Talk:Book - The development of the chick (1919): Difference between revisions

From Embryology
Line 21: Line 21:


==Part I The Early Development To The End Of The Third Day==
==Part I The Early Development To The End Of The Third Day==
==CHAPTER XIV  THE SKELETON==
I. General
From an embryological point of view, tlie bones of the body,
their associated cartilages, the ligaments that unite them together
in various ways, and the joints should be considered together,
as they have a common origin from certain aggregations of
mesenchyme. The main source of the latter is the series of
sclerotomes, but most of the bones of the skull are derived from
the unsegmented cephalic mesenchyme.
Most of the bones of the body pass through three stages in
their embryonic development: (1) a membranous or prechondral
stage, (2) a cartilaginous stage, (3) the stage of ossification.
Such bones are known as cartilage bones, for the reason that
they are preformed in cartilage. Many (see p. 433 for list) of
the bones of the skull, the clavicles and the uncinate processes of
the ribs do not pass through the stage of cartilage, but ossification takes place directly in the membrane; these are known as
membrane or covering bones. The ontogenetic stages of bone
formation parallel the phylogenetic stages, membrane preceding
cartilage, and the latter preceding bone in the taxonomic series.
Thus, in Amphioxus, the skeleton (excluding the notochord)
is membranous; in the lamprey eel it is partly membranous and
partly cartilaginous; in the selachia it is mainly cartilaginous; in
higher forms bone replaces cartilage to a greater or less degree.
The comparative study of membrane bones indicates that they
were primitively of dermal origin, and only secondarily grafted
on to the underlying cartilage to strengthen it. Thus the cartilage bones belong to an older category than the membrane
bones.
The so-called membranous or prechondral stage of the skeleton
is characterized simply by condensation of the mesenchyme.
Such condensations arise at various times and places described
407
408 THE DEVELOPMENT OF THE CHICK
beyond, and they often represent the primordia of several future
bony elements. In such an area the cells are more closely aggregated, the intercellular spaces are therefore smaller, and the
area stains more deeply than the surrounding mesenchyme.
There are, of course, stages of condensation in each case, from
the first vague and undefined areas shading off into the indifferent
mesenchyme, up to the time of cartilage or bone formation,
when the area is usually well defined. In most of the bones,
however, the process is not uniform in all parts; the growing
extremities may be in a membranous condition while cartilage
formation is found in intermediate locations and ossification has
begun in the original center of formation; so that all three stages
may be found in the primordium of a single bone {e.g., scapula).
Usually, however, the entire element is converted into cartilage
before ossification begins.
The formation of cartilage (chondrification) is brought about
by the secretion of a homogeneous matrix of a quite special character, which accumulates in the intercellular spaces, and thus
gradually separates the cells; and the latter become enclosed in
separate cavities of the matrix; when they multiply, new deposits
of matrix form between the daughter cells and separate them.
As the original membranous primordium becomes converted into
cartilage, the superficial cells flatten over the surface of the
cartilage and form a membrane, the perichondrium, which becomes the periosteum when ossification takes place.
The process of ossification in the long bones involves the following stages in the chick:
(1) Formation of Perichondral Bone. The perichondrium
deposits a layer of bone on the surface of the cartilage near its
center, thus forming a bony ring, which gradually lengthens into
a hollow cylinder by extending towards the ends of the cartilage.
This stage is well illustrated in Fig. 231 A and in the long bones
of Fig. 242; the bones of the wing and leg furnish particularly
good examples; the perichondral bone is naturally thickest in
the center of the shaft and thins towards the extremity of the
cartilages.
(2) Absorption of Cartilage. The matrix softens in the
center of the shaft and becomes mucous, thus liberating the
cartilage cells and transforming the cartilage into the fundamental tissue of the bone marrow. This begins about the tenth
THE SKELETON
409
day in the femur of the chick. The process extends towards the
ends, and faster at the periphery of the cartilage {i.e., next to
the perichondral bone) than in the center. In this way there
remain two terminal, cone-shaped cartilages, and the ends of the
cones project into the marrow cavity (Fig. 231 A).
(3) Calcification of Cartilage. Salts of lime are deposited in
the matrix of the cartilage at
the ends of the marrow cavity;
such cartilage is then removed
by osteoclasts, large multinucleated cells, of vascular endothelial origin, according to
Brachet (seventeenth or eighteenth day of incubation).
(4) Endochondral Ossification. Osteoblasts within the
marrow cavity deposit bone on
the surface of the rays of calcified cartilage that remain
between the places eaten out
by osteoclasts, and on the
irmer surface of the perichondral bone.
These processes gradually
extend towards the ends of
the bone, and there is never
any independent epiphysial
center of ossification in long
bones of birds, as there is in
mammals. The ends of the
bones remain cartilaginous
and provide for growth in length. Growth in diameter of the
bones takes place from the periosteum, and is accompanied by
enlargement of the marrow cavity, owing to simultaneous absorption of the bone from within. It is thus obvious that all of
the endochondral bone is removed from the shaft in course of
time; some remains in the spongy ends.
The details of the process of ossification will not be described
here, and it only remains to emphasize a few points. At a stage
shortly after the beginning of absorption of the cartilage in the
Fig. 231 A. — Longitudinal section of
the femur of a chick of 196 hours' incubation; semi-diagrammatic. (After
Brachet.)
art. Cart., Articular cartilage. C. C,
Calcified cartilage, end. B., Endochondral bone. M., Marrow cavity. P'ch.,
Perichondrium. P'os., Periosteum,
p'os. B., Periosteal bone. Z. Gr., Zone
of growth. Z. Pr., Zone of proliferation.
Z. R., Zone of resorption.
410 THE DEVELOPMENT OF THE CHICK
center of the shaft, the perichondral bone is invaded by capillary
vessels and connective tissue that break through into the cavity
formed by absorption; it is supposed by many that osteoblasts
from the periosteum penetrate at the same time. The marrow
of birds is derived, according to the best accounts, from the
original cartilage cells, which form the fundamental substance,
together with the intrusive blood-vessels and mesenchyme. The
endochondral osteoblasts are believed by some to be of endochondral origin (i.e., derived from cartilage cells), by others of
periosteal origin. For birds, the former view seems to be the
best supported.
In birds, calcification does not precede absorption of the
cartilage, as it does in mammals, until the greater part of the
marrow cavity is formed. The cones of cartilage, referred to
above, that are continuous with the articular cartilages, are
absorbed about ten days after hatching.
On the whole, perichondral ossification plays a more extensive
role in birds than in mammals. The endochondral bone formation begins relatively much later and is less extensive. The
bodies of the vertebrae, which ossify almost exclusively in an
endochondral fashion, form the main exception to this rule.
Ossification in membrane proceeds from bony spicules deposited between the cells in the formative center of any given
membrane bone. It spreads out from the center, the bony
spicules forming a network of extreme delicacy and beauty.
After a certain stage, the membrane bounding the surface becomes
a periosteum which deposits bone in dense layers. Thus a membrane bone consists of superficial layers of dense bone, enclosing
a spongy plate that represents the primitive bone before the
establishment of the periosteum.
The formation of bones proceeds from definite centers in all
three stages of their formation; thus we have centers of membrane formation, centers of chondrification and centers of ossification. Membranous centers expand by peripheral growth,
cartilage centers expand by the extension of cartilage formation
in the membrane from the original center of chondrification, and
bony centers expand in the original cartilage or membrane.
Several centers of chondrification may arise in a single primitive
membranous center; for instance, in the membranous stage, the
skeleton of the fore-limb and pectoral girdle is absolutely con
THE SKELETON 411
tinuoiis; cartilage centers then arise separately in different parts
for each of the bones: similarly for the hind-limbs and pelvic
girdle, etc. Separate centers of ossification may likewise appear
in a continuous embryonic cartilage, as for instance, in the base
of the skull or in the cartilaginous coraco-scapula, or ischioilium. Such centers may become separate bones or they may
subsequently fuse together. In the latter case, they may represent bones that were phylogenetically perfectly distinct elements,
as for instance, the prootic, epiotic, and opisthotic centers in
the cartilaginous otic capsule; or they may be of purely functional significance, as for instance, the separate ossifications in
the sternum of birds, or the epiphysial and diaphysial ossifications of the long bones of mammals. It is usually possible on
the basis of comparative anatomy to distinguish these two categories of ossification centers.
Phylogenetic reduction of the skeleton is also usually indicated in some manner in the embryonic history. Where elements
have completely disappeared in the ph3dogenic history, as for
instance, the missing digits of birds, they often appear as membrane formations in the embrvo, which then fade out without
reaching the stage of cartilage; if the latter stage is reached the
element usually fuses with some other and is therefore not really
missing, e.g., elements of the carpus and tarsus of birds (though
not all). But the ontogenetic reduction may go so far that
the missing elements are never distinguishable at any stage of
the embryonic history; thus, though the missing digits of birds
are indicated in the membranous stage, their component phalanges
are not indicated at all.
II. The Vertebral Column
The primordia of the vertebral column are the notochord
and sclerotomes. The former is the primitive axial support of
the body, both ontogenetically and phylogenetically. In both
components, notochord and sclerotomes, we may recognize a
cephalic and trunk portion. The notochord, as we have seen,
extends far into the head, and the sclerotomes of the first four
somites contribute to the formation of the occipital portion of
the skull. The cephalic parts are dealt with in the development
of the skull. The history of the notochord and sclerotomes will
be considered together, but we may note in advance that the
412 THE DEVELOPMENT OF THE CHICK
notochord is destined to be completely replaced by the bodies of
the vertebrae, derived from the sclerotomes.
The Sclerotomes and Vertebral Segmentation. The vertebral
segmentation does not agree with the primitive divisions of the
somites, but alternates with it; or in other words, the centers
of the vertebrae do not coincide with the centers of the original
somites, but with the intersomitic septa in which the segmental
arteries run. Thus each myotome extends over half of two
vertebral segments, and the spinal ganglia and nerves tend to
alternate with the vertebrae. It therefore happens that each myotome exerts traction on two vertebrae, obviously an advantageous
arrangement, and the spinal nerves lie opposite the intervertebral
foramina.
This arrangement is brought about by the development of
each vertebra from the caudal half of one sclerotome and the
cephalic half of the sclerotome immediately behind; parts of
two somites enter into the composition of each vertebra, as is
very obvious at an early stage: Fig. 232 represents a section
through the base of the tail of a chick embryo of ninety-six hours;
it is approximately frontal, but is inclined ventro-dorsally from
behind forwards. The original somites are indicated by the
myotomes and the segmental arteries. In the region of the
notochord one can plainly distinguish three parts to each
sclerotome, viz., (1) a narrow, median, or perichordal part
abutting on the notochord, in which no cUvisions occur either
within or between somites; (2) a caudal lateral cUvision distinguished by the denser aggregation of the cells from (3) the cephalic
division. Between the caudal and cephalic cUvisions of the sclerotome is a fissure (intervertebral fissure) which marks the boundary
of the future vertebrae. Each vertebra in fact arises from the
caudal component of one sclerotome and the cephalic component
of the sclerotome immediately behind. Between adjacent sclerotomes is the intersomitic septum containing the segmental artery.
If one follows these conditions back into successively earlier stages,
one finds that the intervertebral fissure arises from the primitive
somitic cavity, and that the distinction between caudal and
cephalic divisions of the sclerotome is marked continuously from a
very early stage by the presence of the intervertebral fissure and
the greater density of the caudal division, i.e., the cephalic component of each definitive vertebra.
THE SKELETOX
413
TT — ^5 — a « "o-w
'1 •^^•^-'o.ool
^/7 — ^ ^ifflii'
^
.«"»
, < r. ■,■
CdUd^C/ "^dl "■'5-S:^;
/y7/i:/^
7^^?l?
'»2g.' «>5.<' '• ^- .
.. °SS-,.
1 vs^-i.^-"^'":^^^-^^
5 'D
o v.
4^
■^s
y;7/j. /--^ XtCf"^ -fi-.sV^ -o. o " :
■'-r-,'fc'-V' •'»'£'';'■■'/<' '?<^ Co"© ^ -^ .li-a - - S.Jo
^ 6
~ ^ Ask ' S»Jo - , ^»
TK^r^
. .0^:^
^ «. . ', >^.-".,^e
«,,?rV.?:
^!.
"-J
Fig. 232.— Frontal section through the base of the tail of a chick
embryo of 96 hours. The anterior end of the section (above
in the figure) is at a higher plane than the posterior end.
caud. Scl., Caudal division of the sclerotome, ceph Scl Cephalic division of the sclerotome. Derm., Dermatome. Ep., Epidermis. Gn., Ganglion, int's. F., Intersomitic fissure int'v F
Intervertebral fissure. My., Mvotome. N'ch., Notochord Nt'
Neural tube, per'ch. Sh., Perichordal sheath, s. A., Segmental
artery.
414 THE DEVELOPMENT OF THE CHICK
Now, if one follows these components as they appear at successively higher levels in such a frontal section as Fig. 232, one
finds that the perichordal layer disappears in the region of the
neural tube, and that the spinal ganglia appear in the cephalic
division of the sclerotome, and almost completely replace it.
Thus the caudal division of the sclerotome is more extensive, as
well as denser, than the cephalic division.
In transverse sections one finds that the sclerotomic mesenchyme spreads towards the middle line and tends to fill all the
interspaces between the notochord and neural tube, on the one
hand, and the myotomes on the other. But there is no time at
which the sclerotome tissue of successive somites forms a continuous unsegmented mass in which the vertebral segmentation
appears secondarily, as maintained by Froriep, except in the thin
perichordal layer; on the contrary, successive sclerotomes and
vertebral components may be continuously distinguished, except
in the perichordal layer; and the fusion of caudal and cephalic
sclerotome halves to form single vertebrae may be continuously
followed. Thus, although the segmentation of the vertebrae is
with reference to the myotomes and ganglia, it is dependent
upon separation of original sclerotome halves, and not secondarily
produced in a continuous mass.
Summarizing the conditions at ninety-six hours, we may say
that the vertebrae are represented by a continuous perichordal
layer of rather loose mesenchvme and two mesenchvmatous
arches in each segment, that ascend from the perichordal layer
to the sides of the neural tube; in each segment the upper part
of the cephalic sclerotomic arch is occupied almost completely
by the spinal ganglion, but the caudal arch ascends higher, though
not to the dorsal edge of the neural tube. The cranial and caudal
arches of any segment represent halves of contiguous, not of the
same, definitive vertebra.
Membranous Stage of the Vertebrae. In the following or
membranous stage, the definitive segmentation of the vertebrae
is established, and the principal parts are laid down in the
membrane. These processes are essentially the same in all the
vertebrae, and the order of development is in the usual anteroposterior direction. As regards the establishment of the vertebral segments: Figs. 233 and 234 represent frontal sections
through the same vertebral primordia at different levels from
THE SKELETON
415
the thoracic region of a five-day chick. The notochord is
slightly constricted intervertebrally, and the position of the
intersegmental artery, of the myotomes and nerves, shows that
each vertebral segment is made up of two components representing succeeding sclerotomes. In the region of the neural
arches (Fig. 234) the line of union of cranial and caudal vertebral
components is indicated by a slight external indentation at the
place of union, and by the arrangement of the nuclei on each
side of the plane of union.
Cduc/.Sc/
ceph.Sc'.
//
• » ." '5',*' 'Ir "-V^ ^i*^-^-* -'.
:^^V:. .
Mj/-"^^^
ceph Sci.- ''^
^ \ . o c
y^i-
.y.y^;{^^> -jt^.> " /^^.^
Fig. 233. — Frontal section through the notochord and pri
mordia of two vertebrae of a 5-day chick; thoracic region.
Note intervertebral constrictions of the notochord. The
anterior end of the section is above.
N., Spinal nerve. Symp., Part of sympathetic cord. v. C,
Region of pleurocentrum, in which the formation of cartilage
has hegun.
Other abbreviations as in Fig. 232.
The parts of the vertebrae formed in the membranous stage
are as follows: (1) The vertebral body is formed by tissue of
both vertebral components that grows around the perichordal
sheath; (2) a membranous process (neural arch) extends from
the vertebral body dorsally at the sides of the neural canal; but
the right and left arches do not yet unite dorsally; (3) a lateral
or costal process extends out laterally and caudally (Fig. 233)
from the vertebral body between the successive myotomes.
The union of the right and left cephalic vertebral components
416
THE DEVELOPMENT OF THE CHICK
(caudal sclerotome halves) beneath the notochorcl is known as
the subnotochordal bar (Froriep). It forms earlier than the
remainder of the body of the vertebra and during the membranous
stage is thicker, thus forming a ventral projection at the cephalic
end of the vertebral body that is very conspicuous (Fig. 235).
caud-Se/.
caud Se/
s.A
cep/?.'5c/
cac/f^ ^C/
jtfy:
i A^.V
to ei\--^^ i-
»",-^*
•c,-^
>p.
S-li
Fig. 234. — Frontal section including the same vertebral primordia as Fig. 233, at a higher level through the neural arches,
a. C, Anterior commissure of the spinal cord. v. R., Ventral root of spinal nerve. Other abbreviations as before (Fig;.
232).
It chondrifies separately from the vertebral body and earlier.
Except in the case of the first vertebra it fuses subsequently
with the remainder of the vertebral body, and disappears as
THE SKELETOX
417
a separate component. Schauinsland has interpreted it as the
homologue of the haemal arches of reptilia {e.g., Sphenodon).
The membrane represents not only the future bony parts
but the ligaments and periosteum as well. Hence we find that
the successive membranous vertebrae are not separate structures
but are united by membrane, i.e., condensed mesenchyme, and
are distinguishable from the future ligaments at first only by
greater condensation. In the stage of Fig. 233, chondrification
has already begun in the vertebral body, hence there is a sharp
/v'a
Fig. 235. — Median sagittal section of the cervical region at
the end of the sixth day of incubation. (After Froriep.) x 40.
b. C, Basis cranii. iV. L. 1, 2, 3, First, second, and third
intervertebral ligaments, s. n. b. 1, 2, 3, 4, First, second, third,
and fourth subnotochordal bars (hypocentra). v. C. 3, 4,
Pleurocentra of third and fourth vertebrae.
distinction in this region l^etween the vertebral bod}^ and intervertebral discs. The centers of chondrification, however, grade
into the membranous costal processes and neural arches.
The vertebral segmentation has now become predominant as
contrasted with the primitive somitic.
The development of the vertebrae during the fifth day comprises: (1) Fusion of successive caudal and cephalic divisions of
418 THE DEVELOPMENT OF THE CHICK
the sclerotomes to form the definitive vertebrae; (2) union of the
cephaUc vertebral components beneath the notochord to form the
subnotochordal bar; (3) origin of the membranous vertebral
bodies and of the neural arch and costal processes.
Chondrification, or development of cartilage, sets in from the
following centers in each vertebra: (1) the cephalic neural arches
and subnotochordal bar, forming a horseshoe-shaped cartilage
at the cephalic end of each vertebra; (2) and (3) right and left
centers in the body of each vertebra behind the subnotochordal
bar, which soon fuse around the notochord; (the subnotochordal
bar probably corresponds to the hypocentrum, and the lateral
centers (2 and 3) to the pleurocentra of palaeontologists) ; (4) and
(5) centers in each costal process (Figs. 235 and 236). These
centers are at first separated by membrane, l)ut except in the
case of the costal processes, which form the ribs, the cartilage
centers flow together. The neural arches end in membrane
which gradually extends dcrsally around the upper part of the
neural tube, finally uniting above with the corresponding arches
of the other side to form the memhrana reuniens. The chondrification follows the extension of the membrane. During this
time the transverse processes of the neural arch and the zygopophyses are likewise formed as extensions of the membrane.
The distinction that some authors make between a primary
vertebral l^ody formed ]:)y chondrification within the perichordal
sheath, and a secondary vertebral body formed by the basal
ends of the arches surrounding the primary, is not a clear one
in the case of the chick.
On the seventh and eighth days the process of chondrification extends into all parts of the vertebra; the entire vertebra
