Talk:Primordial Germ Cell Development: Difference between revisions

From Embryology
Line 31: Line 31:
Cytotechnology. 2008 Jun;57(2):199-205. Epub 2008 Jul 23.
Cytotechnology. 2008 Jun;57(2):199-205. Epub 2008 Jul 23.
PMID: 19003166
PMID: 19003166
===Primordial germ cell specification from embryonic stem cells===
Wei W, Qing T, Ye X, Liu H, Zhang D, Yang W, Deng H.
PLoS One. 2008;3(12):e4013. Epub 2008 Dec 24.
BACKGROUND: Primordial germ cell (PGC) specification is the first crucial step in germ line development. However, owing to significant challenges regarding the in vivo system, such as the complex cellular environment and potential problems with embryo manipulation, it is desirable to generate embryonic stem (ES) cells that are capable of overcoming these aforementioned limitations in order to provide a potential in vitro model to recapitulate the developmental processes in vivo.
METHODOLOGY AND PRINCIPAL FINDINGS: Here, we studied the detailed process of PGC specification from stella-GFP ES cells. We first observed the heterogeneous expression of stella in ES cells. However, neither Stella-positive ES cells nor Stella-negative ES cells shared a similar gene expression pattern with either PGCs or PGC precursors. Second, we derived PGCs from ES cells using two differentiation methods, namely the attachment culture technique and the embryoid body (EB) method. Compared with PGCs derived via the attachment culture technique, PGCs derived via the EB method that had undergone the sequential erasure of Peg3 followed by Igf2r resulted in a cell line in which the expression dynamics of T, Fgf8 and Sox17, in addition to the expression of the epiblast markers, were more similar to the in vivo expression, thus demonstrating that the process of PGC derivation was more faithfully recapitulated using the EB method. Furthermore, we developed an in vitro model of PGC specification in a completely chemically defined medium (CDM) that indicated that BMP4 and Wnt3a promoted PGC derivation, whereas BMP8b and activinA had no observable effect on PGC derivation.
CONCLUSIONS AND SIGNIFICANCE: The in vitro model we have established can recapitulate the developmental processes in vivo and provides new insights into the mechanism of PGC specification.
PMID: 19107197

Revision as of 23:33, 18 November 2010

2009

Dazl functions in maintenance of pluripotency and genetic and epigenetic programs of differentiation in mouse primordial germ cells in vivo and in vitro

Haston KM, Tung JY, Reijo Pera RA. PLoS One. 2009 May 21;4(5):e5654.

BACKGROUND: Mammalian germ cells progress through a unique developmental program that encompasses proliferation and migration of the nascent primordial germ cell (PGC) population, reprogramming of nuclear DNA to reset imprinted gene expression, and differentiation of mature gametes. Little is known of the genes that regulate quantitative and qualitative aspects of early mammalian germ cell development both in vivo, and during differentiation of germ cells from mouse embryonic stem cells (mESCs) in vitro.

METHODOLOGY AND PRINCIPAL FINDINGS: We used a transgenic mouse system that enabled isolation of small numbers of Oct4DeltaPE:GFP-positive germ cells in vivo, and following differentiation from mESCs in vitro, to uncover quantitate and qualitative phenotypes associated with the disruption of a single translational regulator, Dazl. We demonstrate that disruption of Dazl results in a post-migratory, pre-meiotic reduction in PGC number accompanied by aberrant expression of pluripotency genes and failure to erase and re-establish genomic imprints in isolated male and female PGCs, as well as subsequent defect in progression through meiosis. Moreover, the phenotypes observed in vivo were mirrored by those in vitro, with inability of isolated mutant PGCs to establish pluripotent EG (embryonic germ) cell lines and few residual Oct-4-expressing cells remaining after somatic differentiation of mESCs carrying a Dazl null mutation. Finally, we observed that even within undifferentiated mESCs, a nascent germ cell subpopulation exists that was effectively eliminated with ablation of Dazl.

