Paper - The Development of the Human Mandibular Joint

From Embryology
Revision as of 23:16, 11 August 2015 by Z8600021 (talk | contribs) (Created page with "{{Header}} Paper - The Development of the Human Mandibular Joint =The Development of the Human Mandibular Joint= By N. B. B. Symons Dental School, University of St An...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Embryology - 26 Apr 2024    Facebook link Pinterest link Twitter link  Expand to Translate  
Google Translate - select your language from the list shown below (this will open a new external page)

العربية | català | 中文 | 中國傳統的 | français | Deutsche | עִברִית | हिंदी | bahasa Indonesia | italiano | 日本語 | 한국어 | မြန်မာ | Pilipino | Polskie | português | ਪੰਜਾਬੀ ਦੇ | Română | русский | Español | Swahili | Svensk | ไทย | Türkçe | اردو | ייִדיש | Tiếng Việt    These external translations are automated and may not be accurate. (More? About Translations)

Paper - The Development of the Human Mandibular Joint


The Development of the Human Mandibular Joint

By N. B. B. Symons

Dental School, University of St Andrews, Dundee


Historic Disclaimer - information about historic embryology pages 
Mark Hill.jpg
Pages where the terms "Historic" (textbooks, papers, people, recommendations) appear on this site, and sections within pages where this disclaimer appears, indicate that the content and scientific understanding are specific to the time of publication. This means that while some scientific descriptions are still accurate, the terminology and interpretation of the developmental mechanisms reflect the understanding at the time of original publication and those of the preceding periods, these terms, interpretations and recommendations may not reflect our current scientific understanding.     (More? Embryology History | Historic Embryology Papers)

Introduction

The mandibular joint has long been of interest in that phylogenetically it represents a new joint replacing the older one between the articulare (malleus) and the quadrate (incus). In this connexion considerable controversy has arisen over the formation of the articular disc and its relation to the lateral pterygoid muscle. Furthermore, the mode of formation of the mandibular joint is somewhat different from that of most other synovial joints.

In the literature, so far as I have found, the only previous workers who studied the development of the human mandibular joint by means of a series of specimens are Kjellberg (1904), Vinogradoff (1910) and Mundaca (194-8) The earliest stage described by any of these three workers is one of 35 mm. 0.1:. length.

A considerable period before there is any sign of a joint-cavity the chief elements of the mandibular joint have been mapped out. This is particularly true with regard to the condylar process of the mandible. Even as early as the 22 mm. stage in the human embryo there is some indication of its form.

Material and Methods

The materials used in this work were one embryo of 22 mm. C.R. length and a series of foetuses of 80, 84, 40, 48, 57 (two specimens), 60, 65, 70 (two specimens), 95, 150, 180 mm. (two specimens) C.R. length and one of full term. The material was fixed in formalin, dehydrated and cleared by routine methods and embedded in paraffin. One of the 57 mm. specimens, the 180 mm. and the full-term specimens, however, were treated by a double embedding method.

Observations

22 mm stage

A considerable amount of bone-formation has taken place and formed a plate on the lateral side of Meckel’s cartilage; this plate is in the substance of, and is surrounded by, that mesodermal condensation which outlines the mandible and precedes the formation of bone. The plate of bone is confined to the region of what approximately corresponds to the future body of the mandible, but the mesodermal condensation can be traced further backwards, always, of course, on the lateral side of Meckel’s cartilage and the associated branches of the mandibular nerve. The condensation admittedly becomes gradually much less sharply defined but is still

distinguishable from the surrounding tissue. Finally, some distance beyond the limit of bone-formation, the lateral pterygoid muscle can be seen running into and outlining the terminal part of the mesodermal condensation. This is the first indication




Cite this page: Hill, M.A. (2024, April 26) Embryology Paper - The Development of the Human Mandibular Joint. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Paper_-_The_Development_of_the_Human_Mandibular_Joint

What Links Here?
© Dr Mark Hill 2024, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G