is, in fact, laid down in cartilage on the eighth da}', although the
neural spine is somewhat membranous. Fig. 237 shows the
right side of four trunk vertebrae of an eight-day chick, prepared
according to the methylene b,lue method of Van Wijhe. The
Fig. 236. — Frontal section of the vertebral column and neighboring structures of a 6-day chick. Upper thoracic region. Note separate centers
of chondrification of the neural arch, centrum, and costal processes. Anterior end of section above.
B. n. A., Base of neural arch. br. N. 1, 2, 3, First, second, and third
brachial nerves. Cp. R., Capitulum of rib. iv. D., Intervertebral disc.
Mu., Muscles. N. A., Neural arch. T. R., Tuberculum of rib. V. C, Centrum of vertebra. Other abbreviations as before.
THE SKELETON
419
--jV.D.
420
THE DEVELOPMENT OF THE CHICK
notochord runs continuously through the centra of the four
vertebrae shown. It is constricted intra vertebrally and expanded
intervertebrally, so that the vertebral bodies are amphicoelous.
The intervertebral discs are not shown. A pre- and postzygapophysis is formed on each arch. It is by no means certain that the
parts separated by the clear streak shown in the figure extending
through centra and arches correspond to the sclerotomal components of the primitive vertebrae, though this was the interpretation of Schauinsland as shown in the figure; further
study seems necessary to determine the exact relations of the
primitive sclerotomal components to the parts of the definitive
vertebra. The successive vertebrae have persistent membranous
Fig. 237. — The right side of four bisected vertebrse of the trunk
of an 8-day chick. (After Schauinsland.)
caud. V. A., Caudal division of vertebral arch. ceph. v. A.,
Cephalic division of vertebral arch. N'ch., Xotochord.
connections in the regions of the neural spines, zygapophyses
and centra. These are shown in Figs. 238 and 239 (cf. also
Fig. 150) ; they are continuous with the perichondrium and all
are derived from unchondrified parts of the original membranous vertebrae.
Atlas and Axis (epistropheus). The first and second vertebrae agree with the others in the membranous stage. But, when
chondrification sets in, the hypochordal bar of the first vertebra does
not fuse with the body, but remains separate and forms its floor
(Figs. 238 and 239). The body of the first vertebra chondrifies
separately and is attached by membrane to the anterior end of
the body of the second vertebra, representing in fact the odontoid process of the latter. It has later a separate center of ossification, but fuses subsequently wdth the body of the second
vertebra, forming the odondoid process (Fig. 240).
THE SKELETON
421
Formation of Vertebral Articulations. In the course of development the intervertebral discs differentiate into a peripheral intervertebral ligament and a central suspensory ligament which at first
contains remains of the notochord. There is a synovial cavity
between the intervertebral and suspensory ligaments. This differentiation takes place by a process of loosening and resorption
Fig. 238. — Median sagittal section of the basis
cranii and first three vertebral centra of an
8-day chick.
B. C, Basi-cranial cartilage, iv. D. 1, 2, 3, 4,
First, second, third, and fourth intervertebral
discs. N. T., Floor of neural tube. s. n. b. 1, 2,
First and second subnotochordal bars. V. C.
1, 2, 3, First, second, and third pleurocentra.
of cells just external to the perichordal sheath (Fig. 241). The intervertebral ligament takes the form of paired, fibrous menisci, or, in
other words, the intervertebral ligaments are incomplete around
the bodies of the vertebrae dorsally and ventrally (Schwarck).
Ossification is well advanced in the clavicles, long bones,
422
THE DEVELOPMENT OF THE CHICK
and membrane bones of the skull before it begins in the vertebrae.
It takes place in antero-posterior order, so that a series of stages
may be followed in a single embryo (cf. Fig. 242). There are
three main centers for each vertebra, viz., one in the body and
one in each neural arch. The ossification of the centrum is almost
—Medobl
H'9^1112
.f
'." " ">• '•'ti't-'
oC-l.o
-^mk
T/ltl
rceiMS.
, i: f 'j'f' , ., f , n yc
■yj
.-^,4^V^J^/?^.^^
UJ:
5p.G/i2-Fi
^■>'i
'RVd.
-+,-'
'-■'oi-.S'"'- (,.'■>•,'■ I ■
5i/mp.Cn
-r/^V4
PiQ 239. — Lateral sagittal section of the same vertebrse (as in Fig.
238).
At 1, 2, Floor and roof of atlas. B. C, Basis cranii. Cerv. n. 1, 2,
First and second cervical nerves. Med. Obi., Medulla oblongata.
R. V. 2, 3, 4, Ribs of the second, third, and fourth vertebrse. V . A.
2, 3, Arches of the second and third vertebrse.
XII 2, Second root of hypoglossus.
entirely endochondral, though traces of perichondral ossification
may be found on the ventral and dorsal surfaces of each centrum
before the endochondral ossification sets in. The perichondral
centers soon cease activity. The endochondral centers arise
just outside the perichordal sheath near the center of each vertebra on each side of the middle line, but soon fuse around the
THE SKELETON
423
notochord, and rapidly spread in all directions, but particularly
towards the surface, leaving cartilaginous ends (Fig. 241). The
notochord is gradually reduced and exhibits two constrictions
Fig. 240. — The first cervical vertebrae of a young
embryo of Haliplana fuliginosa. (After Schauins
land.)
s.n.b. 1,2, First and second subnotochordal bars.
R. 3, 4, 5, 6, Ribs of the third, fourth, fifth, and sixth
cervical vertebrae.
and three enlargements within each centrum. The main enlargement occupies the center and the two smaller swellings the
cartilaginous ends, the constriction occurring at the junction of
the ossified areas and cartilaginous ends (Fig. 241).
J
Fig. 241. — Section through the body of a cervical vertebra of a chick embryo of about 12
days. (After Schwarck.)
1, Endochondral ossification. 2, Articular
cartilages. 3, Notochord. 4, Loosening of cells
of the intervertebral disc, forming a synovial
cavity. 5, Periosteum. 6, Ligamentum suspensorium surrounding the notochord.
424 THE DEVELOPMENT OF THE CHICK
The centers of ossification in the neural arches arise from
tlie perichondrium a short distance above the body of the vertebra, and form bony rings about the cartilaginous arch. They
gradually extend into all the processes of the neural arch. Thus
the neural arches are separated from the vertebral centra by a
disc of cartilage which is, however, finally ossified, fusing the
arches and centra. At what time this occurs, and at what
time endochondral ossification begins in the arches, is not
known exactly for the chick.
The vertebral column of birds is characterized by an extensive
secondary process of coalescence of vertebrae. Thus the two
original sacral vertebra? coalesce with a considerable number of
vertebrae, both in front and behind, to form an extensive basis
of support for the long iliac bones. The definitive sacrum may
be divided into an intermediate primary portion composed of
two vertebrge, an anterior lumbar portion, and a posterior caudal
portion. The development of these fusions has not been, apparently, worked out in detail for the chick. The bony centers are
all separate on the sixteenth day of incubation (cf. Fig. 249).
Similarly, the terminal caudal vertebrae fuse to form the so-called
pygostyle, which furnishes a basis of support for the tail feathers.
III. Development of the Ribs and Sternal Apparatus
In the membranous stage of the vertebral column, all of the
trunk vertebra? possess membranous costal processes the subsequent history of which is different in different regions. In the
cervical region these remain relatively short, and subsequently
acquire independent centers of chondrification and ossification.
The last two cervical ribs, however, acquire considerable length.
In the region of the thorax, the membranous costal processes
grow ventralward between the successive myotomes and finally
unite in the formation of the sternum (q.v.). In the lumbar and
sacral regions the membranous costal processes remain short.
The primary costal process is an outgrowth of the membranous
centrum, corresponding in position to the capitulum of the
definitive ril). The tuberculum arises from the primary costal
process while the latter is still in the membranous condition and
grows dorsal ward to unite with the neural arch in the region of
the transverse process. (See Fig. 236.)
The centers of chondrification and ossification of the typical
THE SKELETON 425
ribs (cervical and thoracic) arise a short distance lateral to the
vertebral centers, with which they are connected only by the
intervening membrane, which forms the vertebro-costal ligaments. Chondrification then proceeds distally.
The cervical ribs chondrify from a single center. The thoracic
ribs have two centers of chondrification; a proximal one, corresponding to the vertebral division of the rib. and a distal one
corresponding to the sternal division. The lumbar and sacral
membranous costal processes do not chondrify separately from
the vertebral bodies; if they persist at all, therefore, they appear
as processes of the vertebrae, and are not considered further.
In the fowl the atlas does not bear ribs, and in the embryo the primary
costal processes of this vertebra do not chondrify. The second to the
fourteenth vertebrae bear short ribs, with capitulum and tuberculum
bounding the vertebrarterial canal. The fourteenth is the shortest of
the cervical series. The fifteenth and sixteenth vertebrae bear relatively
long ribs, but, as these do not reach the sternum, they are classed as
cervical. The entire embryonic history, however, puts them in the
same class as the following sternal ribs; on an embryological basis they
should be classed as incomplete thoracic ribs. They possess no sternal
division, but the posterior one has an uncinate process like the true thoracal ribs. The following five pairs of ribs (vertebrae 17-21) possess
vertebral and sternal portions, but the last one fails to reach the sternal
rib in front of it.
The vertebral and sternal portions of the true thoracal ribs
meet at about a right angle in a membranous joint. This bend
is indicated in the membranous stage of the ribs.
The membranous ribs growing downwards and backwards
in the wall of the thorax make a sudden bend forward, and their
distal extremities fuse (seven and eight days) in a common membranous expansion (primordium of the sternum), which, however,
is separated from the corresponding expansion of the opposite
side bv a considerable area of the body-wall.
The vertebral and sternal portions of the ribs ossify separately;
the ossification of the ribs is exclusively perichondral up to at
least the sixteenth day (cf. Fig. 242).
The uncinate processes were not formed in any of the embryos
studied. Apparently they arise as separate membranous ossifications after hatching.
The sternum takes its origin from a pair of membranous expan
426
THE DEVELOPMENT OF THE CHICK
sions formed by the fusion of the distal ends of the first four
true thoracal ribs; the fifth pair of thoracal ribs does not take
part in the formation of the sternum. The sternum thus arises
as two distinct halves, which lie at first in the wall of the thorax
at the posterior end of the pericardial cavity (eight days). The
greatest extension of the sternal primordia is do rso- ventral, the
Fig. 242. — Photograph of the skeleton of a 13-day
chick embryo. Prepared by the potash method.
(Preparation and photograph by Roy L. Moodie.)
1, Premaxilla. 2, NasaL 3, lachrymaL 4, Parasphenoid. 5, Frontal. 6, Squamosal. 7, Parietal.
8, Exoccipital. 9, Cervical rib. 10, Coracoid. 11,
Scapula. 12, Humerus. 13, Ilium. 14, Ischium. 15,
Pubis. 16, Metatarsus. 17, Tibiofibula. 18, Palatine. 19, Jugal. 20, Maxilla. 21, Clavicle.
ventral extremities corresponding to the anterior end of the definitive sternum, which is formed by concrescence of the lateral halves
in the middle line beginning at the anterior end. The concrescence
THE SKELETON 427
then proceeds posteriorly, as the dorsal ends of the priraordia
rotate backwards and downwards towards the middle line.
Although there are two lateral centers of chondrification,
these soon fuse. The carina arises as a median projection very
soon after concrescence in any region, and progresses backwards,
rapidly following the concrescence. There is, therefore, no stage
in which the entire sternum of the chick is ratite, though this
condition exists immediately after concrescence in any region.
The various outgrowths of the sternum (episternal process, anterolateral and abdominal processes), arise as processes of the membranous sternum and do not appear to have independent centers
of chondrification.
The sternum ossifies from five centers, viz., a median anterior
center and paired centers in the antero-lateral and abdominal
processes. The last appear about the seventeenth day of incubation. On the nineteenth day a point of ossification appears
at the base of the anterior end of the keel. At hatching centers
also appear in the antero-lateral processes. The centers gradually
extend, but do not completely fuse together until about the third
month. The posterior end of the median division of the sternum
remains cartilaginous for a much longer period. In the duck
and many other birds there are only two lateral centers of ossification; the existence of five centers in the chick is, therefore,
probably not a primitive condition.
IV. Development of the Skull
The skull arises in adaptation to the component organs of
the head, viz., the brain, the sense organs (nose, eye, and ear)
and cephalic visceral organs (oral cavity and pharynx); it thus
consists primarily of a case for the brain, capsules for the sense
organs, and skeletal bars developed in connection with the margins of the mouth and the visceral arches. In the chick,
the primordia of the auditory and olfactory capsules are continuous ab initio with the primordial cranium; the protecting coat
of the eye (sclera) never forms part of the skull. Therefore, we
may consider the development of the skull in two sections, first
the dorsal division associated with brain and sense organs (neurocranium), and second, the visceral division or splanchnocranium.
Although the investment of the eyes forms no part of the skull,
yet the eyes exert an immense effect on the form of the skull.
428 THE DEVELOPMENT OF THE CHICK
Development of the Cartilaginous or Primordial Cranium.
(1) The Neurocranium. The neurocranium is derived from the
mesenchyme of the head, the origin of which has been described
previously. The mesenchyme gradually increases in amount and
forms a complete investment for the internal organs of the head.
It is not all destined, however, to take part in the formation of
the skeleton, for the most external portion forms the derma and
subdermal tissue; and, internal to the skeletogenous layer, the
membranes of the brain and of the auditory labyrinth, etc., are
formed from the same mesenchyme.
The notochord extends forward in the head to the hypophysis
(Figs. 67, 88, etc.), and furnishes a basis for division of the
neurocranium into chordal and prechordal regions. Within the
chordal division again, we may distinguish pre-otic, otic, and
post-otic regions according as they are placed in front of, around,
or behind the auditory sac. The part of the postotic region
behind the vagus nerve is the only part of the neurocranium
that is primarily segmental in origin. The sclerotomes of the
first four somites (Figs. 63 and 117) form this part of the skull;
and at least three neural arches, homodynamous with the vertebral arches, are formed in an early stage, but fuse together while
still membranous, leaving only the two pairs of foramina of the
twelfth cranial nerve as evidence of the former segmentation. It
is also stated that membranous costal processes are found in
connection with these arches, but they soon disappear without
chondrifying.
The primordial neurocranium is performed in cartilage and
corresponds morphologically to the cranium of cartilaginous
fishes. However, it never forms a complete investment of the
brain; except in the region of the tectum synoticum it is wide
open dorsally and laterally. It is subsequently replaced by
bone to a very great extent, and is completed and reinforced
by numerous membrane bones.
The neurocranium takes its origin from two quite distinct
primordia situated below the brain, viz., the parachordals and
the trabecular. The former develop on each side of and around
the notochord, being situated, therefore, behind the cranial
flexure and beneath the mid- and hind-brain; the trabeculae are
prechordal in position, being situated beneath the twixt-brain
and cerebral hemispheres, and extending forward through the
THE SKELETON 429
interorbital region to the olfactory sacs. It is obvious, therefore,
that the parachordals and trabeculse must form with relation to
one another the angle defined by the cranial flexure.
The parachordals appear in fishes as paired structures on
either side of the notochord, uniting secondarily around the
latter; but in the chick the perichordal portion is formed at the
same time as the thicker lateral portions, so that the parachordals
exist in the form of an unpaired basilar plate from the first. The
trabeculae are at first paired (in the earliest membranous condition), but soon fuse in front, while the posterior ends form a pair
of curved limbs (fenestra hypophyseos) that surrounds the infundibulum and hypophysis, and joins the basilar plate behind the
latter. At the same time that the parachordals and trabeculae
are formed by condensations of mesenchyme, the latter condenses also around the auditory sacs and olfactory pits in direct
continuity with the parachordals and trabeculae respectively; so
that the auditory and olfactory capsules are in direct continuity
with the base of the neurocranium from the beginning.
Chondrification begins in the primordial cranium about the
sixth day; it appears first near the middle line on each side, and
extends out laterally. Somewhat distinct centers corresponding
to the occipital sclerotomes may be found in some birds, but
they soon run together, and the entire neurocranium forms a
continuous mass of cartilage (sixth, seventh, and eighth days).
During this process the trabecular region increases greatly in
length simultaneouslv with the outgrowth of the facial region,
and the angle defined by the cranial flexure becomes thus apparently reduced. The posterior border of the fenestra hypophyseos
marks the boundary between the basilar plate and trabecular
region.
In the region of the basilar plate the following changes take
place: (1) in the post-otic or occipital region a dorso-lateral
extension (Fig. 244) fuses with the hinder portion of the otic
capsule, thus defining an opening that leads from the region of
the cavity of the middle ear into the cranial cavity (fissure metotica). This expansion is pierced by the foramina of the ninth
tenth and eleventh nerves. (2) The otic region becomes greatly
expanded by the enlargement of the membranous labyrinth. The
cochlear process grows ventrally and towards the middle line and
thus invades the original parachordal region (Fig. 168). The
430 THE DEVELOPMENT OF THE CHICK
posterior region of the otic capsule expands dorsally above the
hind-brain, and forms a bridge of cartilage extending from one
capsule to the other, known as the tectum synoticum (Fig. 244,
33). (3) The preotic region expands laterally and dorsally in
the form of a wide plate (alisphenoidal plate) which is expanded
transversely, and thus possesses an anterior face bounding the
orbit posteriorly and a posterior face forming part of the anterior
wall of the cranial cavity. This plate arises first between the
ophthalmic and maxillo-mandibular branches of the trigeminus,
and subsequently sends a process over the latter that fuses with
the anterior face of the otic capsule, thus establishing the foramen
prooticum.
For an account of numerous lesser changes, the student is referred
to Gaupp (1905), and the special literature (especially Parker, 1869).
The various foramina for the fifth to the twelfth cranial nerves are
defined during the process of chondrification ; the majority of these are
shown in the figures.
The trabecular region may be divided into interorbital and
ethmoidal (nasal) regions. The basis of the skeleton in this
region is formed by the trabecule alread}^ described. The median
plate formed by fusion of the trabeculse extends from the pituitary
space (fenestra hypophyseos) to the tip of the head; a high median
keel-like plate develops in the interorbital and internasal regions
Fig. 243. — Skull of an embryo of 65 mm. length; right side. Membrane
bones in yellow. Cartilage in blue. (Drawn from the model of W. Tonkoff ;
made by Ziegler.)
Fig. 244. — View of the base of the same model.
24.3-244. — 1, Squamosum. 2, Parietale. 3, Capsula auditiva. 4, Capsula auditiva (cochlear part). 5, Fissura metotica. 6, Epibranchial cartilage.
7, Sphenolateral plate. 8, Foramen prooticum. 9, Columella. 10. Otic process of quadratum. 11, Basitemporal (postero-lateral part of the parasphenoid).
12, Articular end of Meckel's cartilage. 13, Angulare. 14, Supra-angulare. 15,
Dentale. 16, Skeleton of tongue. 17, Pterygoid. 18, Palatine. 19, Rostrum
of parasphenoid. 20, Quadrato-jugal. 21, Jugal (zygomaticum). 22, Vomer.
23, Maxilla. 24, Premaxilla. 25, Anterior turbinal. 26, Posterior turbinal.
27, Nasale. 28, Prefrontal (lachrymale). 29, Antorbital plate. 30, Interorbital foramen. 31, Interorbital septum. 32,Frontale. 33, Tectum synoticum.
34, Foramen magnum. 35, Prenasal cartilage. 36, Orbital process of quadrate. 37, Articular process of Quadrate. 38. Fenestra basicranialis posterior.
39, Chorda. IX, Foramen glossopharyngei. X, Foramen vagi. XII, Foramina hypoglossei.
Fig. 245. — Visceral skeleton of the same model.
1, Dentale. 2, Operculare. 3, Angulare. 4, Supra-angulare. 5. Meckel's
cartilage. 6, Entoglossum (cerato-hyal). 7, Copula (1). 8, Pharyngobranchial (1). 9, Epibranchial. 10, Copula (2),
3?
30
3^y
f/g 243
f/"g t45
T,^
a4^
THE SKELETON 431
and fuses with the trabeculse, forming the septum interorbitale
and septum nasi (Fig. 243). The free posterior border of this
plate hes in front of the optic nerves; an interorbital aperture
arises in tlie plate secondarily (Fig. 243).
In the ethmoidal region the septum nasi arises as an anterior
continuation of the interorbital plate; and the trabecular plate
