Talk:Embryology History - Fabiola Müller

From Embryology

Multiple techniques in the study of the onset of prenatal ossification

Anat Rec. 1958 Oct;132(2):181-93.


PMID 13627498

Cloaca in discordant monoamniotic twins: prenatal diagnosis and consequence for fetal lung development

AJP Rep. 2014 May;4(1):33-6. doi: 10.1055/s-0034-1370351. Epub 2014 Mar 3.

Chitrit Y1, Vuillard E1, Khung S2, Belarbi N3, Guimiot F2, Muller F4, Ghoneimi AE5, Oury JF1.


Objective Describe a case of cloaca prenatally diagnosed in one of a set of monoamniotic twins. Study Design Retrospective review of a case. Results Cloaca is one of the most complex and severe degrees of anorectal malformations in girls. We present a discordant cloaca in monoamniotic twins. Fetal ultrasound showed a female fetus with a pelvic midline cystic mass, a phallus-like structure, a probable anorectal atresia with absence of anal dimple and a flat perineum, and renal anomalies. The diagnosis was confirmed by fetal magnetic resonance imaging postnatally. Conclusions The rarity of the malformation in a monoamniotic pregnancy, the difficulties of prenatal diagnosis, the pathogenic assumptions, and the consequences of adequate amniotic fluid for fetal lung development are discussed. KEYWORDS: discordant; fetal lung development; monoamniotic twins; persistent cloaca; prenatal diagnosis

PMID 25032057

The amygdaloid complex and the medial and lateral ventricular eminences in staged human embryos

J Anat. 2006 May;208(5):547-64.

Müller F1, O'Rahilly R.


The amygdaloid complex was investigated in 36 serially sectioned staged human embryos, including 20 impregnated with silver. This is the first such account based on graphic reconstructions, 28 of which were prepared. Significant findings in the human include the following. (1) The medial (first) and (then) lateral ventricular eminences arise independently at stages 14 and 15, and unite only at stage 18 to form the floor of the lateral ventricle. (2) The future amygdaloid region is discernible at stage 14 and the amygdaloid primordium at stage 15. (3) The anterior amygdaloid area and the corticomedial and basolateral complexes appear at stage 16. (4) These three major divisions arise initially from the medial ventricular eminence, which is diencephalic. (5) Individual nuclei begin to be detectable at stages 17-21, the central nucleus at stage 23 and the lateral nucleus shortly thereafter. (6) The ontogenetic findings in the human embryonic period accord best with the classification used by Humphrey. (7) The lateral eminence, which is telencephalic, contributes to the cortical nucleus at stage 18. (8) The primordial plexiform layer develops independently of the cortical nucleus. (9) Spatial changes of the nuclei within the amygdaloid complex and of the complex as a whole begin in the embryonic period and continue during the fetal period, during the early part of which the definitive amygdaloid topography in relation to the corpus striatum is attained. (10) The developing amygdaloid nuclei are closely related to the medial forebrain bundle, which has already appeared in stage 15. (11) Fibre connections develop successively between the amygdaloid nuclei and the septal, hippocampal and diencephalic formations, constituting the beginning of the limbic system before the end of the embryonic period. Although the nucleus accumbens also appears relatively early (stage 19), connections between it and the amygdaloid complex are not evident during the embryonic period. (12) Influence of the olfactory bulb and tubercle on initial amygdaloid development, as postulated for rodents, is unlikely in the human. The findings exemplify the necessity of beginning developmental studies with the embryonic period proper.

PMID 16637878

Occipitocervical segmentation in staged human embryos

J Anat. 1994 Oct;185 ( Pt 2):251-8.

Müller F1, O'Rahilly R. Author information Erratum in J Anat 1995 Jun;186(Pt 3):661.


Serial sections of 108 human embryos from stage 11 to stage 23 were investigated, and 33 reconstructions were prepared. The existence of 4 occipital somites was confirmed. The important developmental distinction between axial (central) and lateral components obtains in the occipital as well as in the vertebral region. The lateral occipital components begin to show dense areas as the cervical region is approached. The lateral occipital and vertebral components arise in registration with the initial sclerotomes. In both the occipital and the vertebral region the related nerves and intersegmental arteries traverse the loose areas of the sclerotomes. The axial occipital region is not segmented, whereas the cervical components develop from perinotochordal loose areas. Three complete centra (known as XYZ) develop in the atlanto-axial region, although they are related to only 2 1/2 sclerotomes and only 2 neural arches. The height of the XYZ complex equals that of 3 centra elsewhere, and not 2 1/2, as previously maintained. The experimental findings in the occipitocervical region of the chick embryo show both similarities to, as well as differences from, the data for the human embryo. A scheme showing the early development of the entire vertebral column is included.

PMID 7961131

The human vertebral column at the end of the embryonic period proper. 3. The thoracicolumbar region

J Anat. 1990 Feb;168:81-93.

O'Rahilly R1, Müller F, Meyer DB.


