Paper - Prenatal growth of the pig

From Embryology
Embryology - 5 May 2024    Facebook link Pinterest link Twitter link  Expand to Translate  
Google Translate - select your language from the list shown below (this will open a new external page)

العربية | català | 中文 | 中國傳統的 | français | Deutsche | עִברִית | हिंदी | bahasa Indonesia | italiano | 日本語 | 한국어 | မြန်မာ | Pilipino | Polskie | português | ਪੰਜਾਬੀ ਦੇ | Română | русский | Español | Swahili | Svensk | ไทย | Türkçe | اردو | ייִדיש | Tiếng Việt    These external translations are automated and may not be accurate. (More? About Translations)

Lowrey LG. Prenatal growth of the pig (1911) Amer. J Anat. 12(2): 107-138.

Online Editor
Mark Hill.jpg
For more information see Pig Development

Historic Embryology Papers

Historic Disclaimer - information about historic embryology pages 
Mark Hill.jpg
Pages where the terms "Historic" (textbooks, papers, people, recommendations) appear on this site, and sections within pages where this disclaimer appears, indicate that the content and scientific understanding are specific to the time of publication. This means that while some scientific descriptions are still accurate, the terminology and interpretation of the developmental mechanisms reflect the understanding at the time of original publication and those of the preceding periods, these terms, interpretations and recommendations may not reflect our current scientific understanding.     (More? Embryology History | Historic Embryology Papers)

Prenatal Growth Of The Pig

Lawson G. Lowrey

Professor Of Anatomy In The University Of Utah

From The Anatomical Laboratory Of The University Of Missouri

Five Figures

Introduction

Numerous observations on various phases of growth are to be found in the biological literature. Most of those concerning prenatal growth are upon the human embryo, although scattered observations are also recorded on other mammals, and a few on the lower vertebrates. The work presented in this paper was done in the attempt to trace, in the pig, the course of the prenatal growth of the body and especially the relative growth of the various organs. The results are also compared with the course of growth in the human species and in the lower vertebrates, so far as data are available, The work was done in the Anatomical Laboratory of the University of Missouri, under the direction of Dr. C. M. Jackson, to whom I am deeply indebted for his interest, aid and valuable suggestions.

Material and Methods

The material used for this paper consists of 22 litters of pig embryos, comprising about 130 individuals, of which number 105 were used. In most cases, all the pigs of the litter were used, in the others, three or four specimens about the average of the litter were studied. These litters of embryos were secured from the packing houses in Chicago (August 31, 1909), Kansas City (December 27, 1909), and Columbia (at various times, spring 1910). Wherever possible, the litters were worked up in a fresh condition. In the other cases, they were preserved in a 5 per cent aqueous solution of formalin for varying lengths of time (table 1).


For the ovum, some fifty adult ovaries were examined fresh, by opening the large follicles under a dissecting microscope. The ovum (including zona pellucida) was measured with an eye-piece micrometer, whose divisions had a known value. The largest ovum found is considered nearly, if not quite, the size of the mature ovum. No data were found in the literature as to the size of the mature ovum of the pig.


Of the fetal material secured, the litter at 15 mm. was the smallest which could be conveniently dissected and weighed. The largest litter examined averages 262 mm. in crown-rump length, and is not quite full term. However, the changes between this stage and birth are probably slight, except in the matter of abso- lute weight. That is, the relative size of the various organs would probably not change much, since the changes are relatively slight during the latter part of the fetal period.


For the data on the adult, a trip was made to the local (Columbia) packing house, and four hogs, probably about ten to twelve months old, were examined and weighed. The individual measurements so secured were averaged, and the averages used in constructing the various curves.


The method used for the fetal and adult material was that of weighing. The crown-rump length was also taken in all cases, as it forms another basis of comparison for the individuals and the different stages.


Each litter is considered as a unit. That is, the individuals in each litter, or the three or four average pigs which were used therefrom, were weighed individually and individual calculations made for the percentage which each organ forms of the whole. Where the intestinal contents were determined (186 mm. and above), their weight was subtracted from the gross body weight, giving the net body weight, which was used in calculating the percentages. The average of the percentages for each organ is then taken for the litter, and this average is used in the table of observations, the minimum and maximum percentages observed in the litter being also indicated in parenthesis. In constructing the various curves of relative growth, it was found convenient to group together certain of the litters closely related in size, the average of the litter averages being taken.