is continued forward as a prenasal cartilage in front of the olfactory sacs. Curved, or more or less rolled, plates of cartilage
develop in the axis of the superior, middle, and inferior turbinals
(see olfactory organ), and these are continuous with the lateral
wall of the olfactory capsules, which in its turn arises from the
dorsal border of the septum nasi (Figs. 243 and 244).
(2) The Origin of the Visceral Chondrocranium (Cartilaginous
Splanchnocranium) . The visceral portion of the cartilaginous
skull arises primarily in connection with the arches that bound
the cephalic portion of the alimentary tract, viz., oral cavity
and pharynx. In the chick, cartilaginous bars are formed in
the mandibular arch, hyoid arch, and third visceral arch. In
fishes, the posterior visceral arches also have an axial skeleton,
but hi the chick the mesenchyme of these arches does not develop
to the stage of cartilage formation. The elements of these arches
are primarily quite distinct. The upper ends of the mandibular
and hyoid skeletal arches are attached to the skull; and the lower
ends of the three arches concerned meet in the middle line. Two
medial elements or copulse are formed in the floor of the throat,
one behind the angle of the hyoid arch, and one behind the
third visceral arch (Fig. 245).
Mandibular Arch. Two skeletal elements arise in the mandibular arch on each side, a proximal one (the palato-quadrate) and a distal one (Meckel's cartilage). The former is
relatively compressed, and the latter an elongated element (Fig.
243, 10). The palato-quadrate lies external to the antero-vertral part of the auchtory capsule, and soon develops a triradiate
form. The processes are: the processus oticus, which applies
itself to the auditory capsule, the processus articidaris, which
furnishes the articulation for the lower jaw, and the processus
orhitalis, Avhich is directed anteromedially towards the orbit.
A small nodule of cartilage of unknown significance lies above
the junction of the processus oticus and otic labyrinth. Meckel's
cartilage is the primary skeleton of the lower jaw, corresponding
432 THE DEVELOPMENT OF THE CHICK
to the definitive lower jaw of selachians. It consists of two
rods of cartilage in the rami of the mandibular arch, which articulate proximally with the processus articularis of the palatoquadrate cartilage,, and meet distally at the symphysis of the
lower jaw. The form of the articulation of the lower jaw is early
defined in the cartilage (seven to eight days).
Hyoid Arch. The skeletal elements of the hyoid arch consist of
proximal and distal pieces (with reference to the neurocranium)
which have no connection at any time. The former are destined to
form the columella, and the latter parts of the hyoid apparatus.
The columella apparently includes two elements (in Tinnunculus
according to Suschkin, quoted from Gaupp) : a dorsal element,
interpreted as hyomandibular, in contact with the wall of the
otic capsule, and a small element (stylohyal) beneath the former.
The two elements fuse to form the columella, the upper end of
which is shown in Fig. 168. The stapedial plate (operculum of
the columella) is stated to arise in Tinnunculus from the wall
of the otic capsule, being cut out by circular cartilage resorption
and fused to the columella.
The distal elements of the hyoid arch consist of (1) a pair
of ceratohyals, which subsequently fuse in the middle line to
form the entoglossal cartilage, the proximal ends remaining free as
the lesser cornua of the hyoid, and (2) a median unpaired piece
(copula I or basihyal) behind the united ceratohyals (Fig. 245).
First Branchial Arch. The skeletal elements of the third visceral
(first branchial) arch are much more extensive than those of the
hyoid arch. They are laid down as paired cerato- and epi-branchial
cartilages on each side, and an unpaired copula II (basibranchial I)
in the floor of the pharynx, in the angle of the other elements
(Fig. 245). The cerato- and epibranchials increase greatly in
length, and form the long curved elements (greater cornua) of the
hyoid, which attain an extraordinary development in many birds.
Ossification of the Skull. The bones of the skull are of two
kinds as to origin: (1) those that arise in the primordial cranium,
and thus replace cartilage (cartilage bones or replacement bones),
and (2) those that arise by direct ossification of membrane (membrane or covering bones).
The cartilage bones of the bird's skull are: (a) in the occipital
region; the basioccipital, two exoccipitals, and the supraoccipitals; {h) in the otic region: prootic, epiotic, and opisthotic;
THE SKELETON 433
(c) in the orbital region: the basisphenoid, the orbitosphenoids,
the ahsphenoids and ossifications of the interorbital septum; (d) in
the ethmoidal region the bony ethmoidal skeleton; (e) the palatoquadrate cartilage furnishes the quadrate bone; (/) a proximal
ossification, the articulare, arises in Meckel's cartilage and fuses
later with membrane bones; (g) the upper part of the hyoid arch
furnishes the columella, and the ceratohyals the os entoglossum;
(h) the cerato- and epibranchials ossify independently, as also
do the two copulse. (See Figs. 243, 244 and 245.)
The membrane bones of the skull are: (a) in the region of the
cranium proper: parietals, frontals, squamosals; (6) in the facial
region: lachrymals, nasals, premaxillae, maxillae, jugals, quadrato-jugals, pterygoids, palatines, parasphenoid, and vomer; (c)
surrounding Meckel's' cartilage and forming the lower jaw: angulare, supra-angulare, operculare, and dentale. (See Figs. 243, 244
and 245.)
The embryonic bird's skull is characterized by a wealth of
distinct bones that is absolutely reptilian; but in the course of
development these fuse together so completely that it is only in
the facial and visceral regions that the sutures can be distinguished
readily.
In order of development the membrane bones precede the
cartilage bones, though the latter are phylogenetically the older.
Thus, about the end of the ninth day, the following bones are
present in the form of delicate reticulated bars and plates: all
four bones of the mandible, the faint outline of the premaxillae,
the central part of the maxillae, the jugal and quadratojugal, the
nasals, the palatines and pterygoids. The base of the squamosal
is also indicated by a small triangular plate ending superiorly in
branching trabeculae, delicate as frost-work. A faint band of
perichondral bone is beginning to appear around the otic process
of the quadrate, the first of the cartilage bones to show any
trace of ossification. These ossifications appear practically
simultaneously as shown by the examination of the earlier stages.
On the twelfth day these areas have expanded considerably,
and the frontals and prefrontals (lachrymals) are formed; the
rostrum of the parasphenoid is also laid down, and the exoccipitals appear in the cartilage at the sides of the foramen magnum.
The parietals appear behind the squamosal (Fig. 242) about the
thirteenth day; the basioccipitals soon after. The supraoc
434 THE DEVELOPMENT OF THE CHICK
cipital appears as a pair of ossifications in the tectum synoticum
on each side of the dorsal middle line, subsequently fusing
together.
A detailed history of the mode of ossification of all the various
bones of the skull would be out of place in this book. The figures
illustrate some points not described in the text. The reader is
referred to W. K. Parker (1869) and to Gaupp (1905).
V. Appendicular Skeleton
The appendicular skeleton includes the skeleton of the limbs
and of the girdles that unite the limbs to the axial skeleton. The
fore and hind-limbs, being essentially homonymous structures,
exhibit many resemblances in their development.
The Fore-limb. The pectoral girdle and skeleton of the
wing develop from the mesenchyme that occupies the axis and
base of the w^ng-bud, as it exists on the fourth day of incubation. It is probably of sclerotomic origin, but it is not known
exactly how many somites are concerned in the chick, nor which
ones. After the wing has gained considerable length (fifth day)
it can be seen from the innervation that three somites are principally involved in the wing proper, viz., the fourteenth, fifteenth,
and sixteenth of the trunk. But it is probable that the mesenchyme of the base of the wing-bud, from which the pectoral
girdle is formed, is derived from a larger number of somites.
It is important, then, to note first of all that the scapula,
coracoid, clavicle, humerus, and distal skeletal elements of the
wing are represented on the fourth day by a single condensation
of mesenchyme, which corresponds essentially to the glenoid
region of the definitive skeleton. From this common mass a
projection grows out distally in the axis of the wing-bud, and
three projections proximally in different directions in the bodywall. These projections are (1) the primordium of the wingskeleton, (2) of the scapula, (3) of the coracoid, (4) of the
clavicle.
The Pectoral Girdle. The elements of the pectoral girdle are
thus outgrowths of a common mass of mesenchyme. The scapula
process grows backward dorsal to the ribs; the coracoid process
grows ventralward and slightly posterior towards the primordium
of the sternum, thus forming an angle slightly less than a right
angle with the scapular process; and the clavicular process grows
THE SKELETON 435
out in front of the coracoid process ventrally and towards the
middle hne. ThevSe processes are quite well developed on the
fifth day, and increase considerably in length on the sixth day,
when the hind end of the scapula nearly reaches the anterior end
of the ilium, and the lower end of the coracoid is very close to
the sternum. The elements are still continuous in the glenoid
region.
About the end of the sixth day independent centers of chondrification appear in the scapula and coracoid respectively near
their imion; these spread distally and fuse centrally, so that
on the seventh day the coraco-scapula is a single bent cartilaginous element. In the angle of the bend, however (the future
coraco-scapular joint), the cartilage is in a less advanced condition than in the bodies of the two elements. The clavicular
process, on the other hand, never shows any trace of cartilage
formation, either in early or more advanced stages, but ossifies
directly from the membrane. It separates from the other elements of the pectoral girdle, though not completel}', on the eighth
dav.
The scapula and coracoid ossify in a perichondral fashion,
beginning on the twelfth da}^, from independent centers, which
approach but never fuse, leaving a permanent cartilaginous
connection (Fig. 242). The clavicle, on the other hand, is a
purely membrane bone; bony deposit begins in the axis of the
membranous rods on the eighth or ninth days, soon forming
fretted rods that approach in the mid-ventral line by enlarged
ends, which fuse directly without the intervention of any median
element about the twelfth to thirteenth day, thus forming the
furcula or wish-bone (Fig. 246).
The nature of the clavicle in birds has been the subject of a sharp
difference of opinion. On the one hand, it has been maintained that it
is double in its origin, consisting of a cartilaginous axis (procoracoid)
on which a true membrane bone is secondarily grafted (Gegenbaur, Fiirbringer, Parker, and others) ; on the other hand, all cartilaginous preformation in its origin has been denied by Rathke, Goette, and Kulczycki. After
careful examination of series of sections in all critical stages, and of
preparations made by the potash method, I feel certain that in the chick
at least there is no cartilaginous preformation. It is still possible (indeed probable on the basis of comparative anatomy) that the theory
of its double origin is correct phylogenetically; but it is certain that the
436
THE DEVELOPMENT OF THE CHICK
procoracoid component does not develop beyond the membranous stage
in the chick. It is interesting that the clavicle is the first center of ossification in the body, though perichondral ossification of some of the
long bones begins almost as soon.
The Wing-bones. The primordium of the wing-bones is
found in the axial mesenchyme of the wing-bud, which is originally continuous with the primordium of the pectoral girdle, and
shows no trace of the future elements of the skeleton. The
differentiation of the elements accompanies in general the external
differentiation of the wing illustrated in Figs. 121 to 124, Chapter
VII. The humerus, radius, and ulna arise by membranous differentiation in the mesenchyme in substantially their definitive
relations; they pass through a complete cartilaginous stage and
Fig. 246. — Photograph of the pectoral
girdle of a chick embryo of 274 hours;
prepared by the potash method. (Preparation and photograph by Roy L.
Moodie.)
1, Coracoid. 2, Clavicle. 3, Scapula.
4, Humerus.
then ossify in a perichondral fashion (see Fig. 242). In the
carpus, metacarpus, and phalanges, more elements are formed
in the membrane and cartilage than persist in the adult. Elimination as well as fusion takes place. These parts will therefore
require separate description.
As birds have descended from pentadactyl ancestors with
subsequent reduction of carpus, metacarpus, and phalanges, it
is naturally of considerable interest to learn how much of the
ancestral history is preserved in the embryology. The hand is
represented in the embryo of six days by the spatulate extremity
of the fore-limb, which includes the elements of carpus, metacarpus, and phalanges. From this expansion five digital rays
grow out simultaneously, the first and fifth being relatively
THE SKELETOX
437
small; the second, third, and fourth represent the persistent digits.
In each ray is a membranous skeletal element, which, however,
soon disappears in the first and fifth. Thus there are distinct
indications of a i^entadactyl stage in the development of the
bird's wing.
In the definitive skeleton there are but two carpal bones,
viz., a radiale at the extremity of the radius, and an ulnare at
the extremity of the ulna. In the embryo there is evidence of
seven transitory pieces in the carpus arranged in two rows, proximal and distal (Fig. 247). In the proximal row only two car
M.c.J
M c. 2
^A*"?^
jPcA
-U
M'c.-?^
Cp.^ Cp3 ^•^■
P'c/).
Fig. 247. — Skeleton of the wing of a chick embryo of 8 days. (After W.
K. Parker.)
Cp. 2, 3, and 4, Second, third, and fourth carpalia. C. U., Centraloiilnare. H., Humerus. I. R., Intermedio-radiale. M'c. 2, 3, 4, Second,
third, and fourth metacarpalia. P'ch., Perichondral bone R., Radius.
U., Ulna.
tilages appear, viz., the radiale and ulnare; but in earlier stages
each appears to be derived from two centers: the radiale from a
radiale s.s. and an intermedium, the ulnare from an ulnare s.s.
and a centrale. Evidence of such double origin of each is found
also in the cartilaginous condition {v. Parker, 1888). Four
elements in all enter into the composition of this proximal row.
In the distal row there are three distinct elements corresponding
to the three persistent digits, and representing, therefore, carpalia
II, III, and IV. These subsequently fuse with one another,
and with the heads of the metacarpals to produce the carpometacarpus.
On the seventh day the metacarpus is represented Ijy three
cartilages corresponding to the three persistent digits, viz., II,
438 THE DEVELOPMENT OF THE CHICK
III, IV. Metacarpal II is only about one third the length of III.
Metacarpal IV is much more slender than III, and is bowed out
in the middle, meeting III at both ends. The elements are at
first distinct, but II and III fuse at their proximal ends in the
process of ossification. Cartilaginous rudiments of metacarpals
I and V have also been found by Parker, Rosenberg, and Leighton.
As to the phalanges, Parker finds two cartilages in II, three
in III, and two in IV on the seventh day; but already on the
eighth day the distal phalanges of III and I^' have fused with
the next proximal one.
As regards the homology of the digits of the wing, the author has
adopted the views of Owen, Mehnert, Norsa, and Leighton, that they
represent numbers II, III, and IV, which seem to be better supported
by the embryological evidence than the view of ^Meckel, Gegenbauer,
Parker, and others, that they represent I, II, and HI.
The Skeleton of the Hind-limb. The skeleton of the hindlimb and pelvic girdle develops from a continuous mass of mesenchyme situated at the base of the leg-bud. The original center
of the mass represents the acetabular region; it grows out in four
processes: (1) a lateral projection in the axis of the leg-bud, the
primordium of the leg-skeleton proper, (2) a dorsal process, the
primordium of the ilium; and two diverging ventral processes,
one in front of the acetabulum (3) the pubis, and one behind
(4) the ischium. In the membranous condition the elements are
continuous. The definitive elements develop either as separate
cartilao-e centers in the common mass (usually), or as separate
centers of ossification in a common cartilaginous mass (ilium
and ischium).
The Pelvic Girdle. The primitive relations of the elements of
the pelvic girdle in Larus ridibundus is shown in Fig. 248, which
represents a section in the sagittal plane of the body, and thus
does not necessarily show the full extent of any of the cartilaginous elements, but only their general relations. The head of the
femur is seen in the acetabulum, the broad plate of the ilium
above and the pubis and ischium as cartilaginous rods of almost
equal width below, the pubis in front and the ischiimi behind
the acetabuhmi. In this stage the pehdc girdle, in this and
many other species of birds, consists of three separate elements
on each side in essentially reptilian relations.
THE SKELETOX
439
In the chick at a corresponding age the ihum is much more
extensive, and the ischium is united with it by cartilage- the
pubis, however, has only a membranous connection with the
ilium (contra Johnson). In the course of development the distal
ends of the ischium and pubis rotate backwards until the two
elements come to lie substantially parallel to the ilium (Figs.
242 and 249). The displacement of the ischium and pubis may
//.
u^
'^lx'~^^'~^i''
/s.n.
Is.
Cr.N.
oi.JV.
Fig. 248. — Sagittal section of the right half of the body
of Lams ridibundus, to show the composition of the pelvic girdle; x 35. Length of the leg-bud of the embryo,
0.4 mm. (After Mehnert.)
F., Femur, cr. N., Crural nerve. II., Ihum. I. s., Ischium. Is. N., Ischial nerve, ob. N., Obturator nerve.
P., Pubis.
be associated wdth the upright gait of birds; it is fully established
on the eighth day in the chick. The mode of ossification, which
is perichondral, is shown in Fig. 249.
Later, the ilium obtains a very extensive pre- and postacetabular union with the vertebrae. I have fomid no evidence
in a complete series of preparations (potash) of attachment by
ribs arising as indei^endent ossifications. The ischium also fuses
440
THE DEVELOPMENT OF THE CHICK
with the ventral posterior border of the iUum, and the pubis,
except at its anterior and posterior ends, with the free border
of the ischium.
The spina iliaca, a pre-acetabular, bony process of the ihum,
requires special mention inasmuch as it has been interpreted (by Marsh) as the
true pubis of birds, and the
element ordinarily named
the pubis as homologous to
the post-pubis of some reptiles. There is no evidence
for this in the development.
The spina iliaca develops as
a cartilaginous outgrowth of
the ilium and ossifies from
the latter, not from an independent center (Mehnert).
The Leg-skeleton. The
skeleton of the leg develops
from the axial mesenchyme,
which is at first continuous
with the primordium of the
pelvic girdle. In the process
of chondrification it segments into a larger number
of elements than found in
the adult, some of which are
suppressed and others fuse
together. The digits grow
out from the palate-like expansion of the primitive
limb in the same fashion as
in the wing. In general the
separate elements arise in the proximo-distal order (Figs. 242 and
249)..
The femur requires no special description; ossification begins
on the ninth day.
The primordium of the fibula is from the first more slender
than that of the tibia, though relatively far larger than the adult
Fig. 249. — Photograph of the skeleton
of the leg of a chick embryo of 15 days'
incubation. Prepared by the potash
method. (Preparation and photograph
by Roy L. Moodie.)
1, Tibia. 2, Fibula. 3, Patella. 4,
Femur. 5, Ilium. 6, Pleurocentra of
sacral vertebrae. 7, Ischium. 8, Pubis.
9, Tarsal ossification. 10, Second, third,
and fourth metatarsals. 11, First metatarsal. I, II, III, IV, First, second, third,
and fourth digits.
THE SKELETON
441
fibula. The fibular cartilage extends the entire length of the crus,
but ossification is confined largely to its proximal end; on the
fourteenth day its lower half is represented by a thread-like filament of bone. '
No separate tarsal elements are found in the adult; but in the
embryo there are at least three cartilages,
viz., a fibulare, tibiale and a large distal
element opposite the three main metatarsals. In the course of development, the
two proximal elements fuse with one
another, and with the distal end of the
tibia. The distal element fuses with
the three main metatarsals, first with the
second, then with the fourth, and lastly
with the third (Johnson).
Five digits are formed in the membranous stage of the skeleton. In the
case of the fifth chgit, only a small nodule
of cartilage (fifth metatarsal) develops and
soon disappears. The second, third, and
fourth are the chief digits; the first is
relatively small. ^Metatarsals 2, 3, and 4
are long and ossify separately in a perichondral fashion. They become applied
near their middle and fuse with one
another and with the distal tarsal element
to form the tarso-metatarsus of the adult
(Fig. 250). The first metatarsal is short,
lying on the preaxial side of the distal end
of the others (Fig. 249); it ossifies after
the first phalanx. The number of phalanges is 2, 3, 4, and 5 in the first, second, third, and fourth digits
respectively (Fig. 249).
The patella is clearly seen in potash preparations of thirteen-day
chicks. At the same time there is a distinct, though iiiiiuite, separate
center of ossification in the tarsal region (Fig. 249).
Fig. 250. — Photograph
of the skeleton of the
foot of a chick embryo
of 15 days' incubation.
(Preparation and photograph by Roy L.
Moodie)
1, 2, 3, 4, First, second,
third, and fourth digits.
M 2, M 3, M 4, Second,
third, and fourth metatarsals.