The present study of the thoracicolumbar region continues an investigation of the vertebral column at 8 postovulartory weeks (the end of the embryonic period proper) by means of graphic reconstructions. The cartilaginous vertebrae have short neural processes associated with the normal spina bifida occulta present at this time. The separate cartilaginous centres that several authors believe to exist in the cervical and lumbar costal elements, but which have not been observed by the present authors, have been thought to be the forerunners of extrathoracic ribs. A distinction needs to be made, however, between such centres and ribs. Similarly, in the fetal period, ossific loci in the costal elements of CV 7 are very frequent, whereas cervical ribs in the adult are relatively rare. The neurocentral joints, and hence the boundaries between neural arches and centra, are unclear before ossification has begun and has progressed during the fetal period. The sternal bands are almost completely united and the scapula is high in position. Neural relationships aid in the determination of homologous parts within the vertebral column, but clarification of corresponding parts has not previously been possible within the embryonic period. Areas ventral to the dorsal rami are ribs in the thoracic region and costal elements in other regions. Areas underlying the dorsal rami are transverse processes in the thoracic region and minute 'true' transverse elements in the cervical and lumbar regions. Thus, the descriptive lumbar transverse processes correspond to the true transverse processes and the ribs in the thoracic region. The dorsal rami of the thoracic nerves pass between the transverse processes and the tubercles of the ribs and then divide. The ventral rami of lumbar Nerves 1 and 2 resemble the thoracic in their course, whereas those of Nerves 3-5 are similar to the sacral. The thoracic dorsal roots are sloping and, associated with the greater height of the lumbar centra, the lumbar roots even more so. The directions of the various dorsal roots reflect differences in growth gradients between vertebral column and spinal cord. The thoracic and lumbar portions of the column change little in proportion during the embryonic period proper.

PMID 2323997

The human vertebral column at the end of the embryonic period proper. 4. The sacrococcygeal region

J Anat. 1990 Feb;168:95-111.

O'Rahilly R1, Müller F, Meyer DB.


The sacral and coccygeal vertebrae at 8 postovulatory weeks (the end of the embryonic period proper) have been studied by means of graphic reconstructions. The cartilaginous sacrum is now a definitive unit composed of five separable vertebrae, each of which consists of a future centrum and bilateral neural processes. The base of each neural process consists of an anterolateral or alar element, not present in the lumbar region, and a posterolateral part, which includes costal and transverse elements. The usual illustrations, in which the costal component is placed in the alar element, are incorrect. The future dorsal foramina (containing dorsal rami) face laterally in the embryo and are in line with the thoracicolumbar intervertebral foramina. Considerable differential growth is required to change the dorsal openings from a lateral to a dorsal positions. The intervertebral foramina transmit ventral rami, but pelvic foramina are not yet present. The lumbosacral plexus is completed by S.N.1-3; S.N.4, 5 and Co.N.1 form the pelvic plexus. The inferior hypogastric plexus and the hypogastric nerves are present. The sacrum takes part in the spina bifida occulta that characterises the entire length of the embryonic vertebral column. The coccygeal vertebrae, which are variable, were 4-6 in number in the present series. The first is the best developed. The ventriculus terminalis ends usually at the level of Co.V.1 and the spinal cord generally at Co.V.5. The coccygeal notochord ends commonly in bifurcation or trifurcation. 'Haemal arches' were not observed.

PMID 2182589

The human vertebral column at the end of the embryonic period proper. 2. The occipitocervical region

J Anat. 1983 Jan;136(Pt 1):181-95.

O'Rahilly R, Müller F, Meyer DB.


The present investigation of the cervical region of the vertebral column at eight post-ovulatory weeks is the first such study based on precise reconstructions of staged embryos. At the end of the embryonic period proper, a typical vertebra is a U-shaped piece of cartilage characterized by spina bifida occulta. The notochord ascends through the centra and leaves the dens to enter the basal plate of the skull. The median column of the axis comprises three parts (designated X, Y, Z) which persist well into the fetal period. They are related to the first, second and third cervical nerves, respectively. Part X may project into the foramen magnum and form an occipito-axial joint. Part Z appears to be the centrum of the axis. The articular columns of the cervical vertebrae are twofold, as in the adult: an anterior (atlanto-occipital and atlanto-axial) and a posterior (from the lower aspect of the axis downwards). Alar and transverse ligaments are present. Cavitation is not found in the embryonic period in either the atlanto-occipital or zygapophysial joints, and is generally not present in the median atlanto-axial joint either. Most of the transverse processes exhibit anterior and posterior tubercles. An 'intertubercular lamella' may or may not be present, i.e. the foramina transversaria are being formed around the vertebral artery. The spinal ganglia are generally partly in the vertebral canal and partly on the neural arches, medial to the articular processes. During the fetal period, the articular processes shift to a coronal position and this alteration appears to be associated with a corresponding change in the location of the spinal ganglia.

PMID 6833119

The human vertebral column at the end of the embryonic period proper. 1. The column as a whole

J Anat. 1980 Oct;131(Pt 3):565-75.

O'Rahilly R, Muller F, Meyer DB.


The present investigation of the vertebral column at 8 post-ovulatory weeks, the first such study based on precise reconstructions, has revealed 33 or 34 cartilaginous vertebrae arranged in flexion and approximately 20--33 mm in total length. At the end of the embryonic period proper, a typical vertebra, such as TV6, consists of a centrum that is continuous with two neural processes. Pedicles, articular and transverse processes, but no spinous processes, are identifiable. The tips of the neural processes, which are formed by the laminae, are connected by fibrous tissue and resemble the condition of total rachischisis. The union of the laminae, the onset of ossification, and the appearance of articular cavities are characteristic of the early fetal period. The variations encountered within a single developmental stage were noted. They were mostly minor, e.g. the number of coccygeal elements and the extent of the dorsal growth of the neural processes.

PMID 7216919