CONCLUSIONS AND SIGNIFICANCE: This report establishes the translational regulator Dazl as a component of pluripotency, genetic, and epigenetic programs at multiple time points of germ cell development in vivo and in vitro, and validates use of the ESC system to model and explore germ cell biology.

PMID: 19468308


Steel factor controls primordial germ cell survival and motility from the time of their specification in the allantois, and provides a continuous niche throughout their migration

Development. 2009 Apr;136(8):1295-303. Epub 2009 Mar 11.

Gu Y, Runyan C, Shoemaker A, Surani A, Wylie C.

Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA. Abstract Steel factor is an essential survival and proliferation factor for primordial germ cells (PGCs) during their migration in the early mouse embryo. PGCs arise during gastrulation, and migrate into the posterior endoderm that becomes the hindgut. Previous reports have suggested that PGCs become dependent on Steel factor when they colonize the hindgut. However, in the absence of a good marker for living PGCs, their behavior before hindgut colonization has not been previously studied. We report here the normal behavior of PGCs in live embryos before hindgut colonization, and the roles of Steel factor, using a reporter line in which GFP is driven by the promoter of the Stella gene, whose activation accompanies the initial specification of PGCs. We show first that PGCs are surrounded by Steel factor-expressing cells from their first appearance in the allantois to the time they enter the genital ridges. Second, fewer PGCs are found in the allantois in Steel-null embryos, but this is not due to a failure of PGC specification. Third, the analysis of cultured Steel-null early embryos shows that Steel factor is required for normal PGC motility, both in the allantois and in the hindgut. Germ cells migrate actively in the allantois, and move directionally from the allantois into the proximal epiblast. In the absence of Steel factor, caused by either null mutation or antibody blockade, PGC motility is dramatically decreased, but directionality is maintained, demonstrating a primary role for Steel factor in PGC motility. This was found both before and after colonization of the hindgut. These data, together with previously published data, show that PGCs are Steel factor dependent from their initial specification until they colonize the genital ridges, and suggest the existence of a ;spatio-temporal niche' that travels with this important pluripotential cell population in the embryo.

PMID: 19279135

2008

Analysis of chicken primordial germ cells

Motono M, Ohashi T, Nishijima K, Iijima S. Cytotechnology. 2008 Jun;57(2):199-205. Epub 2008 Jul 23. PMID: 19003166

Primordial germ cell specification from embryonic stem cells

Wei W, Qing T, Ye X, Liu H, Zhang D, Yang W, Deng H. PLoS One. 2008;3(12):e4013. Epub 2008 Dec 24.

BACKGROUND: Primordial germ cell (PGC) specification is the first crucial step in germ line development. However, owing to significant challenges regarding the in vivo system, such as the complex cellular environment and potential problems with embryo manipulation, it is desirable to generate embryonic stem (ES) cells that are capable of overcoming these aforementioned limitations in order to provide a potential in vitro model to recapitulate the developmental processes in vivo.

METHODOLOGY AND PRINCIPAL FINDINGS: Here, we studied the detailed process of PGC specification from stella-GFP ES cells. We first observed the heterogeneous expression of stella in ES cells. However, neither Stella-positive ES cells nor Stella-negative ES cells shared a similar gene expression pattern with either PGCs or PGC precursors. Second, we derived PGCs from ES cells using two differentiation methods, namely the attachment culture technique and the embryoid body (EB) method. Compared with PGCs derived via the attachment culture technique, PGCs derived via the EB method that had undergone the sequential erasure of Peg3 followed by Igf2r resulted in a cell line in which the expression dynamics of T, Fgf8 and Sox17, in addition to the expression of the epiblast markers, were more similar to the in vivo expression, thus demonstrating that the process of PGC derivation was more faithfully recapitulated using the EB method. Furthermore, we developed an in vitro model of PGC specification in a completely chemically defined medium (CDM) that indicated that BMP4 and Wnt3a promoted PGC derivation, whereas BMP8b and activinA had no observable effect on PGC derivation.

CONCLUSIONS AND SIGNIFICANCE: The in vitro model we have established can recapitulate the developmental processes in vivo and provides new insights into the mechanism of PGC specification.

PMID: 19107197