==APPENDIX==
==APPENDIX==

Revision as of 16:33, 21 July 2019

THE DEVELOPMENT OF THE CHICK - AN INTRODUCTION TO EMBRYOLOGY BY

FRANK R. LILLIE

PROFESSOR IN THE UNIVERSITY OP CHICAGO

SECOND EDITION, REVISED

NEW YORK HENRY HOLT AND COMPANY

1919

Copyright, 1908, 1919,

BY

HENRY HOLT AND COMPANY


Part I The Early Development To The End Of The Third Day

APPENDIX

GENERAL LITERATURE

V. Baer, C. E., L'eber Entwickelurigsgeschichte der Tiere. Beobachtung

und Reflexion. Konigsbcrg, 1828 u. 1837.

id., 2. Teil — Herausgegeben von Stieda. Konigsberg, 1888. Duval, Mathias, Atlas d'embryologie. (With 40 plates.) Paris, 1889. Foster, M., and Balfour, F. M., The Elements of Embryology. Second

Edition revised. London, 1883. Gadow, Hans, Die Vogel, Bronn's Klassen und Ordniingen des Thier-Reichs,

Bd. VI, Abth. 4, 1898. Handbuch der vergleichenden und experimentellen Entwickelimgslehre der

Wirbeltiere. Edited by Dr. Oskar Hertwig and written by numerous

collaborators. Jena, 1901-1907. Hls, W., LTntersuchungen fiber die erste Anlage des Wirbeltierleibes. Die

erste Entwickelung des Hiihnchens im Ei. Leipzig, 1868. Keibel, F., and Abraham, K., Normaltafeln zur Entwickelungsgeschichte

des Huhnes (Gallus domesticus). Jena, 1900. V. KoLLiKER, A., Entwickelungsgeschichte des Menschen und der hoheren

Thiere. Zweite Aufl. Leipzig, 1879. Marshall, A. M., Vertebrate Embryology. A Text-book for Students and

Practitioners. (Ch. IV, The Development of the Chick.) New York

and London, 1893. MiNOT, C. S., Laboratory Text-book of Embryology. Philadelphia, 1903. Pander, Beitrage zur Entwickelungsgeschichte des Hiihnchens im Ei. Wiirz burg, 1817. Prevost et Dumas, Memoire sur le developpement du poulet dans I'oeuf.

Ann. Sc. Nat., Vol. XII, 1827. Preyer, W., Specielle Physiologic des Embryo. Leipzig, 1885. Remak, R., Untersuchungen iiber die Entwickelung der Wirbelthiere. Berlin, 1855.

LITERATURE — CHAPTER I

Bartelmez, George W., 1912, The Bilaterality of the Pigeon's Egg. A Study in Egg Organization from the First Growth Period of the Oocyte to the Beginning of Cleavage. Journ. of Morph. Vol. 23., pp. 269-328.

CoSTE, M., Histoire generale et particuliere du developpement des corps organises, T. I. (Formation of Egg in Oviduct, see Chap. VI). Paris, 1847-1849.

D 'Hollander, F., Recherches sur I'oogenese et sur la structure et la signification du noyau vitellin de Balbiani chez les oiseaux. Archiv. d'anat. micr., T. VII, 1905.

Gegenbaur, C, Ueber den Bau und die Entwickelung der Wirbeltiereier mit partieller Dottertheilung. Archiv. Anat. u. Phys., 1861.


Glaser, Otto, 1913, On the Origin of Double-yolked Eggs. Biol. Bull.,

Vol. 24, pp. 175-186. HoLL, M., Ueber die Reifung der Eizelle des Huhnes. Sitzungsber. Akad Wiss. Wien, math.-nat. KL, Bd. XCIX, Abth. Ill, 1890.

V. Nathusius, W., Zur Bildung der Eihiillen. Zool. Anz. Bd. XIX, 1896.

Die Entwickelung von Schale und Schalenhaut des Hiihnereies im

Ovidukt. Zeitschr. wiss. Zool., Bd. LV, 1893.

Parker, G. H., Double Hen's Eggs. American Naturalist, Vol. XL. 1906.

Pearl, Raymond and Curtis, M. R, 1912, Studies on the Physiology of

Reproduction in the Domestic Fowl. V. Data Regarding the Physiology

of the Oviduct. Journ. of Exp. Zoology. Vol. 12, pp. 99-132. Riddle, Oscar, 1911, On the Formation, Significance and Chemistry of

the White and Yellow Yolk of Ova. Journ. of Morph., Vol. 22, pp.

455-490. SoNNENBRODT, 1908, Die Wachstunsperiode der Oocyte des Huhns. Arch.

f. mikr. Anat. w. Entw. Bd. 72, pp. 415-480. Waldeyer, W., Die Geschlechtszellen. Handbuch der vergl. und exper.

Entwickelungslehre der \Yirbeltiere. Bd. I, T. 1, 1901.

LITERATURE — CHAPTER II

Andrews, E. A., Some Intercellular Connections in an Egg of a Fowl. The Johns Hopkins University Circular. Notes from the Biological Laboratory, March, 1907.

Barfurth, D., Versuche iiber die parthenogenetische Furchung des Hiihnereies. Arch. Entw.-mech., Bd. 2, 1895.

Blount, Mary, The Early Development of the Pigeon's Egg with Especial Reference to the Supernumerary Sperm-nuclei, the Periblast and the Germ-wall. Biol. Bull., Vol. XIII, 1907.

Duval, M., De la formation du l^lastoderm dans Foeuf d'oiseau. Ann. Sc. Nat. Zool., Ser. 6, T. XVIII, 1884.

Gasser, E., Der Parablast und der Keimwall der Vogelkeimscheibe. Sitzungsber. der Ges. zur Beford. d. ges. Naturwiss. zu Marburg, 1883. Eierstocksei und Eileiterei des Vogels. Ibid, 1884.

Gotte, a., Beitrage zur Entwickelungsgeschichte der Wirbeltiere, II. Die Bildung der Keimblatter und des Blutes im Hiihnerei. Archiv. mikr. Anat., Bd. X, 1874.

Harper, E. H., The Fertilization and Early Development of the Pigeon's Egg. Am. Jour. Anat., Vol. Ill, 1904.

KiONKA, H., Die Furchung des Hiihnereies. Anat. Hefte, Bd. Ill, 1894.

Lau, H., Die parthenogenetische Furchung des Hiihnereies. Inaug. Dissert. Jurjew — Dorpat., 1894.

Oellacher, J., Untersuchungen iiber die Furchung und Blatterl)ildung im Hiihnerei. Studien iiber experimentelle Pathologic von Strieker, Bd

I, 1869. Oellacher, J., Die Veranderungen des unbefruchteten Keimes des Huhnereies im Eileiter und bei Bebriitungsversuchen. Zeitschr. wiss. Zool., Bd. XXII, 1872.


APPENDIX 445

Patterson, J. Thomas, Gastrulation in the Pigeon's Egg; a ^Morphological

and Experimental Study. The Journ. of Morph., Vol. 29, pp. 65-123,

1909. Patterson, J. Thomas, Studies on the Early Dev^elopment of the Hen's

Egg. 1. History of the Early Cleavage and of the Accessory Cleavage.

The Journ. of Morph., Vol. 21, pp. 101-134, 1910. Rauber, a., Ueber die Stellung des Hiihnchens im Entwicklungsplan.

Leipzig, 1876. Sobotta, J., Die Reifung und Befruchtung des Wirbeltiereies. Ergeb.

Anat. u. Entwickelungsgesch., Bd. V, 1895.

LITERATURE — CHAPTER III

Edwards, C. L., The Physiological Zero and the Index of Development for

the Egg of the Domestic Fowl, Gallus Domesticus. Am. Journ. Physiol.,

Vol. VI, 1902. Eycleshymer, a. C, Some Observations and Experiments on the Natural

and Artificial Incubation of the Egg of the Common Fowl. Biol. Bull.,

Vol. XII, 1907. Fere, Cm., Note sur I'influence de la temperature sur I'incubation de I'oeuf

de poule. Journ. de I'anatomie et de la physiologic, Paris, T. XXX,

1894.

LITERATURE — CHAPTERS IV AND V

Assheton, R., An Experimental Examination into the Growth of the Blastoderm of the Chick. Proc. Roy. Soc, London, Vol. LX, 1896.

Balfour, F. M. The Development and Growth of the Layers of the Blastoderm. Quar. Jour. Micr. Sc, Vol. XIII, 1873.

On the Disappearance of the Primitive Groove in the Embryo Chick. lUd.

Balfour, F. M., and Deighton, A Renewed Study of the Germinal Layers of the Chick. Quar. Jour. Micr. Sc, Vol. XXII, 1882.

DissE, J., Die Entwickelung des mittleren Keimblattes im Hiihnerei. Arch, mikr. Anat., Bd. XV, 1878.

DuRSY, Emil, Der Primitivstreif des Hiihnchens. Lahr, 1866.

Duval, Mathias, Etudes sur la hgne primitive de rembr3'on du poulet. Ann. Sc. Nat. Zool., Ser. 6, T. VII, 1S7S.

De la formation du blastoderm dans I'oiuf d'oiseau. Ann. Sc. Nat. Zool., Ser. 6, T. XVIII. Paris, 1884.

Evans, Herbert M. On the Development of the Aorta), Cardinal and UmbiUcal Veins and other Blood-vessels of Vertebrate Embryos from Capillaries. Anatomical Record., Vol. 3, pp. 498-518, 1909.

Fol, H., Recherches sur le developpement des protovertcbres chez I'embryon du poulet. Arch. sc. phys. et nat. Geneve, T. II, 1884.

Gasser, Lieber den Primitivstreifen bei Vogelembryonen. Sitz.-Ber. d. Gcs. z. Beforcl. d. ges. Naturw. z. Marburg, 1877.

Der Primitivestreif bei Vogelembryonen (Huhn w. Gans). Schriften d. Ges. z. Beford. d. ges. Naturw. z. Marburg, Bd. XI, Suppl. Heft 1, 1879.


446 APPENDIX

Gasser, Beitrage zur Kenntnis der Vogelkeimscheibe. Arch. Anat. u

Entw., 1882.

Der Parablast unci der Keimwall der Vogelkeimscheibe. Sitz.-Ber.

d. Ges. z. Beford. d. ges. Naturw. z. Marburg, 1883. GoETTE, A., Beitrage zur Entwickelungsgeschichte der Wirbeltiere. II.

Die Bildung der Keimblatter und des Blutes im Hiihnerei. Arch. mikr.

Anat., Bd. X, 1874. Hertwig, O., Die Lehre von den Keimblattern. Handbuch der vergl. und

exper. Entwickehuigslehre der Wirbeltiere. Vol. I. Jena, 1903. His, W., Der Keimwall des Htihnereies und die Entstehung der para blastischen Zellen. Arch. Anat. und Entw., Bd. I, 1876.

Neue Untersuchung liber die Bildung des Hiihnerembryo. Arch.

Anat. und Entw., 1877.

Lecithoblast und Angioblast der "Wirbelthiere. Histogenetische

Studien. Abh. der math.-phys. Klasse der Konigl. Sachs. Ges. der

Wissenschaften, Bd. XXVI. Leipzig, 1900.

Die Bildung der Somatopleura und der Gefasse beim Hiihnchen.

Anat. Anz., Bd. XXI, 1902. Hubbard, M. E., Some Experiments on the Order of Succession of the

Somites of the Chick. Am. Nat., Vol. 42, pp. 466-471, 1908. Janosik, J., Beitrag zur Kenntnis des Keimwulstes bei Vogeln. Sitz-Ber Akad. Wiss. Wien, math.-phys. KL, Bd. LXXXIV, 1882. Roller, C, Beitrage zur Kenntnis des Hiihnerkeimes im Beginne der Be briitung. Sitzungsber. Wien. Akad. Wiss., math.-nat. KL, 1879. Untersuchungen liber die Blatterbildung im Hlihnerkeim. Arch.

mikr. Anat., Bd. XX, 1881. V. Kolliker, a., Zur Entwickelung der Keimblatter im Hiihnerei. Verb.

phys.-med. Ges. Wlirzburg, Bd. VIII, 1875. KopscH,FR.,Ueber die Bedeutung des Primitivstreifens beim Hiihnerembryo,

und liber die ihm homologen Theile bei den Embryonen der niederen

Wirbeltiere. Intern. Monatschr. f. Anat. u. Phys., Bd. XIX, 1902. MiTROPHANOW, P. J., Teratogene Studien. II. Experimentellen Beo bachtungen liber die erste Anlage der Primitivrinne der Vogel. Arch.

Entw.-mech., Bd. VI, 1898.

Beobachtungen liber die erste Entwickelung der Vogel. Anat.

Hefte, Bd. XII, 1899. Now^\cK, K., Neue Untersuchungen liber die Bildung der beiden primiiren

Keimblatter und die Entstehung des Primitivstreifen beim Hiihnerembryo. Inaug. Diss. Berlin, 1902. Patterson, J. Thos., The Order of Appearance of the Anterior Somites in

the Chick. Biol. Bull., Vol. XIII, 1907. Patterson, J. T. An experimental Study on the Development of the Vascular

Area of the Chick Blastoderm. Biol. Bull. XVI, pp. 83-90, 1909. Peebles, Florence. Some Experiments on the Primitive Streak of the

Chick. Arch. Entw.-mech., Bd. VII, 1898.

A Prehminary Note on the Position of the Primitive Streak and its

Relation to the Embryo of the Chick. Biol. Bull., Vol. IV, 1903.


APPENDIX 447

Peebles, Florence, The Location of the Chick Embryo upon the Blastoderm. Journ. Exp. Zool., Vol. I, 1904. Platt, J. B., Studies on the Primitive Axial Segmentation of the Chick.

Bull. Mus. Comp. Zool. Harv., Vol. 17, 1889. Rabl, C, Theorie des Mesoderms. Morph. Jahrb., Bde. XV und XIX,

1889 and 1892. Rauber, a., Primitivstreifen und Neurula der Wirbelthiere, in normaler

und pathologischer Beziehung. Leipzig, 1877.

Ueber die embryonale Anlage des Hiihnchens. Centralb. d. med.

Wiss., Bd. XII, 1875.

Ueber die erste Entwickelung der Vogel und die Bedeutung der Primi tivrinne. Sitz.-ber. d. naturf. Ges. zu Leipzig, 1876. Rex, Hugo, Ueber das Mesoderm des Vorderkopfes der Ente. Archiv.

■ mikr. Anat., Bd. L., 1897. RiiCKERT, J., Entwickelung der extra-embryonalen Gefasse der Vogel. Hand buch der vergl. w. exp. Entw.-lehre der Wirbelthiere, Bd. I, T. 1,

1906.

Ueber die Abstammung der bluthaltigen Gefassanlagen beim Huhn,

und uber die Entstehung des Randsinus beim Huhn und bei Torpedo.

Sitzungsber. der Bay. Akad. Wiss., 1903. ScHAUiNSLAND, H., Bcitrage zur Biologie und Entwickelung der Hatteria

nebst Bemerkungen uber die Entwickelung der Sauropsiden. Anat.

Anz. XV, 1899. ViALLETOX, Developpement des aortes chez I'embryon de poulet. Journ.

de I'^nat. T. XXVIII, 1892. See also Anat. Anz., Bd. VII, 1892. ViRCHOW, H., Der Dottersack des Huhns. Internat. Beitrage zur wiss.

Med., Bd. I, 1891. Waldeyer, W., Bemerkungen uber die Keimblatter und den Primitivstreifen

bei der Entwickelung des Huhnerembryo. Zeitschr. rationeller Medicin,

1869. Whitman, C. O., A Rare Form of the Blastoderm of the Chick and its Bearing

on the Question of the Formation of the Vertebrate Embryo. Quar.

Journ. Micr. Sc, Vol. XXIII, 1883. WiLLL\MS, Leonard W. The Somites of the Chick. Am. Journ. of Anat.,

Vol. 11, pp. 5.5-100, 1910.

Literature to Chapter VI included in following chapters.

LITERATURE — CHAPTER VII

CHARBONNEiy-SALLE ct Phisalix, De I'evolution postembryonnaire du

sac vitellin chez les oiseaux. C. R. Acad. Sc, Paris, 1886. Dareste, C, Sur I'absence totale de I'amnios dans les embryons de poule.

C. R. Acad. Sc, Paris, T. LXXXVIII, 1879. Duval, M., Etudes histologiques et morphologiques sur les annexes des

embryons d'oiseau. Journ. de I'anat, et de la phys., T. XX, 1884. Etude sur I'origine de Tallantoide chez le poulet. Rev. sc. nat.,

Paris, 1877.


448 APPENDIX

Duval, M., Sur ime organe placentoide chez rembryon des oiseaux. C. R.

Acad. Sc, Paris, 1884. Fromann, C, Ueber die Struktur der Dotterhaut des Huhnes. Sitz.-ber.

Jen. Ges. Medizin u. Naturw., 1879. FuLLEBORN, F., Beitrage zur Entwickelung der Allantois der Vogel. Diss.,

Berlin, 1894. Gasser, E., Beitrage zur Entwickelungsgeschichte der Allantois, der Miiller schen Gange iind des Afters. Frankfurt a. M., 1874. GoTTE, A., Beitrage zur Entwickelungsgeschichte des Darmkanals im Hiihn chen. Tubingen, 1867. HiROTA, S., On the Sero-amniotic Connection and the Foetal Membranes in

the Chick. Journ. Coll. Sc. Imp. Univ. Japan, Vol. VI, Part IV, 1^94. LiLLiE, Frank R., Experimental Studies on the Development of the Organs

in the Embryo of the Fowl (Gallus domesticus): 1. Experiments on the

Amnion and the Production of Anamniote Embryos of the Chick. Biol.

