Talk:Placenta Development: Difference between revisions

From Embryology
(Created page with 'De novo synthesis of estrogen in pregnant uterus is critical for stromal decidualization and angiogenesis. Das A, Mantena SR, Kannan A, Evans DB, Bagchi MK, Bagchi IC. Proc Natl …')
 
No edit summary
Line 1: Line 1:
Vol. 54 Nos. 2/3 (2010)
Placenta
http://www.ijdb.ehu.es/web/contents.php?vol=54&issue=2-3
De novo synthesis of estrogen in pregnant uterus is critical for stromal decidualization and angiogenesis. Das A, Mantena SR, Kannan A, Evans DB, Bagchi MK, Bagchi IC. Proc Natl Acad Sci U S A. 2009 Jul 28;106(30):12542-7. Epub 2009 Jul 20. Erratum in: Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):16003. [http://www.ncbi.nlm.nih.gov/pubmed/19620711 PMID: 19620711] | [http://www.pnas.org/content/106/30/12542.long PNAS]
De novo synthesis of estrogen in pregnant uterus is critical for stromal decidualization and angiogenesis. Das A, Mantena SR, Kannan A, Evans DB, Bagchi MK, Bagchi IC. Proc Natl Acad Sci U S A. 2009 Jul 28;106(30):12542-7. Epub 2009 Jul 20. Erratum in: Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):16003. [http://www.ncbi.nlm.nih.gov/pubmed/19620711 PMID: 19620711] | [http://www.pnas.org/content/106/30/12542.long PNAS]
* Implantation is initiated when the embryo attaches to the uterine luminal epithelium during early pregnancy.  
* Implantation is initiated when the embryo attaches to the uterine luminal epithelium during early pregnancy.  

Revision as of 16:04, 18 May 2010

Vol. 54 Nos. 2/3 (2010) Placenta

http://www.ijdb.ehu.es/web/contents.php?vol=54&issue=2-3


De novo synthesis of estrogen in pregnant uterus is critical for stromal decidualization and angiogenesis. Das A, Mantena SR, Kannan A, Evans DB, Bagchi MK, Bagchi IC. Proc Natl Acad Sci U S A. 2009 Jul 28;106(30):12542-7. Epub 2009 Jul 20. Erratum in: Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):16003. PMID: 19620711 | PNAS

  • Implantation is initiated when the embryo attaches to the uterine luminal epithelium during early pregnancy.
  • Following this event, uterine stromal cells undergo steroid hormone-dependent transformation into morphologically and functionally distinct decidual cells in a unique process known as decidualization.
  • An angiogenic network is also formed in the uterine stromal bed, critically supporting the early development of the embryo.
  • ovarian progesterone as a key regulator of decidualization is well established
  • these studies in mice - identified the decidual uterus as a novel site of estrogen biosynthesis and uncovered estrogen-regulated maternal signaling pathways that critically control uterine differentiation and angiogenesis during early pregnancy.