The following measurements were made on each pig: weight and crown-rump length were observed for the whole body ; the head, brain, eyeballs, spinal cord, thyroid gland, thymus gland, right lung, left lung, heart, liver, stomach and intestines (with mesentery and contents, also without contents where possible), spleen, pancreas, suprarenal glands, gonads, kidneys and Wolffian bodies, were each weighed separately.


The weights were taken carefully, the organs being placed in a closed glass vessel of known weight. For the larger fetuses, the organs were weighed to 0.001 g. (1 mg.), the body and head being weighed to 0.1 g. For the smaller embryos (18 mm., 25 mm., 37 mm., 41 mm.), the body and head were weighed to 0.001 g., and the organs (except those weighing more than 10 mg. in the 37 mm. and 41 mm. embryos) were weighed to . 0002 g. (0 . 2 mg.) . For the 15 mm. embryos, the body and organs were weighed to 0.0001 g. (0.1 mg.).

The head was divided from the neck on a plane passing just behind the angle of the mandible and the cranium. Variations in this plane, which to a certain extent are unavoidable, lead to variations in the observed weight, and therefore in the relative size of the head.


The organs were weighed with contained blood, except the heart, which was opened and cleaned of the blood in the cavities. The brain and spinal cord were weighed with the pia mater but without the dura mater.


Since the age of the specimens is unknown, it is impossible to construct accurate curves of growth either for the body as a whole or for the various organs. However, by arranging the figures representing the relative size (per cent of the net body weight) according to the crown-rump length, curves can be drawn which give an approximate idea of the changes in the relative growth of the various organs during prenatal life. But no definite conclusions can be drawn from these curves as to the rapidity with which these changes in relative size take place. The only exception to this is in the case of the body as a whole, where some data by Keibel on the age of young pig embryos make it possible to compare the growth in the early part with that in the remainder of the prenatal and with the postnatal period.


A possible source of error lies in the fact that some of the litters were preserved in formalin, while others were studied fresh. It is well known that specimens preserved in formalin show an increase in total weight, amounting sometimes to 10 per cent or 15 per cent of the total. It is, however, improbable that this increase will materially affect the relative size of the organs.


Observations

The observations have been condensed into a single table, from which curves expressing the relative growth have been made. A brief discussion of, and explanation for, the table and curves, follows.


Table 1 gives a summary of all the observations on the different litters used. In the first column will be found the serial number of the litter used. In the second column, the manner of preservation. . 'Form' indicates a 5 per cent aqueous solution of formalin. The length of time preserved is also indicated. In the third column is given the number of each sex of the individuals used (M-male; F-female).


In the fourth column is given the average crown-rump length, in millimeters, for the litter, the minimum and maximum lengths being given in parenthesis. Similarly in the fifth column is given the average gross body weight for the litter in grams, together with the minimum and maximum. The net body weight is also given for the later stages, in which the intestinal contents could be measured and subtracted.


The sixth column shows the average percentage by weight which the head forms of the entire (net) body weight in each of the various litters. The minimum and maximum percentage found in the litter is given in parenthesis. Similarly in the succeeding columns is given the average percentage of the entire (net) body weight (also minimum and maximum percentage) in each litter for the brain, eyeballs, spinal cord, thyroid gland, thymus, lungs, heart, liver, stomach and intestines with contents, stomach and intestines empty, spleen, pancreas, suprarenal glands, gonads, kidneys and (for the earlier stages) the Wolffian


bodies. In the last column is given the average percentage for all the viscera added together, including the brain and spinal cord. Figures for all the viscera were secured by adding up the average percentages for the litter for each of the organs. The ovaries and testes were averaged together, and the resulting figures added. The weight of the stomach and intestinal contents is excluded.

Table 1

Historic Disclaimer - information about historic embryology pages 
Mark Hill.jpg
Pages where the terms "Historic" (textbooks, papers, people, recommendations) appear on this site, and sections within pages where this disclaimer appears, indicate that the content and scientific understanding are specific to the time of publication. This means that while some scientific descriptions are still accurate, the terminology and interpretation of the developmental mechanisms reflect the understanding at the time of original publication and those of the preceding periods, these terms, interpretations and recommendations may not reflect our current scientific understanding.     (More? Embryology History | Historic Embryology Papers)

Cite this page: Hill, M.A. (2024, May 5) Embryology Paper - Prenatal growth of the pig. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Paper_-_Prenatal_growth_of_the_pig

What Links Here?
© Dr Mark Hill 2024, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G