Bull., Vol. V, 1903. 2. The Development of Defective Embryos and

the Power of Regeneration. Biol. Bull., Vol. VII, 1904. Mertens, H., Beitrage zur Kenntniss der Fotushiillen im Vogelei. Meckels

Archiv, 1830. Mitrophanow, p. J., Note sur la structure et la formation de I'enveloppe

du jaune de I'ceuf de la poule. Bibliogr. Anat., Paris, 1898. PopoFF, Demetrius, Die Dottersackgefasse des Huhnes. Wiesbaden, 1894. Pott, R., and Preyer, W., Ueber denGaswechsel und die chemischen Verander ungen des Hiihnereies wahrend der Bebriitung. Archiv. ges. Phys., 1882. Preyer, W., Specielle Physiologic des Embryo. Leipzig, 1885. Ravn, E., Ueber die mesodermfreie Stelle in der Keimscheibe des Huhner embryo. Arch. Anat. u. Entw., 1886.

Ueber den Allantoisstiel des Hiihnerembryo. Verh. Anat. Ges., 1898. ScHAUiNSLAND, H., Die Entwickelung der Eihaute der Reptilien und der

Vogel. Handbuch der vergl. und exp. Entw.-lehre der Wirbeltiere. Bd.

I, T. 2, 1902.

Beitrage zur Entwickelungsgeschichte der Wirbeltiere. II. Beitrage zur

Entwickelungsgeschichte der Eihaute der Sauropsiden. Bibliotheca

Zoologica, 1903. Schenk, S. L., Beitrage zur Lehre vom Amnion. Archiv. mikr. Anat., Bd.

VII, 1871.

Ueber die Aufnahme des Nahrungsdotters wahrend des Embryonal lebens. Sitz.-ber. Akad. Wiss. Wien, math.-nat. Kl., 1897. Shore, T. W., and Pickering, J. W., The Proamnion and Amnion in the

Chick. Journ. of Anat. and Phys., Vol. XXIV, 1889. Soboleff, Die Verletzung des Amnions wahrend der Bebriitung. Mittheil,

embryolog. Inst., Wien, 1883. Strahl, H., Eihaute und Placenta der Sauropsiden. Ergeb. Anat. u. Entw. gesch., Bd. I, 1891. Stuart, T. P. A., A Mode of Demonstrating the Developing Membranes in

the Chick. Journ. Anat. and Phys., London, Vol. XXV, 1899. ViRCHOW, H., Beobachtungen am Hiihnerei; iiber das dritte Keimblatt

im Bereiche des Dottersackes. Virchow's Arch., Bd. LXII, 1874.


APPENDIX 449

ViRCHOW, H., Ueber das Epithel des Dottersackes im Hiihnerei. Diss., Berlin. 1875.

Der Dottersack des Huhnes. Internat. Beitrage zur wissenschaft. Medizin, Bd. I, 1891.

Das Dotterorgan der Wirbeltiere. Zeitschr. wiss. Zool., Bd. LIII, Suppl., 1892.

Das Dotterorgan der Wirbelthiere. Arch. mikr. Anat., Bd. XL, 1892. Dottersyncytium, Keimhautrand und Beziehungen zur Koncrescenzlehre. Ergeb. Anat. u. Entw., Bd. VI, 1897.

Ueber Entwickelungsvorgange, welche sich in den letzten Bruttagen am Hiihnerei abspielen. Anat. Anz., Bd. IV, BerHn, 1889. VuLPiAX, La physiologie de I'amnios et de I'allantoide chez les oiseaux.

Mem. soc. biol., Paris, 1858. Weldox, W. F. R., Prof, de Vries on the Origin of Species. (Includes experiments on amnion.) Biometrica, Vol. I, 1902.

LITERATURE — CHAPTER VIII

Beard, J., Morphological Studies, II. The Development of the Peripheral

Nervous System of Vertebrates. Pt. I. Elasmobranchs and Aves.

Quar. Journ. Micr. Sc, Vol. XXIX, 1888. Beraneck, E., Etudes sur les replis medullaires du poulet. Recueil Zool.

Suisse, Vol. IV, 1887. Bethe, Albrecht, Allgemeine Anatomic und Physiologie des Nervensys tems. Leipzig, 1903. Brandis, F., Untersuchungen iiber das Gehirn der Vogel. Arch. mikr.

Anat., Bd. XLI, 1893; Bd. XLIII, 1894; Bd. XLIV, 1895. Burrows, Montrose T., The Growth of Tissues of the Chick Embryo

Outside the Animal Body, with Special Reference to the Nervous System.

Journ. Exp. Zoology, Vol. 10, pp. 63-83, 1911. Cajal, S. R. y., Sur I'origine et les ramifications des fibres nerveuses de la

moelle embryonnaire. Anat. Anz., Bd. V, 1890.

A quelle epoque aparaissent les expansions des cellules nerveuses de

la moelle epiniere du poulet. Anat. Anz., Bd. V, 1890. Froriep, a., Ueber Anlagen von Sinnesorganen am Facialis, Glossopha ryngeus und Vagus, iiber die genetische Stellung des Vagus zum Hypo glossus, und iiber die Herkunft der Zungenmuskulatur. Arch. Anat.

u. Entw., 1885. Carpenter, Frederick Walton, The Development of the Oculomotor Nerve,

the Ciliary Ganglion, and the Abducent Nerve in the Chick. Bull.

Mus. Comp. Zool. Harv. Vol. XLVIII, 1906. DissE, J., Die erste Entwickelung des Riechnerven. Anat. Hefte, Abth. I,

Bd. IX, 1897. GoLoviNE, E., Sur le developpement du systeme ganglionnaire chez le poulet.

Anat. Anz., Bd. V, 1890. GoRONOwiTscH, N., Die axiale und die laterale (A. Goette) Kopfmetamerie

der Vogeleml^ryonen. Anat. Anz., Bd. VII, 1892.

L'ntersuchungen iiber die Entwickelung der Sogenannten " Ganglien leisten " im Kopfe der Vogelembryonen. Morph. Jahrb., Bd. XX, 1893.


450 APPENDIX

Heinrich, Georg, Untersuchungen iiber die Anlage des Grosshirns beim Hiihnchen. Sitz.-ber. d. Ges. f. Morph. u. Phys. in Munchen, Bd. XII,

1897. Hill, Charles, Developmental History of the Primary Segments of the

Vertebrate Head. Zool. Jahrbucher, Abth. Anat. Bd. XIII, 1900. His, W., Die Neuroblasten und deren Entstehung im embryonalen Mark.

Abh. math.-physik. Klasse, Konigl. Sachs. Ges. Wiss., Bd. XV, 1889. Histogenese und Zusammenhang der Nervenelemente. Arch. Anat. u. Entw., Suppl., 1890. Ueber das frontale Ende des Gehirnrohres. Arch. Anat. u. Entw., 1893. Ueber das frontale Ende und iiber die natiirliche Eintheilung des Gehirnrohres. Verh. anat. Ges., Bd. VII, 1893. His, W. (Jr.)» Ueber die Entwickelung des Bauchsympathicus beim Hiihnchen und Menschen. Arch. Anat. u. Entw., Suppl., 1897. V. KoLLiKER, Ueber die erste Entwickelung der Nervi olfactorii. Sitz.-ber.

phys. med. Ges. zu Wiirzburg, 1890. V. KuPFFER, K., Die Morphogenie des Centralnervensystems. Handbuch der

vergl. und exp. Entwickelungslehre der Wirbeltiere, Kap. VIII, IP, 1905. Lewis, M. R. and Lewis, W. H., The Cultivation of Tissues from Chick

Embroyos in Solutions of NaCl, CaCl2, KCl and NaHCOg. Anatomical

Record, Vol. 5, pp. 277-293. See also Anat. Rec, Vol. 6, nos. 1 and 5, 1911. Marshall, A. M., The Development of the Cranial Nerves in the Chick.

Quar. Journ. Micr. Sc, Vol. XVIII, 1878.

The Segmental Value of the Cranial Nerves. Journ. Anat. and Physiol.,

Vol. XVI, 1882. v. MiHALCOVics, v., Entwickelungsgeschichte des Gehirns. Leipzig, 1877. Onodi, a. D., Ueber die Entwickelung des sympathischen Nervensy stems.

Arch. mikr. Anat., Bd. XXVI, 1886. Rabl, C, Ueber die IMetamerie des Wirbelthierkopfes. Verh. anat. Ges.,

VI, 1892. RuBASCHKiN, W., Ueber die Beziehungen des Nervus trigeminus zur Riech schleimhaut. Anat. Anz., Bd. XXII, 1903. Weber, A., Contribution a Tetude de la metamerism du cerveau anterieur

chez quelques oiseaux. Arch, d'anat. microsc, Paris, T. Ill, 1900. Van Wijhe, J. W., L^eber Somiten und Nerven im Kopfe von Vogel- und

Reptilien-embryonen. Zool. Anz. Bd. IX, 1886.

Ueber die Kopfsegmente und das Geruchsorgan der Wirbelthiere

Zool. Anz., Bd. IX, 1886.

LITERATURE — CHAPTER IX Organs of Special Sense

A. The Eye

Addario, C, Sulla struttura del vitreo embryonale e de' neonati, sulla matrice del vitreo e suU' origine della zonula. Ann. OttalmoL, Anno 30, 1901-1902.


APPENDIX 451

AddariOjC, Ueber die Matrix desGlaskorpers im menschlichen und thierischen

Auge. Vorlauf. Mitth. Anat. Anz., Bd. XXI, 19(32. Agababow, Untersuchiingen iiber die Natur der Zonula ciliaris. Arch.

mikr. Anat., Bd. L, 1897. Angelucci, a., Ueber Entwiekelung und Bau des vorderen Uvealtractus der

Vertebraten. Arch. mikr. Anat., Bd. XIX, 1881. Arnold, J., Beitrage zur Entwickekmgsgeschichte des Auges. Heidelberg,

1874. AssHETON, R., On the Development of the Optic Nerve of Vertebrates, and

the Choroidal Fissure of Embryonic Life. Quar. Journ. Micr. Sc, Vol.

XXXIV, 1892. Bernd, Adolph Hugo, Die Entwiekelung des Pecten im Auge des Hiihn chens aus den Blattern der Augenblase. Bonn, 1905. Cajal, S. R. y., Sur la morphologie et les connexions des elements de la retine

des oiseaux. Anat. Anz. Bd. IV, 1889.

Sur la fine structure du lobe optique des oiseaux et sur I'origine reelle

des nerfs optiques. Int. Monatschr. Anat. u. Phys., Bd. VIII, 1891. Cirincione, G., Ueber die Entwiekelung der Capsula perilenticularis. Arch.

Anat. u. Entw., Suppl. Bd., Jahrg. 1897.

Zur Entwiekelung des Wirbeltierauges. Ueber die Entwiekelung

des Capsula perilenticularis. Leipzig, 1898.

Ueber die Genese des Glaskorpers bei Wirbelthieren. Verh. Anat.

Ges., 17. Versamml. in Heidelberg, 1903. Collin, R., Recherches sur le developpement du muscle sphincter de I'iris

chez les oiseaux. Bibliog. Anat., T. XII, fasc. V. Paris, 1903. Froriep, a., Ueber die Entwiekelung des Sehnerven. Anat. Anz., Bd. VI,

1891.

Die Entwiekelung des Auges der Wirbeltiere. Handb. der vergl. u.

exp. Entw.-l. der Wirbeltiere, Bd. II, 1905. HuscHKE, E., Lieber die erste Entwiekelung des Auges und die damit zusam menhangende Cyklopie. Meckel's Arch., 1832. Kessler, L., Untersuchungen liber die Entwiekelung des Auges, angestellt

am Hiihnchen und Tauben. Dissertation. Dorpat, 1871.

Die Entwiekelung des Auges der Wirbelthiere. Leipzig, 1877. V. Kolliker, a., LTeber die Entwiekelung und Bedeutung des Glaskorpers.

Verh. anat. Ges., 17. Vers. Heidelberg, 1903.

Die Entwiekelung und Bedeutung des Glaskorpers. Zeitschr. wiss.

Zool., Bd. LXXVII, 1904. V. Lenhossek, M., Die Entwiekelung des Glaskorpers. Leipzig, 1903. Lewis, W. H., Wandering Pigmented Cells Arising from the Epithelium of

the Optic Cup, with Observations on the Origin of the M. Sphincter

Pupillffi in the Chick. Am. Journ. Anat., Vol. II, 1903. LocY, W. A., Contribution to the Structure and Development of the Vertebrate Head. Journ. Morph., Vol. XI. Boston, 1895.

Accessory Optic Vesicles in the Chick Embryo. Anat. Anz., Bd. XIV,

1897. NussBAUM, M., Zur Riickbildung embryonaler Anlagen. (Corneal papillae

of chick embryos.) Archiv. mikr. Anat., Bd. LVII, 1901.


452 APPENDIX

NussBAUM, M., Die Pars ciliaris retinae des Vogelauges. Arch. mikr. Anat., Bd.

LVII, 1901.

Die Entwiekelung der Binnenmuskeln des Aiiges der Wirbeltiere.

Arch. mikr. Anat., Bd. LVIII, 1901. Rabl, C, Ziir Frage nach der Entwickehmg des Glaskorpers. Anat. Anz.,

Bd. XXII, 1903.

Ueber den Ban und die Entwickehmg der Linse. II. Reptihen imd

Vogel. Zeitschr. wiss. Zool., Bd. LXV, 1899. Robinson, A., On the Formation and Structure of the Optic Nerve, and its

Relation to the Optic Stalk. Journ. Anat. and Phys. London, 1896. SziLi, A.V. Beitrag zur Kenntniss der Anatomic und Entwickelungsgeschichte

der hinteren Irisschichten, etc. Arch. Opthalm., Bd. LIII, 1902.

Zur Anatomic und Entwickelungsgeschichte der hinteren Irisschichten, etc. Anat. Anz., Bd. XX, 1901.

Zur Glaskorperfrage. Anat. Anz. Bd. XXIV, 1904. ToRNATOLA, Origiuc et nature du corps vitre. Rev. gener. d 'opthalm. Annee

14, 1897. UcKE, A., Epithelreste am Opticus und auf der Retina. Arch. mikr. Anat.,

Bd. XXXVIII, 1891.

Zur Entw^ickelung des Pigmentepithels der Retina. Diss, aus Dorpat.

Petersburg, 1 89 1 . ViRCHOW, H., Facher, Zapfen, Leiste, Polster, Gefasse im Glaskorperraum

von Wirbelthieren, sowie damit in Verbindung stehenden Fragen. Er gebn. Anat. u. Entw., Bd. X. Berlin, 1900. Weysse, a. W., and Burgess, W. S., Histogenesis of the Retina. Am.

Naturalist, Vol. XL, 1906.


B. The Nose

Born, G., Die Nasenhohlen und der Thranennasengang der amnioten Wir belthiere II. Morph. Jahrb., Bd. V, 1879; Bd. VIII, 1883. CoHN, Franz, Zur Entwickelungsgeschichte des Geruchsorgans des Hiihn chens. Arch. mikr. Anat., Bd. LXI, 1903. Dieulafe, Leon, Les fosses nasales des vertebres (morphologic et embry ologie). Journ. de I'anat. et de la phys., T. 40 and 41, 1904 and 1905.

(Translated by Hanau W. Loeb: Ann. of Otol., Rhin. and Laryng., Mar.,

June and Sept., 1900.) Disse, J., Die erste Entwiekelung des Riechnerven. Anat. Hefte, Bd. IX,

1897. Ganin, M., Einige Thatsachen zur Frage iiber das Jacobsohn'sche Organ der

Vogel. Arb. d. naturf. Ges. Charkoff, 1890 (russisch). Abstr. Zool.

Anz., 1890. V. KoLLiKER, A., Ueber die Entwickehmg der Geruchsorgane beim Menschen

und Hiihnchen. Wiirzburger med. Zeitschr., Bd. I, 1860. V. MiHALKOvics, v., Nasenhohle und Jacobson'sche Organ. Anat. Hefte,

I. Abth., Bd. XI, 1898. Peter, Karl, Entwickehmg des Geruchsorgans und Jakobson'sche Organs

in der Reihe der Wirbeltiere. Bildung der ausseren Nase und des


APPENDIX 453

Gaumens. Handbuch der vergl, und experiment. Entwickelimgslehre

der Wirbeltiere. IP, 1902. Preobraschensky, L., Beitrage zur Lehre liber die Entwiekelung des Ge ruchsorganes des Huhnes. Mitth. embryol. Inst. Wien, 1892. PuTELLi, F., Ueber das Verhalten der Zellen der Riechschleimhaut bei

Hiihnerembryonen friiher Stadien. Mitth. embr. Inst. Wien, 1889.

C. The Ear

Hasse, C, Beitrage zur Entwiekelung der Gewebe der hautigen Vogel schnecke. Zeitschr. wiss. Zool., Bd. XVII, 1867. HuscHKE, Ueber die erste Bildungsgeschichte des Auges und Ohres beim

bebriiteten Hiihnchen. Isis von Oken, 1831. Kastschenko, N., Das Schlundspaltengebiet des Hiihnchens. Arch. Anat.

u. Entw., 1887. Keibel, Ueber die erste Bildung des Labyrinthanhanges. Anat. Anz., Bd.

XVI, 1899. Krause, R., Die Entwickekmg des Aquaeductus Vestibuh, s. Ductus endo lymphaticus. Anat. Anz., Bd. XIX, 1901.

Die Entwickekmgsgeschichte des hautigen Bogenganges. Arch. mikr.

Anat., Bd. XXXV, 1890. MoLDENHAUER, W., Die Entwickcking des mittleren und des ausseren Ohres.

Morph. Jahrb., Bd. Ill, 1877. PoLi, C, Sviluppo della vesicula auditiva; studio morphologico. Genoa,

1896.

Zur Entwickekmg der Gehorblase bei den WirbeUieren. Arch. mikr.

Anat., Bd. XLVIII, 1897. Retzius, G., Das Gehororgan der Wirbelthiere. II. Theil, Reptihen Vogel,

Sanger. Stockhokn. 1881-1884. RoTHiG, p., und Brugsch, Theodor, Die Entwickekmg des Labyrintkes

beim Huhn. Archiv. mikr. Anat., Bd. LIX, 1902. RtJDiNGER, Zur Entwickekmg des hautigen Bogenganges des inneren Ohres.

Sitzungsber. Akad. Miinchen, 1888.

LITERATURE — CHAPTER X The Alimentary Tract and Its Appendages

A. The Oral Cavity and Organs

Fraisse, p., Ueber Zahne bei Vogeln. Vortrag, geh. in der phys.-med.

Ges. Wiirzburg, 1880. Gardiner, E. G., Beitrage zur Kenntniss des Epitrichiums und der Bikkmg

des Vogelscknabels. Inaug. Dissert. Leipzig, 1884. Arch. mikr. Anat., Bd. XXIV, 1884. Gauff, E., Anat. L^ntersuchungen iiber die Nervenversorgung der Mund und Nasenhohledrusen der Wirbekiere. Morph. Jahrb., Bd. XIV, 1888. GiACOMiNi, E., Sulle glanduH sakvari degk uccelk. Richerche anatomico embrologiche. Monit. zook Itak, Anno 1, 1890.


