling Laboratory, Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.


During mammalian development, a subpopulation of endothelial cells in the cardinal vein (CV) expresses lymphatic-specific genes and subsequently develops into the first lymphatic structures, collectively termed as lymph sacs. Budding, sprouting and ballooning of lymphatic endothelial cells (LECs) have been proposed to underlie the emergence of LECs from the CV, but the exact mechanisms of lymph vessel formation remain poorly understood. Applying selective plane illumination-based ultramicroscopy to entire wholemount-immunostained mouse embryos, we visualized the complete developing vascular system with cellular resolution. Here, we report emergence of the earliest detectable LECs as strings of loosely connected cells between the CV and superficial venous plexus. Subsequent aggregation of LECs resulted in formation of two distinct, previously unidentified lymphatic structures, the dorsal peripheral longitudinal lymphatic vessel (PLLV) and the ventral primordial thoracic duct (pTD), which at later stages formed a direct contact with the CV. Providing new insights into their function, we found vascular endothelial growth factor C (VEGF-C) and the matrix component CCBE1 indispensable for LEC budding and migration. Altogether, we present a significantly more detailed view and novel model of early lymphatic development.

PMID 23299940