454 APPENDIX

GoppERT, E., Die Bedeutimg der Zunge ftir den secundaren Gaumen und den

Ductus naso-pharyngeus. Beobachtungen an Reptilien und Vogeln.

Morph. Jahrb., Bd. XXXI, 1903. Kallius, E., Die mediane Thyreoideaanlage und ihre Beziehung zum Tuber culum impar. Verb. anat. Ges., 17. Vers., 1903.

Beitrage zur Entwickelung der Zunge. Verb. anat. Ges., 15. Vers.

Bonn, 1901. Manno, Andrea, Sopra il niodo onde si perfora e scompare le membrana

faringea negli embrioni di polio. Richerche Lab. Anat. Roma, Vol.

IX, 1902. Oppel, a., Lehrbuch der vergleichenden mikroskopischen Anat. der Wir beltiere. Jena, 1900. Reichel, p., Beitrag zur Morphologie der ^Mundhohlendriisen der Wirbel thiere. Morph. Jahrb., Bd. VIII, 1883. Rose, C., Ueber die Zahnleiste und die Eischwiele der Sauropsiden. Anat.

Anz., Bd. VII, 1892. Sluiter, C. p., Ueber den Eizahn und die Eischwiele einiger Reptilien.

Morph. Jahrb., Bd. XX, 1893. Yarrell, W., On the Small Horny Appendage to the Upper Mandible in

Very Young Chickens. Zool. Journal, 1826.

B. Derivatives of the Emhryonic Pharynx

van Bemmelen, J. F., Die Visceraltaschen und Aortenbogen bei Reptilien

und Vogeln. Zool. Anz., 1886. His, W., Ueber den Sinus praecervicalis und die Thymusanlage. Arch.

Anat. u. Entw., 1886.

Schlundspalten und Thymusanlage. Arch. Anat. u. Entw., 1889. Der Tractus Thyreoglossus und seine Beziehung zum Zungenbein.

Arch. Anat. u. Entw., 1891. Kastschenko, N., Das Schlundspaltengebiet des Hiihnchens. Arch. Anat.

und Entw., 1887. LiESSNER, E., Ein Beitrag zur Kenntniss der Kiemenspalten und ihrer An lagen bei amnioten Wirbelthieren. Morph. Jahrb., Bd. XIII, 1888. Mall, F. P., Entwickelung der Branchialbogen und Spalten des Hiihnchens.

Arch. Anat. und Entw., 1887. DE Meuron, p., Recherches sur le developpement du thymus et de la glande

thyreoide. Dissertation, Geneve, 1886. MiJLLER, W., Ueber die Entwickelung der Schilddriise. Jen. Zeitschr., Bd.

VI, 1871. Seessel, a., Zur Entwickelungsgeschichte des Vorderdarms. Arch. Anat.

und Entw., 1877. Verdun, M. P., Sur les derives branchiaux du poulet. Comptes rendus

Soc. Biol., Tom. V. Paris, 1898.

Derives branchiaux chez les vertebres superieurs. Toulouse, 1898.


APPENDIX 455

C. (Esophagus, Stomach, Intestine

BoRNHAUPT, Th., Uritersuchiingen fiber die Entwickelung des Urogenital systems beim Huhnchen. Inaug. Diss. Riga, 1867. Cattaneo, G., Intorno a un recente lavoro sullo stomaco degli iiccelli. Pavia,

1888.

Istologia e sviluppo del apparato gastrico degli uceelli. Atti della

Soc. Ital. di Sc. Nat., Vol. XXVII, Anno 1884. Milano, 1885. Cazin, M., Recherches anatomiques, histologiques et embryologiques sur

I'appareil gastrique des oiseaux. Ann. Sc. Xat. Zool. 7 ser., Tom. IV,

1888.

Sur le developpement embryonnaire de Testomac des oiseaux. Bull.

de la societe philomathique de Paris. 7 ser., Tom. XI, Paris, 1887. Developpement de la couehe cornee du gesier du poulet et des glandes

qui la seeretent. Comptes rendus, T. CI, 1885. Cloetta, M., Beit rage zur mikroskopischen Anatomic des Vogeldarmes.

Archiv. mikr. Anat., Bd. XLI, 1893. Fleischmaxx, Albert, Morphologische studien uber Kloake und Phallus der

Amnioten. III. Die Vogel, von Dr. Carl Pomayer. Morph. Jahrb.,

Bel. XXX, 1902. Gasser, E., Beitrage zur Entwiekelungsgeschichte der Allantois, Miiller schen Gauge und des Afters. Frankfurt a. M., 1893.

Die Entstehung der Kloakenoffnung bei Hiihnerembryonen. Arch.

Anat. u. Entw., 1880. Maurer, F., Die Entwickelung des Darmsystems. Handb. d. vergl. u.

exp. Entw.-lehre der Wirbeltiere. 11^, 1902. v. MiHALCovics, v., Untersuchungen liber die Entwickelung des Harn- und

Geschlechtsapparates der Amnioten. Internat. Monatschr. Anat. u.

Phys., Bd. II, 1885-1886. MiNOT, C. S., On the Solid Stage of the Large Intestine in the Chick. Journ.

Bos. Soc. Med. Sc, Vol. IV, 1900. Pomayer, Carl. See Fleischmann. Retterer, E., Contributions a I'etude du cloaque et de la bourse de Fabricius

chez des oiseaux. Journ. de I'anat. et de la phys. 21 An. Paris, 1885. Seyfert, Beitrage zur mikroskopischen Anatomic und zur Entwiekelungsgeschichte der blinden Anhange des Darmcanals bei Kaninchen, Taube

unci Sperling. Inaug. Diss. Leipzig, 1887. ScHW^\RZ, D., Untersuchungen des Schwanzendes bei den Embryonen der

Wirbeltiere. Zeitschr. wiss. Zool., Bd. XL VIII, 1889. Stieda, L. LudwiG, L^eber den Bau und die Entwickelung der Bursa Fabricii.

Zeitschr. wiss. Zool., Bd. XXXIV, 1880. Swenander, G., Beitrage zur Kenntniss des Kropfes der Vogel. Zool. Anz.,

Bd. XXIT, 1899. Weber, A., Quelques faits concernant le developpement de Tintestin moyen,

et de ses glandes annexes chez les oiseaux. C. R. Soc. Biol., T. LIV. Paris,

1902. Wenckebach, K. F., De Ontwikkeling en de bouw der Bursa Fabricii. Inaug. Dissert. Leiden, 1888.


456 APPENDIX

D. Liver and Pancreas

Bracket, A., Die Entwickelung unci Histogenese der Leber und des Pancreas.

Ergebnisse d. Anat. u. Entw.-gesch., 1896. Brouha, M., Recherches sur le developpement du foie, du pancreas, de la

cloison mesenterique et des cavites hepato-enteriques chez les oiseaux.

Journ. de Tanat. et phys., T. XXXIV. Paris, 1898.

Sur les premieres phases du foie et sur revolution des pancreas ven traux chez les oiseaux. Anat. Anz., Bd. XIV, 1898. Choronschitzky, B., Die Entstehung der Milz, Leber, Gallenblase, Bauch speicheldriise und des Pfortadersystems bei den verschiedenen Abthei lungen der Wirbelthiere. Anat. Hefte, Bd. XIII, 1900. Felix, W., Zur Leber und Pancreasentwickelung. Arch. Anat. u. Entw., 1892. Frobeen, F., Zur Entwickelung der Vogelleber. Anat. Hefte, 1892. GoTTE, Alex., Beitrage zur Entwickelungsgeschichte des Darmcanals im

Huhnchen. Tubingen, 1867. Hammar, G. a., Ueber Duplicitat ventraler Pancreasanlage. Anat. Anz.,

Bd. XIII, 1897.

Ueber einige Hauptztige der ersten embryonalen Leberentwickelung.

Anat. Anz., Bd. XIII, 1897.

Einige Plattenmodelle zur Beleuchtung der fruheren embryonalen

Leberentwickelung. Arch. Anat. u. Entw., 1893. MiNOT, C. S., On a Hitherto Unrecognized Form of Blood-Circulation without

Capillaries in the Organs of Vertebrata. Proc. Boston Soc. of Nat.

Hist., Vol. XXIX, 1900. ScHREiNER, K. E., Beitrage zur Histologic und Embryologie des Vorder darms der Vogel. Zeitschr. wiss. ZooL, Bd. LXVIII, 1900. Shore, T. W., The Origin of the Liver, Journ. of Anat. and Phys., Vol. XXV,

1890-91. Saint-Remy, Sur le developpement du pancreas chez les oiseaux. Rev.

biol. du Nord de la France. Annee V, 1893.

E. The Respiratory Tract

Bar, M., Beitrage zur Kenntniss der Anatomic und Physiologic der Athemwerkzeuge bei den Vogeln. Zeitschr. wiss. Zool., Bd. LXI, 1896.

Bertelli, D., Sviluppo de sacchi aeriferi del polio. Divisione della cavita celomatica degli uccelli. Atti della Societa Toscana di scienze natural! residente in Pisa. Memorie, Vol. XVII, 1899.

Blumsteix-Judina, Beila, Die Pneumatisation des Markes der Vogelknochen. Anat. Hefte, Abth. I, Bd. XXIX (Heft 87), 1905.

Camp ANA, Recherches d 'anatomic de physiologic, et d 'organogenic pour la determination des lois de la genese et de revolution des especes animals. I. Memoire. Physiologic de la respiration chez les oiseaux. Anatomic de I'appareil pneumatique puhnonnaire, des faux diaphragmes, des seremus et de I'intestin chez le poulet. Paris, Masson, 1875.

Goeppert, E., Die Entwickelung der luftfiihrenden Anhange des Vorderdarms. Handbuch d. vergl. u. exp. Entw.-lehre der Wirbeltiere, Bd. II, T. 1, 1902.


APPENDIX 457

LocY, W. A. and Larsell, O., The Embryology of the Bird's Lung, Based on Observations of the Domestic Fowl. Am. Journ. of Anat., Vol. 19, pp. 447-504, and Vol. 20, pp. 1-44, 1916.

Rathke, M. H., Ueber die Entwickelung der Atemwerkzeuge bei den Vogeln und Saugetieren. Nov. Act. Acad. Caes. Leop. Car., T. XIV. Bonn, 1828.

Selenka, E., Beitrage zur Entwickelungsgeschichte der Luftsiicke des Huhnes. Zeitschr. wiss. Zool., Bd. XVI, 1866.

Strasser, H., Die Luftsacke der Vogel. Morph. Jahrb., Bd. Ill, 1877.

Weber, A., et Buvignier, A., Les premieres phases du developpement du poumon chez les embryons de poulet. Comptes rendus hebd. des seances de la societe de Biologie, Vol. LV. Paris, 1903.

WuNDERLiCH, L., Beitrage zur vergleichenden Anatomie und Entwickelungsgeschichte des unteren Kehlkopfes der Vogel. Nova Acta Acad. Caes. Leop. Carol. Germanicae, Bd. XL VIII, 1884.


LITERATURE — CHAPTER XI

Beddard, F. E., On the Oblique Septa ("Diaphragm" of Owen) in the Passerines and some other Birds. Proc. Zool. Soc. London, 1896.

Bertelli, D., Sullo sviluppo del diaframma dorsale nel Polio. Nota preventiva. Monit. Zool. Ital., Anno IX, 1898.

Contributo alia morfologia ed alio sviluppo del diaframma ornitico. Ibid., 1898.

Bracket, A., Die Entwickelung der grossen Korperhohlen imd ihre Trennung von einander, etc. Ergebnisse d. Anat. u. Entw.-gesch., Bd. VII, 1897.

Broman, Ivar, Die Entwickelungsgeschichte der Bursa omentalis und ahnlicher Recessbildungen bei den Wirbeltieren. Wiesbaden, 1904.

B-ROUHA, M. See Chap. X.

Butler, G. W., On the Subdivision of the Body Cavity in Lizards, Crocodiles and Birds. Proc. Zool. Soc. London, 1889.

Choronschitzky, B. See Chap. X.

Dareste, C, Sur la formation du mesentere et de la gouttiere intestinale dans Tembryon de la poule. Comptes rendus, T. CXII, 1891.

HocHSTETTER, F., Die Entwickelung des Blutgefasssystems. Handbuch der vergl. und exp. Entw.-lehre der Wirbeltiere. IIP, 1903.

Janosik, J., Le pancreas et la rate. Bibliographic Anat. Annee 3. Paris, 1895.

LocKWOOD, C. B., The Early Development of the Pericardium, Diaphragm and Great Veins. Phil. Trans. Roy. Soc, London, Vol. CLXXIX, 1889.

Mall, F. P., Development of the Lesser Peritoneal Cavity in Birds and Mammals. Journ. Morph., Vol. V, 1891.

Maurer, F., Die Entwickehmg des Darmsystems. Handbuch d. vergl. u. exp. Entw.-lehre d. Wirbeltiere, Vol. II, 1906.

Peremeschko, LTeber die Entwickelung der Milz. Sitzungsber. d. Akad. d. Wiss. in Wien, math., naturwiss. Klasse, Bd. LVI, Abth. 2, 1867.

Ravn, E., Die Bildung des Septum transversum beim Hiihnerembryo. Arch. Anat. u. Entw., 1896. See also Anat. Anz., Bd. XV, 1899.


458 APPENDIX

Reichert, Entwickelungsleben im Wirbeltierreich. Berlin, 1840. Remak, Untersuchungen liber die Entwickelung des Wirbeltierreichs, p. 60,

1850-1855. UsKOW, W., Ueber die Entwickelung des Zwerchfells, des Pericardium und

des Coeloms. Arch. mikr. Anat., Bd. XXII, 1883. WoiT, O., Zur Entwickelung der Milz. Anat. Hefte, Bd. IX, 1897.

LITERATURE — CHAPTER XII

V. Baer, K. E., Ueber die Kiemen und Kiemengefasse im den Embryonen

der Wirbeltiere. Meckel's Archiv., 1827. VAN Bemmelen, J., Die Visceraltaschen und Aortenbogen bei Reptilien und

Vogeln. Zool. Anz., 1886. Boas, J. E. V., Ueber die Aortenbogen der Wirbeltiere. Morph. Jahrb.,

Bd. XIII, 1887. Brouha. See Chap. X. HocHSTETTER, F., Die Entw^ickelung des Blutgefasssystems (des Herzens

nebst Herzbeutel und Zwerchfell, der Blut- und Lymphgefasse, der

Lymphdriisen und der Milz in der Reihe der Wirbeltiere). Handbuch

der vergl. und exp. Entwickelungslehre der Wirbeltiere. IIP, 1903. Beitrage zur Entwickelungsgeschichte des Venensystems der Amnioten.

I. Hiihnchen. Morph. Jahrb., Bd. XIII, 1888.

Ueber den Ursprung der Arteria Subclavia der Vogel. Morph. Jahrb,

Bd. XVI, 1890.

Entwickelung des Venensystems der Wirbeltiere. Ergeb. der Anat.

u. Entw., Bd. Ill, 1893. HuscHKE, E., Ueber die Kiemenbogen und Kiemengefasse beim bebriiteten

Hiihnchen. Isis, Bd. XX, 1827. Langer, a., Zur Entwickelungsgeschichte des Bulbus cordis bei Vogeln und

Saugetieren. Morph. Jahrb., Bd. XXII, 1894. LiNDES, G., Ein Beitrag zur Entwickelungsgeschichte des Herzens. Dissertation. Dorpat, 1865. LocY, W. A., The Fifth and Sixth Aortic Arches in Chick Embryos with

Comments on the Condition of the Same Vessels in other Vertebrates.

Anat. Anz., Bd. XXIX, 1906. Mackay, J. Y., The Development of the Branchial Arterial Arches in Birds,

with Special Reference to the Origin of the Subclavians and Carotids.

Phil. Trans. Roy. Soc, London, Vol. CLXXIX, 1889. Masius, J., Quelques notes sur le developpement du coeur chez le poulet.

Arch. Biol., T. IX, 1889. Miller, W. S., The Development of the Postcaval Veins in Birds. Am.

Journ. Anat., Vol. II, 1903. PopoFF, D., Die Dottersackgefasse des Huhnes. Wiesbaden, 1894. Rathke, H., Bemerkungen iiber die Entstehung der bei manchen Vogeln

und den Krokodilen vorkommenden unpaaren gemeinschaftlichen Carotis.

Arch. Anat. u. Phys., 1858. Rose, C, Beitrage zur vergleichenden Anatomie des Herzens der Wirbeltiere. Morph. Jahrb., Bd. XVI, 1890.


APPENDIX 459

Rose, C, Beitrage zur Entwickelungsgeschichte des Herzens. Inaug. Dissert.

Heidelberg, 1888. ToNGE, Morris, On the Development of the Semilunar Valves of the Aorta

and Pulmonary Artery of the Chick. Phil. Trans. Roy. Soc, London,

Vol. CLIX, 1869. Twining, Granville H., The Embryonic History of the Carotid Arteries

in the Chick. Anat. Anz., Bd. XXIX, 1906. ViALLETON, L., Developpement des aortes posterieures chez I'embryon de

poulet. C. R. Soc. Biol., T. III. Paris, 1891.

Developpement des aortes chez Tembryon de poulet. Journ. de

Tanat. et phys., T. XXVIII, 1892. ZucKERKANDL, E., Zur Anat. und Entwickelungsgeschichte der Arterien des

Unterschenkels und des Fusses. Anat. Hefte, Bd. V, 1895.

Zur Anatomie und Entwickelungsgeschichte der Arterien des Vor derarmes. Anat. Hefte, Bd. IV, 1894.

LITERATURE — CHAPTER XIII

Abraham, K., Beitrage zur Entwickelungsgeschichte des Wellensittichs.

Anat. Hefte, Bd. XVII, 1901. Balfour, F. M., On the Origin and History of the Urogenital Organs of

Vertebrates. Journ. of Anat. and Physiol., Vol. X, 1876. Balfour and Sedgwick, On the Existence of a Rudimentary Head Kidney

in the Embryo Chick. Proc. R. Soc, London, Vol. XXVII, 1878. On the Existence of a Head Kidney in the Embryo Chick and on

Certain Points in the Development of the Miillerian Duct. Quar. Journ.

Micr. Sc, Vol. XIX, 1879. BoRNHAUPT, Th., Zur Entwickelung des Urogenitalsystems beim Huhnchen.

Inaug. Diss. Dorpat, 1867. Brandt, A., Ueber den Zusammenhang der Glandula suprarenalis mit dem

parovarium resp. der Epididymis bei Hiihnern. Biolog. Centralbl.,

Bd. IX, 1889.

Anatomisches und allgemeines liber die sog. Hahnenfedrigkeit und

liber anderweitige Geschlechtsanomalien der Vogel. Zeitschr. wiss. Zool.,

Bd. XL VIII, 1889. Felix, W., Zur Entwickelungsgeschichte der Vorniere des Huhnchens Anat. Anz., Bd. V, 1890. Felix und Buhler, Die Entwickelung der Ham- und Geschlechtsorgane.

]. Abschnitt — Die Entwickelung des Harnapparates, von Prof. Felix.

Handbuch der vergl. u. exper. Entw.-lehre der Wirbeltiere, HIS 1904. FiRKET, Jean, Recherches sur I'organogenese des glands sexuelles chez les

oiseaux. Arch, de Biol. Tome 29, pp. 201-351. PI. 5, 1914. FuRBRiNGER, M., Zur vcrgleichendeu Anatomie und Entwickelungsgeschichte

der Excretionsorgane der Vertebraten. Morph. Jahrb., Bd. IV, 1878. Fusari, R., Contribution a I'etude du developpement des capsules surre nales et du sympathetique chez le poulet et chez les mamniiferes. Archives. Hal. de biologic, T. XVI, 1892.


460 APPEXDIX

Gasser, E., Beitrage zur Entwickelungsgeschichte der Allantois, der Muller schen Gange imd des Afters. Frankfurt a. M., 1874.

Die Entstehung des Wolff'schen Ganges beim Huhn. Sitz.-ber.

Naturf. Ges., Marburg, Jahrg. 1875.

Beobachtungen uber die Entstehung des Wolff'schen Ganges bei

Embryonen von Hiihnern und Gansen. Arch. mikr. Anat.. Bd. XIV, 1877. Gasser, E., und Siemmerling, Beitrage zur Entwickekmg des Urogenitalsys tems bei den Huhnerembryonen. Sitz.-ber. Naturf. Ges., Marburg, 1879. Gerhardt, U., Zur Entwickelung der bleibenden Niere. Arch. mikr. Anat.,

Bd. LVII, 1901. HocHSTETTER, F., Zur Morphologie der Vena cava inferior. Anat. Anz., Bd. Ill,

1888. Hoffmann, C. K., Etude sur le developpement de I'appareil urogenital des

oiseaux. Verhandelingen der Koninklyke Akademie van Wetenschap pen. Amsterdam, Tweede Sectie, Vol. I, 1892. Janosik, J., Bemerkungen iiber die Entwickelung der Nebennieren. Archiv.

mikr. Anat., Bd. XXII, 1883.

Histologisch-embryologische Untersuchungen iiber das Urogenital system. Sitzungsber. Akad. Wiss. Wien, math.-nat. Kl., Bd. XCI,

3. Abth., 1885. KosE, W., Ueber die Carotisdriise und das "Chromaffine Gewebe" der Vogel.

Anat. Anz., Bd. XXV, 1904. KowALEvsKY, R., Die Bildung der Urogenitalanlage bei Huhnerembryonen.

Stud. Lab. Warsaw Univ., II, 1875. KuPFFER, C, Untersuchungen iiber die Entwickelung des Harn- und Ge schlechtssystems. Arch. mikr. Anat., Bd. I, 1865; and ibid. Bd. II, 1866. V. MiHALCOVics, v., Untersuchungen iiber die Entwickelung des Harn und Geschlechtsapparates der Amnioten. Intern. Monatschr. Anat.

und Phys., Bd. II, 1885-1886. Miner viNi, R., Des capsules surrenales: Developpement, structure, fonc

tions. Journ. de Tanat. et de la phys, An. XL. Paris, 1904. NussBAUM, M., Zur Differenzierung des Geschlechtes im Thierreich. Arch.

mikr. Anat., Bd. XVIII, 1880.

Zur Entwickelung des Geschlechts beim Huhn. Verh. anat. Ges., Bd

XV, 1901.

Zur Riickbildung embryonaler Anlagen. Arch. mikr. Anat., Bd

LVII, 1901.

Zur Entwickelung des Urogenitalsystems beim Huhn. C. R. Ass.

d. An. Sess., 5. Liege, 1903. Poll, H., Die Entwickelung der Nebennierensysteme. Handbuch der

vergl. und exper. Entwickelungslehre der Wirbeltiere. III^ 1906. Prenant, a., Remarques a propos de la constitution de la glande genitale

indifferente et de I'histogenese du tube seminifere. C. R. Soc. biol.,

Ser. 9, T. II, 1890. Rabl, H., Die Entwickelung und Struktur der Nebennieren bei den Vogeln.

Arch. mikr. Anat., Bd. XXXVIII, 1891. Renson, G., Recherches sur le rein cephalique et le corps de Wolff chez les

oiseaux et les mammiferes. Arch. mikr. Anat., Bd. XXII, 1883.


APPENDIX 461

RucKERT, J., Entwickelung der Excretionsorgane. Ergebnisse der Anat.

u. Entw.-gesch., Bd. I, 1892. ScHREixER, K. E., Ueber die Entwickelung der Amniotenniere. Zeitschr.

wiss. Zool., Bd. LXXI, 1902. Sedgwick, A., Deve opment of the Kidney in its Relation to the Wolffian Body in the Chick. Quart. Journ. IMicr. Sc, Vol. XX, 1880.

On the Early Development of the Anterior Part of the Wolffian Duct and Body in the Chick, together with Some Remarks on the Excretory System of Vertebrata. Quart. Journ. Micr. Sc, Vol. XXI, 1881. Semon, Richard, Die indifferente Anlage der Keimdriisen beim Htihnchen und ihre Differenzierung zum Hoden. Jen. Zeitschr. Naturwiss., Bd. XXI, 1887. SouLiE, E. H., Recherches sur le developpement des capsules surrenales chez les vertebres superieurs. Journ. de I'anat. et phys., Paris, An. XXXIX, 1903. Swift, Charles H., Origin and Early History of the Primordial GermCells in the Chick. American Journal of Anat., Vol. 15, pp. 483516, 1914.

Origin of the Definitive Sex-Cells in the Female Chick and their Relation to the Primordial Germ-Cells. ib. Vol. 18, pp. 441-470, 1915.

Origin of the Sex-Cords and Definitive Spermatogonia in the Male Chick, ib. Vol.20, pp. 375-410, 1916. Waldeyer, W., Eierstock und Ei. Ein Beitrag zur Anatomie und Ent wickelungsgeschichte der Sexualorgane. Leipzig, 1870. Weldon, On the Suprarenal Bodies of Vertebrates. Quar. Journ. Micr. Sc, Vol. XXV, 1884.

LITERATURE — CHAPTER XIV

Agassiz, L., On the Structure of the Foot in the Embryo of Birds. Proc

Boston Soc Nat. Hist., 1848. Bizzozero, G., Neue Untersuchungen iiber den Bau des Knochenmarks der

Vogeln. Arch. mikr. Anat., Bd. XXXV, 1890. See also Arch. Ital. de

Biol., T. XIV, 1891. Blu.mstein-Judixa, Beila, Die Pneumatisation des Markes der Vogelkno chen. Anat. Hefte, Abth. I, Bd. XXIX, 1905. Bracket, A., Etude sur la resorption de cartilage et le developpement des

OS longs chez les oiseaux. Internat. Monatschr. Anat. und Phys., Bd.

X, 1893. Braun, M., Entwickelung des Wellenpapageis. Arb. Zool. Zoot. Inst. Wiirz burg, Bd. V, 1881. Brulle et HuGUENY, Developpement des os des oiseaux. Ann. Sc. Nat.,

Ser. Ill, Zool. T. IV,1845. BuNGE, A., Untersuchungen zur Entwickelungsgeschichte des Beckengiirtels

der Amphibien, Reptilien und Vogel. Inaug. Diss. Dorpat. 1880. CuviER, Extrait d'un memoire sur les progres de I'ossification dans le sternum

des oiseaux. Ann. des Sc Nat., Ser. I, Vol. XXV, 1832. V. Ebner, v., Ueber die Beziehungen der Wirbel zu den LTrwirbel. Sitzungsber.

d. k. Akad. d. Wiss. Wien, math.-naturwiss. Kl., Bd. CI, 3. Abth.. 1892.


462 APPENDIX

Urwirbel und Neugliederiing der Wirbelsaule. Sitzungsber. d. k.

Akad. d. Wiss. Wien, Bd. XCVII, 3. Abth. Wien, 1889, Jahrg., 1888. Froriep, a., Zur Entwickelungsgeschichte der Wirbelsaule, insbesondere

des Atlas und Epistropheus und der Occipitalregion. I. Beobachtungen

an Hiihnerembryonen. Arch. Anat. u. Entw., 1883. Gaupp, E., Die Entwickelung des Kopfskelettes. Handbuch der vergl. u.

exper. Entw.-lehre der Wirbeltiere, Bd. 3, 1905.

Die Entwickelung der Wirbelsaule. Zool. Centralbl., Jahrg. Ill, 1896. Die Metamerie des Schadels. Ergeb. der Anat. u. Entw., 1897. Gegenbaur, C, Untersuchungen zur vergl. Anat. der Wirbelsaule bei

Amphibien und Reptilien. Leipzig, 1864.

Beitrage zur Kenntniss des Beckens der Vogel. Eine vergleichende

anatomische Untersuchung. Jen. Zeitschr. Med. u. Naturw., Bd. VI, 1871. Die Metamerie des Kopfes und die Wirbeltheorie des Kopfskelettes,

im Lichte der neueren Untersuchungen betrachtet und gepriift. Morph.

Jahrb., Bd. XIII, 1888. GoETTE, A., Die Wirbelsaule und ihre Anhange. Arch. mikr. Anat., Bd.

XV, 1878. Hepburn, D., The Development of Diarthrodial Joints in Birds and Mammals. Proc. R. Soc. Edinb., Vol. XVI, 1889. Also in Journ. of Anat.

and Phys., 1889. Jager, G., Das Wirbelkorpergelenk der Vogel. Sitzungsber. Akad. Wien,

Bd. XXXIII, 1858. Johnson, Alice, On the Development of the Pelvic Girdle and Skeleton

of the Hind Limb in the Chick. Quar. Journ. Micr. Sc, Vol. XXIII,

1883. KuLCZYCKi, W., Zur Entwickelungsgeschichte des Schultergiirtels bei den

Vogeln mit besonderer Berucksichtigung des Schliisselbeines (Gallus,

Columba, Anas). Anat. Anz., Bd. XIX, 1901. Leighton, V. L., The Development of the Wing of Sterna Wilsonii. Am.

Nat., Vol. XXVIII, 1894. LuHDER, W., Zur Bildung des Brustbeins und Schultergiirtels der Vogel.

Journ. Ornith., 1871. Mannich, H., Beitrage zur Entwickelung der Wirbelsaule von Eudyptes

chrysocome. Inaug. Diss. Jena, 1902. Mehnert, Ernst, LTntersuchungen liber die Entwickelung des Os Pelvis

der Vogel. Morph. Jahrb., Bd. XIII, 1887.

Kainogenesis als Ausdruck differenter phylogenetischer Energieen.

Morph. Arb., Bd. VII, 1897. Morse, E. S., On the Identity of the Ascending Process of the Astragalus

in Birds w'ith the Intermedium. Anniversary Mem. Boston Soc. Nat.

Hist., 1880. Norsa, E., Alcune richerche sulla morphologia dei membri anteriori degli

uccelli. Richerche fatte nel Laborat Anatomico di Roma e alti labora tori biologici, Vol. IV, fasc. I. Abstract in French in Arch. Ital. biol.,

T. XXII, 1894. Parker, W. K., On the Structure and Development of the Skull of the Common Fowl (Gallus domesticus). Phil. Trans., Vol. CLIX, 1869.


APPEXDIX 463

Parker, W. K., On the Structure and Development of the Birds' Skull.

Trans. Linn. Soc, 1876.

On the Structure and Development of the Wing of the Common Fowl.

Phil. Trans., 1888. Remak, R., Untersuchungen liber die Entwickelung der Wirbeltiere. Berlin,

1850-1855. Rosenberg, A., Ueber die Entwickelung des Extremitiitenskelets bei einigen

durch die Reduction ihrer Gliedmaassen charakteristischen Wirbeltiere.

Zeitschr. wiss. ZooL, Bd. XXIII, 1873. ScHAUiNSLAND, H., Die Entwickelung der Wirbelsaule nebst Rippen und

Brustbein. Handbuch der vergl. und exper. Entw.-lehre der Wirbeltiere, Bd. Ill, T. 2, 1905. Schenk, F., Studien liber die Entwickelung des knochernen Unterkiefers

der Vogel. Sitzungsber. Akad. Wien, XXXIV Jahrg., 1897. Schultze, O., Ueber Eml^ryonale und bleibende Segmentirung. Verh.

Anat. Ges., Bd. X. Berlin, 1896. Stricht, O. van der, Recherches sur les cartilages articulaires des oiseaux.

Arch, de biol., T. X, 1890. SuscHKiN, P., Zur Anatomic und Entwickelungsgeschichte des Schadels der

Raub vogel. Anat. Anz., Bd. XI, 1896.

Zur Morphologic des Vogelskeletts. (1) Schadel von Tinnunculus.

Nouv. Mem. Soc. Imp. des X'atur. de Moscow, T. X\T, 1899. ScHWARCK, W., Beitrage zur Entwickelungsgeschichte der Wirbelsaule bei

den Vogeln. Anat. Studien (Herausgeg. v. Hasse), Bd. I, 1873. WiEDERSHEiM, R., Ucbcr die Entwickelung des Schulter- und Beckenglirtels.

Anat. Anz., Bd. IV, 1889, and V, 1890. WiJHE, J. W. VAN, Ueber Somiten und Nerven im Kopfe von Vogel- und

Reptilienembryonen. Zool. Anz., Jahrg. IX, 1886.


INDEX


Abducens nerve, 267

Abducens nucleus, 262, 263

Abnormal eggs, 2.5

Accessory cleavage of pigeon's egg, 38, 43, 44

Accessory mesenteries, 340, 341

Acustico-facial ganglion complex, 159 160, 262, 268

Air-sacs, 326, 330, 331

Albumen, 18

Albumen-sac, 217, 224

Albuginea of testis, 397

Alecithal ova (see isolecithal)

Allantois, blood-supply of, 222; general, 217; inner wall of, 220; neck of, 143, 144, 316; origin of, 143, 144; outer wall of, 220; rate of growth, 221; structure of inner wall, 223; structure of outer wall, 223

Amnion, effect of rotation of embryo on, 140, 141, 142; functions of, 231; head fold of, 137, 139; later history of, 231; mechanism of formation, 139, 140; muscle fibers of, 231; origin of, 135; secondary folds of, 142

Amnio-cardiac vesicles, 92, 116

AmpuUse of semicircular canals, 291

Anal plate, 143, 182

See also cloacal membrane

Angioblast, 88

Anterior chamber of eye, 278

Anterior commissure of spinal cord, origin of, 244

Anterior intestinal portal, 95 (Fig. 49), 121, 132

Anterior mesenteric artery, 363

Aortic arches, 198, 199, 203, 358362 ; transformations of, 359-361

Appendicular skeleton, 434

Aqueduct of Sylvius, 251.

Archenteron, 55

Area opaca, 39, 50, 61, 86; pellucida, 39, 50, 61; vasculosa, 61, 86; vitellina, 61, 62, 86

Arterial system, 121, 126, 198, 199, 203, 204, 228, 358-363

Atlas, development of, 420

Atrium bursse omentalis, 344


Auditory nerve, 295; ossicles, 299, 432; pit, 168

Auricular canal, 354

Auriculo- ventricular canal, 348; division of, 355

Axis, development of, 420

Axones, origin of, 235

Basilar plate, 429

Beak, 302, 304

Biogenesis, fundamental law of, 4

Blastoderm, 17; diameter of unin cubated, 61; expansion of, 50, 53,

61 Blastopore, 55, 82 Blood-cells, origin of, 118 Blood-islands, origin of, 86, 89 Blood-vessels, origin of, 118 Body-cavity, 115, 205-210, 333 Bony labyrinth, 296 Brain, primary divisions of, 108;

early development of, 147, 156;

later development of, 244-252 Branchial arch, first, skeleton of, 432 Bronchi, 325, 326 Bulbus arteriosus, 198, 201, 202, 348;

fate of, 357 Bursa Fabricii, 314, 317, 319 Bursa omenti ma j oris, 344 Bursa omenti minoris, 344

Canal of Schlemm, 279

Cardinal veins, anterior, 200, 204,

205, 363; posterior, 200, 204, 205,

368 Carina of sternum, 427 Carotid arch, 361 Carotid, common, 362; external 359,

361 ; internal, 359-361 Carpus, 436, 437 Cartilage, absorption of, 408; bones,

definition, 407; calcification of,

409 Caval fold, 344 Cavo-coeliac recess, 344 Cavum sub-pulmonale, 342 Cell-chain hypothesis, 255 Cell theory, \

Central and marginal cells, 41, 42 Central canal of spinal cord, 242


465


466


INDEX


Cerebellum, 155, 251

Cephalic mesoblastic somites, 108, 269, 428

Cerebral flexures, 149, 245

Cerebral ganjilia, 157-162, 262

Cerebral hemispheres, origin of, 151; (see telencephalon)

Cervical flexure, 133, 245

Chalazee, 18

Chemical composition of parts of hen's egg, 20, 21

Chiasma opticus, 154, 249

Choanal, 215, 285

Chondrification, 408

Chorion, 135, 217, 218, 220

Choroid coat of eye. 279; fissure, 166, 281 ; plexus, 248

Chromaffin tissue, 404

Chronology, 64

Cilary processes, 272, 274

Circulation of blood, 121, 122, 197200, 372-376

Circulation of blood, changes at hatching, 376; completion of double, 355

Classification of stages, 64-67

Clavicle, 434, 435

Cleavage of ovum (hen), 39-43

Cleavage of ovum (pigeon), 43-47

Cloaca, 314-319; (see hind-gut)

Cloacal membrane, 315, 318; (see also anal plate)

Coeliac artery, 363

Coelome (see body-cavity)

Coenogenetic aspects of development, 6

Collaterals, origin of, 238

Collecting tubules of mesonephros, 379, 380

CoUiculus palato-pharyngeus, 398

Commissura anterior, 252; inferior, 252 ; posterior, 252 ; trochlearis, 252

Concrescence, theory of, 82, 84

Cones of growth, 235

Conjunctival sac, 279

Coprodseum, 315, 318, 319

Coracoid, 434, 435

Cornea, 278

Corpus striatum, 247

Corpus vitreum, 275

Cortical cords of suprarenal capsules, 405

Cranial flexure, 133, 245; nerves, 261

Cristse acusticse, 295

Crop, 312

Crural veins^ 372

Cushion septum, 355

Cuticle of sheU, 17

Cutis plate, 185, 188


Delimitation of embryo from blastoderm, 91

Dendrites, origin of, 236

Determinants, 7

Diencephalon, early development of, 152; later development of, 249

Dorsal aorta, origin of, 121

Dorsal longitudinal fissure and septum of spinal cord, 243, 244

Dorsal mesentery, 172, 342

Duct of Botallus, 359, 361, 376

Ducts of Cuvier, 200, 204, 207, 361

Ductus arteriosus (see duct of Botalus) ; choledochus (common bileduct), 181, 321; cochlearis, 293; cystico-entericus, 321 ; endolymphaticus, 169, 289; hepato-cysticus, 321; hepato-entericus, 321; venosus (see meatus venosus)

Duodenum, 310, 311

Ear, later development of, 288

Ectamnion, 138

Ectoderm and entoderm, origin of, 52

Ectoderm of oral cavity, limits of, 301

Egg, formation of, 22, 24, 25

Egg-tooth, 302, 303

Embryonic circulation, on the fou.rth day, 372-374; on the sixth day, 374; on the eighth day, 374-376

Embryonic membranes, diagrams of, 219, 220; general, 216; origin of, 135; summary of later historj^, 145

Endocardium, origin of, 119

Endolymphatic duct (see ductus endolymphaticus)

Endolymphatic sac (see saccus endolymphaticus)

Entobronch;, 327, 328

Entoderm, origin of, 52

Ependyma, origin of, 239

Epididymis, 391, 398

Epiphysis, 153, 249

Epiphyses (of long bones), 409

Epistropheus, development of, 420

Epithalamus, 251

Epithelial ceUs of neural tube, 233, 234

Epithelial vestiges of visceral pouches 309

Epoophoion, 401

Equatorial ring of lens, 277-278

Excentricity of cleavage, 41, 47

Excretory system, origin of, 190

External auditory meatus, 297, 300

External form of the embryo, 211

Eye, early development of, 164; later development of, 271

Eyelids, 279-280


INDEX


467


Facial region, development of the,

214, 215, 216 Facialis nerve, 268 Facialis nucleus, 262, 263 Femur, 440 Fertilization, 35 Fibula, 440

First segmentation nucleus, 36 Fissura metotica, 429 Foetal development, 11 Fold of the omentum, 344, 345 Follicles of ovary, 22, 26, 27, 28, 30,

400 Follicular cells, origin of, 27, 400 Foramen, interventricular, 353, 354;

of Monro, 247; of Winslow, 343;

ovale, 355 Foramina, interauricular, 355 Fore-brain, origin of, 108 Fore-gut, 91, 9'3, 172 Formative stuffs, 15 Funiculi prajcervicales, 307

Gall-bladder, 321

Ganglia, cranial and spinal, 156; cranial, 157, 158, 159, 262; spinal, later development of, 254, 257

Ganglion, ciliare, 266; geniculatum, 268; jugulare, 268; olfactorium nervi trigemini, 264; nodosum, 161, 268 ; ~ petrosum, 161, 268; of Remak, 257

Gastric diverticula of body-cavity, 340

Gastrulation, 53, 84

Genetic restriction, law of, 8

Genital ducts, development of, 401

Germ-cells, general characters of, 9-12; comparison of, 12-14

Germ-wall, 47, 48, 69, 90, 128, 129

Germinal cells of neural tube, 233, 234

Germinal disc, 11, 12, 35, 37, 39

Germinal epithelium, 391, 392, 399

Germinal vesicle, 27, 28

Gizzard, 313, 314

Glomeruli of pronephros, 192

Glossopharyngeus, ganglion complex of, 161, 262, 268; nerve, 268; nucleus, 262, 263

Glottis, 332

Gray matter of spinal cord, development of, 240; origin of, 239

Haemal arch of vertebrae, 416, 417

Harderian gland, 280

Hatching, 232

Head, development of, 213

Head-fold, origin of, 91

Head process, 73, 80


Heart, changes of position of, 348, 349; development on second and third days, 200-203; divisions of cavities of, 350 ; ganglia and nerves of, 259; later development of, 348; origin of, 119

Hensen's knot, 73

Hepatic veins, 366

Hepatic portal circulation, 366, 375

Hermaphroditism of embryo, 391

Heterotaxia, 133

Hiatus communis recessum, 343

Hind-brain, origin of, 108

Hind-gut, 143, 172

Hind-limbs, origin of skeleton, 438

Hoffmann's nucleus, 240

Holoblastic ova, 11, 12

Humerus, 436

Hyoid arch, 175: skeleton of, 432

Hyomandibular cleft, 174, 297

Hypoglossus nerve, 269

Hypophysis, 154, 249

Hypothalamus, 251

Ilium, 438, 439

Incubation, normal temperature for, 65, 66

Indifferent stage of sexual organs, 391

Infundibulum (of brain), 154, 249

Infundibulum (of oviduct). See ostium tubae abdominale

Interganglionic commissures, 156

Intermediate cell-mass, 114, 190

Interventricular sulcus, 348, 353

Intervertebral fissure, 412

Intestine, general development of, 310. 311

Iris, 272 : muscles of, 273, 274

Ischiadic veins, 372

Ischium, 438, 439

Isolecithal ova, 11

Isthmus, of brain, 155; of oviduct, 22

Jacobson, organ of, 286 Jugular vein, 363

Kidney, capsule of, 390; permanent, 384-389; secreting tubules of, 390

Lagena, 293

Lamina terminalis, 105, 152, 247, 248

Larva, 11

Laryngotracheal groove, 178, 331,

332 Ijarynx, 332 Latebra, 1 9

Lateral plate of mesoblast, 115 Lateral tongue folds, 305 Lens, 166, 276-278


468


INDEX


Lenticular zone of optic cup, 271

Lesser peritoneal cavity, 344

Ligamentum pectinatuni iridis, 279

Limiting sulci, 130

Lingual glands, 30G

Lip-grooves, 304

Liver, histogenesis of, 323; later development of, 319-323; origin and early development of, 179, 180, 181 ; origin of lobes of, 322 ; primarv ventral ligament of, 335

Lungs,^ 178, 326

Macula utriculi, sacculi, etc., 295

Malpighian corpuscles (mesonephric) origin of, 195

Mammillae of shell, 17

Mandibular aortic arch, 121, 122, 203, 204

Mandibular arch, skeleton of, 431

Mandibular glands, 306

Mantle layer of spinal cord, origin of, 239

Margin of overgrowth, 52, 57

Marginal notch, 60, 84, 85

Marginal velum, 235

Marrow of bone, origin of, 410

Maturation of ovum, 32

Meatus venosus, 199, 364, 366, 368

Medullary cords of suprarenal capsules, 405, 406

Medullary neuroblasts of brain, 262

Medullary plate, 95; position of anterior end of, in neural tube, 102, 103

Megaspheres, 59

Membrana reuniens, 418

Membrane bones, definition of, 407

]\Iembranes of ovum, 10

Membranous labyrinth, 289

Meroblastic ova, 11

Mesencephalon, 108, 155, 251

Mesenchyme, definition of, 116

Mesenteric artery, 363

Mesenteric vein, 366, 367

Mesenteries, 333

Mesentery, dorsal, 172, 342; of the vena cava inferior, 341

Mesoblast, gastral, 110; of the head, origin of, 116, 117; history of between 1 and 12 somites, 109; lateral plate of, 110, 115; of opaque area, origin of, 86, 88; origin of, 74, 78; paraxial, 110; prostomial, 110; somatic layer of, 115; splanchnic layer of, 115

Mesobronchus, 326, 327

Mesocardia lateralia, 200, 207, 334, 337

Mesocardium, origin of, 120


Mesogastrium, 309, 342, 343 Mesonephric arteries, 363 Mesonephric mesentery, 341 Mesonephric tubules, formation of,

195 Mesonephric ureters, 380 Mesonephros, later history of, 378;

origin and early history of, 194 197; see ^^'olffian body Mesothalamus, 251 Mesothelium, definition of, 116 Metacarpus, 436, 437, 438 Metamorphosis, 11 Metanephros, 384-389 Metatarsals, 441 Metathalamus, 251 Metencephalon, 155, 251 Mid-brain (see Mesencephalon) Mid-gut, 172, 181, 310 Mouth, 301 Miillerian ducts, 391; degeneration

in male, 402, 403; origin of, 401,

402, 403 Muscles of iris, 274 Muscle plate, 185, 186 Myelencephalon, 155, 252 Myocardium, origin of, 119 Myotome, 188

Nares, 286

Nephrogenous tissue, 195, 378; of

metanephros, 384, 387 Nephrotome, 114, 190 Neural crest, 156 Neural folds, 97, 99 Neural groove, 97 Neural tube, 95, 105 Neurenteric canal, 73, 82 Neuroblasts, 233-239; classes of, in

spinal cord, 244 Neurocranium, 427, 428 Neuroglia cells, origin of, 239, 240 Neuromeres, 108, 148, 152, 155 Neurone theory, 236, 255, 256 Neuropore, 101, 105 Notochord, later development of,

411 ff; oriirin of, 80; in the region

of the skull, 428

Oblicjue septum, 331, 342 Oculo-motor nerve, 265; nucleus,

262, 263 Odontoid process, origin of, 420 (Esophagus, 179, 310, 312 Olfactory lobe; 247 Olfactory nerve, 263 Olfactory pits, 169, 285 Olfactory A'estibule, 285 Omentum, development of, 343 Omphalocephaly, 120


INDEX


469


Omphalomesenteric arteries, 199,363; veins, 364-366

Ootid, 14

Opaque area, see area opaca

Optic cup, 165, 271 ; lobes, 251 ; nerve, 2S3, 284, 285; stalk, 149, 164, 284, 285; vesicles, accessory, 164

Optic vesicles, primary, 108, 164; secondary, 166

Ora serrata, 272

Oral cavity, 215, 216, 301

Oral glands, 306

Oral plate, 95, 173

Orientation of embryo on yolk, 25, 63

Ossification, 408-411; endochondral, 409; perichondral, 408

Ostium tubse abdominale, 23 ; development of, 402, 403; relation to pronephros, 402

Otocyst, 168; later development of, 289; method of closure, 168

Ovary, 22, 398-401; degeneration of right, 398

Oviducal membranes of ovum, 10

Oviduct, 22; later development of, 403

Ovocyte, 13, 26, 27

Ovogenesis, 12, 26

Ovogonia, 12, 26

Ovum, 2. 10; bilateral symmetry of, 15; follicular membrane of, 10; organization of, 14; polarity of, 14

Palate, 285, 299

Palatine glands, 306

Palingenetic aspects of development,

6 Pancreas, 181, 323-325, 347 Pander's nucleus, 19 Papilla; conjunctivie sclerse, 280 Parabronchi, 328 Parachordals, 428, 429 Paradidvmis, 391, 398 Paraphysis, 248 Parencephalon, 108, 153, 249 Parietal cavity, 92, 116, 207, 208,

333, 334 Paroophoron, 401 Pars copularis (of tongue), 305 Pars inferior iabyrinthi, 289,. 293 Pars superior lal)yrinthi, 2S9, 291 Parthenogenetic cleavage, 35 Patella, 441 Pecten, 281, 282 Pectoral girdle, 434-436 Pellucid area (see area pellucida) Pelvic girdle, 438-440 Periaxial cords, 158, 159, 161 Pericardiaco-peritoneal membrane,

338


Pericardial and pleuroperitoneal cavities, separation of, 333

Pericardium, closure of dorsal opening of, 337; formation of membranous, 338; see parietal cavity.

Periblast, 38, 43, 47; marginal and central 48; nuclei, origin of, 47, 48

Perichondrium, 408

Periderm, 304

Perilymph, 296, 297

Periosteum, 409

Peripheral nervous system, development of, 252

Pfliiger, cords of, 399

Phseochrome tissue, 404

Phalanges, 436, 438; of foot, 441; of wing, 438

Pharynx, derivatives of, 306; early development of, 93-95, 173; postbranchial portion of, 178

Phvlogenetic reduction of skeleton, 411

Physiological zero of development, 65

Physiology of development, 6

Pineal bodv, 153, 249

Placodes, 160, 161

Pleural and peritoneal cavities, separation of, 340

Pleural grooves, 208, 209

Pleuro-pericardial membrane, 338

Pleuroperitoneal membrane, 326; septum, 340, 341

Plica encephali ventralis, 149, 245

Plica mesogastrica, 341, 344, 368

Pneumato-enteric recesses, 209, 340

Pneumatogastric nerve, 268

Polar bodies, 13, 34

Polyspermy, 35, 36, 37

Pons, 252

Pontine flexure, 149, 245

Postanal gut, 182

Postbranchial bodies, 307, 309

Posterior intestinal portal, 132

Postotic neural crest, 160, 161

Precardial plate, 334, 338

Preformation, 6

Pre-oral gut, 174

Pre-oral visceral furrows, 174, 175

Preotic neural crest, 158

Primitive groove, 72

Primitive intestine, 55

Primitive knot, 73

Primitive mouth, 55, 82

Primitive ova, 26, 392, 399

Primitive pit, 73

Primitive plate, 73

Primitive streak, 69; interpretation of, 82; origin of, 74; relation to embryo, 85

Primordia, embryonic, 8


470


INDEX


Primordial cranium, development of,

428 Primordial follicle, 27 Proamnion, 86, 138 Procoracoid, 435 Proctoda^um, 170, 314, 319 Pronephros, 190-193 Pronucleus male and female, 34, 36 Prosencephalon, 108, 149 Proventriculus, 313 Pubis, 438, 439 Pulmo-enteric recesses (see pneu mato-) Pulmonary arteries, 359 Pupil of eye, 166, 272

Radius, 436

Ramus communicans, 254, 257, 259

Recapitulation theory, 3; diagram of, 5

Recessus hepatico-entericus, 343 ; recessus mesenterico-eutericus, 343; recessus opticus, 153; recessus pleuro-peritoneales, 340; recessus pulmo-hepatici, 340; recessus superior sacci omenti, 340

Rectum, 317

Renal corpuscles, 378, 383

Renal portal circulation, 369, 372, 375

Renal veins, 372

Reproduction, development of organs of, 390-403 ^

Respiratory tract, 178, 325

Rete testis, 398

Retina, 274, 275

Retinal zone of optic cup, 271

Rhombencephalon, 108, 155

Ribs, development of, 424, 425

s (abbreviation for somites), 67

Sacrum, 424

Sacculus, 293, 294

Saccus endolymphaticus, 169, 289, 290

Saccus infundibuli, 249

Scapula, 434, 435

Sclerotic coat of eye, 279

Sclerotomes, and vertebral segmentation, 412; components of, 412; occipital, 428; origin of, 185, 186

Seessell's pocket, 174

Segmental arteries, 122, 199, 362

Segmentation cavity, 43, 47, 53 (see also subgerminal cavity)

Semeniferous tubules, 398

Semicircular canals, 291

Semi-lunar valves, 352

Sensory areas of auditory labyrinth, origin of, 296


Septa of heart, completion of, 355,

356, 357 Septal gland of nose, 287 Septum aortico-pulmonale, 351, 352; of auricular canal, 355 ; bulboauricular, 353; cushion, 351, 355; interauricular, 351, 354; interventricular, 351, 353, 354; of sinus venosus, 358

Septum transversum, 208, 209, 334; derivatives of, 339; lateral closing folds of, 334, 337 ; median mass of, 335

Septum trunci et bulbi arteriosi, 351

Sero-amniotic connection, 138, 143, 217

Sexual cords, 393, 394; of ovary, 398; of testis, 395

Sexual differentiation, 394, 395

Sheath cells, 255

Shell, structure of, 17

Shell membrane, 18

Sickle (of Roller), 71

Sinu-auricular aperture, 357, 358

Sinu-auricular valves, 358

Sinus terminalis 86 (see also vena terminalis)

Sinus venosub, 197, 200, 201, 357; horns of, 358; relation to septum transversum, 339

Skeleton, general statement concerning origin, 407

Skull, chondrification of, 429-432; development of, 427; ossification of, 432, 433, 434

Somatopleure, 62, 115

Somite, first, position in embryo. 111

Somites, of the head, 114; mesoblastic, origin of, 110, 111; mesoblastic, metameric value of, 184; primary structure of, 114

Spermatid, 13

Spermatocyte, 13

Spermatogenesis, 12

Spermatogonia, 13

Spermatozoa, period of life Avithin oviduct, 35

Spermatozoon, 9

Spina iliaca, 440

Spinal accessory nerve, 269

Spinal cord, development of, 239

Spinal nerves, components of, 254; development of, 252, 255; bomatic components of, 254; splanchnic components of, 256

Splanchnocranium, 427

Splanchnopleure, 62, 115

Spleen, 345-347

Spongy layer of shell, 17

Stapes, 300


INDEX


471


Sternum, development of, 425-427

Stigma of follicle, 25

Stomach, 179, 313

Stomodaeum, 170, 173

Stroma of gonads, 393 ; of testis, 397

Subcardinal veins, 368, 369

Subclavian artery, 362

Subclavian veins, 363, 364

Subgerminal cavity, 53, 61, 69

Subintestinal vein, 367

Subnotochordal bar, 416, 418

Sulcus lingualis, 298

Sulcus tubo-tympanicus, 298

Supraorbital sinus of olfactory cavity, 285

Suprarenal capsules, 403-406

Sutura cerebralis anterior, 103-105; neurochordalis seu ventralis, 105; terminalis anterior, 105

Sympathetic nervous system, 256261; relation to suprarenals, 406

Sympathetic trunks, primary, 257; secondary, 258

Synencephalon, 108, 153, 249

Syrinx, 332

Tables of development, 68

Tail-fold, 131

Tarsuh, 441

Tectum lobi optici, 251

Teeth, 304

Tela choroidea, 152

Telencephalon and diencephalon,

origin of, 150 Telencephalon, later development of,

245-249; medium, 151, 245 Telolecithal, 11 Ten somite embryo, description of,

122 Testis, 395-398 Tetrads, 33

Thalami optici, 154, 251 Thymus, 308 Thyroid, 178, 307 Tongue, 305 Torus transversus, 248 Trabeculee, of skull, 428, 429; of

ventricles, 353 Trachea, 331, 332 Trigeminal ganglion complex, 160,

267 Trigeminus nerve, 267 ; nucleus (motor), 262, 263 Trochlearis nerve, 266; nucleus, 262,

263 Truncus arteriosus, 198 Tubal fissure, 298, 301 Tubal ridge, 401

Tuberculum impar (of tongue), 305 Tuberculum posterius, 249


Tubo-tympanic cavity, 297-300

Tubules of mesonephros, degeneration of, 380-382; formation of, 195-196; primary, secondary, tertiary, 379, 380

Turbinals, 285, 286, 431

Turning of embryo, 133

Tympanum, 297, 300

Ulna, 436

Umbilical arteries, 363; veins, 367,

368 Umbilicus, 144; of yolk-sac, 216 UnincuVjated blastoderm, structure

of, 69 Ureter, origin of, 384 Urinogenital ridge, 390, 391; system,

later development of, 378, etc. Uroda}um, 314, 319 Uterus, 22 Utriculus, 291, 292 Uvea, 273

Vagina, 22

Vagus, ganglion complex of, 161; nerve, 268; nucleus, 262, 263

Variability, embryonic, 64

Vas deferens, 401

Vasa efferentia, 398

Vascular system, anatomy of, on fourth day, 197-200; origin of, 117

Venous system, 127, 199, 204, 205, 228, 363-372

Velum transversum, 150, 248

Vena cava, anterior, 363, 364; inferior, 368-372

Vena porta sinistra, 367

Vena terminalis, 228; see also sinus terminalis

Ventral aorta, 121

Ventral longitudinal fissure of spinal cord, 243

Ventral mesentery, 131, 182, 343

Vertebrae, articulations of, 421; coalescence of, 424; costal processes of, 418; hypocentrum of, 418; intervertebral ligaments of, 421; ossification of, 421-424; pleurocentrum of, 418; stage of chondrification of, 418; suspensory ligaments of, 421 ;

Vertebral column, 411; condition on fourth day, 414; condition on fifth day, 415, 417; condition on seventh and eighth days, 418, 420; membranous stage of, 414 Vertebral segmentation, origin of,

412 ff Visceral arches, 175; clefts, 174, 307; furrows, 174; pouches, 174;


472


INDEX


/


pouches, early development of, 175178; pouches, fate of, 307, 308

Vitelline membrane, 10, 30, 31

Vitreous humor, 275


ongm


White matter of spinal cord,

of, 239, 241 Wing, origin of skeleton of, 434, 436 Wolffian body (see mesonephros) ; atrophy, 380, 382, 401; sexual and non-sexual portions, 396; at ninetv-six hours, 379; on the sixth^day, 382; on the eighth day, 382, 383 ; on the eleventh day, 385


Wolffian duct, 191, 193, 194, 391, 401

Yolk, 17, 19; formation of, 29 Yolk-sac, 143, 225-231; entoderm

of, 50; blood-vessels of, 227-230;

septa of, 225-227; ultimate fate

of, 230, 231 Yolk-spheres, 19, 20 Yolk-stalk, 132, 225

Zona radiata, 10, 30, 31 Zone of junction, 52, 57 Zones of the blastoderm, 127-129