Talk:Book - The Rat - Reference tables and data for the albino rat and the Norway rat (1915)

From Embryology

UNIVERSITY OF TORONTO

IWOUA ORLA

3 1761 01048109 1 OO

a

a oe


Digitized by the Internet Archive in 2008 with funding from Microsoft Corporation

http://www.archive.org/details/ratreferencetabl0Odonauoft

\

22 oF MEMOIRS

OF

THE WISTAR INSTITUTE OF ANATOMY AND BIOLOGY

No. 6 et

THE RAT

REFERENCE TABLES AND DATA FOR

THE ALBINO RAT

(MUS NORVEGICUS ALBINUS) AND

THE NORWAY RAT

(MUS NORVEGICUS) *

COMPILED AND EDITED BY

HENRY H. DONALDSON

PHILADELPHIA 1915 mel?» y & |

d

N Vai ." J i ry \\ \ ey at af, i \ t Copyricnt 1915 BY HENRY H. DONALDSON

QL 727 REDE PREFACE

For a number of studies on the growth of the mammalian nervous system made by my colleagues and myself we have used the albino rat. In the course of the work we frequently felt the need of referring to other physical characters of the rat to which the nervous system might be related. This led us to col- lect such data as were already in the literature and also led us to make further investigations. The facts gathered in this way have proved useful to us and are here presented in the hope that they will be useful to others also.

The plan of the presentation is simple. An introduction treats of the rat as a laboratory animal, indicates the methods of gather- ing the data, and also gives examples of our use of the tables. This is followed by an outline of the classification of the com- mon rats and by a brief statement of the history of the rat since it arrived in western Europe.

The rest of the book falls into two parts. The first part deals with the domesticated albino rat—concerning which we have the larger amount of information.

The second part deals-in a similar way with the wild Norway rat—the form from which the Albino has been derived. In connection with each part the several reference tables and the formulas employed for them and for the corresponding graphs are given, and at the end of the book a list of papers on the rat is added.

In the two parts which form the body of the book the purpose is to present for the rat under normal conditions the funda- mental observations—giving data and conclusions only. It is hardly necessary to add that in most directions our information is fragmentary.

For all the formulas which apply to the data coming from the laboratories of The Wistar Institute, I take pleasure in thanking my colleague, Dr. S. Hatai.

ili lv PREFACE

For aid in the preparation of these pages I am also much indebted to those unnamed assistants to whose lot has fallen the greater part of the computations for the tables and whose devotion to their work has added a human interest to a task otherwise monotonous.

To the many authors whose results are here briefly cited or quoted in extenso I take the opportunity to express my obliga- tions—very sincere obligations—for experience shows that such results come only by hard labor. _

Many of the illustrations have been taken from the journals in which they were originally published and my thanks are due to the editors and publishers of these journals for the privilege of reprinting the illustrations here.

During the preparation of this book my immediate colleagues have given me encouragement and aid, and I cherish the hope that, should the occasion arise, both of these will be again forth- coming to help mend the gaps and rectify the errors which a close scrutiny of these pages is certain to reveal. CONTENTS

PAGE RR re nee eee eect e eect cette ee eercecers ili Introduction............... 0... cece eee cece teen eens jee eee 1-7 (CESS TC) 00) | 7-10 Early records and migrations of the commonrats.................0..200- 10-15 PART I ALBINO RAT—MUS NORVEGICUS ALBINUS

Chapter 1—Biology..... BT. = 8. ee pao se cl eo cease 19-28 @hapter 2—Heredity.................. 02. eee eee eee eee 29 Chapter 3—Anatomy......-........... 2.20 cece cece cece eee eee eeeceee 30-57 Chapter 4—Physiology............ 02.00.0002 cece cece eee eee ee eeeee 58-62 Chapter 5—Growth in total body weight according to age............. 63-72 Chapter 6—Growth of parts or systems of the body in weight............ 73-85 Chapter 7—Growth of parts and organs in relation to body length and

MM MEIALION tO ARE... .. 2. ee ee wee ccc e eee etter ane cnnee 86-175 Chapter 8—Growth in terms of water and solids...................... 176-179 Chapter 9—Growth of chemical constituents.........................- 180-184 Chapter 10—Pathology...........0.. 200. e cece cence ect e eee eeneeee 185-186

PART II NORWAY RAT—MUS NORVEGICUS

Chapter 11—Life history and distinguishing characters................. 189-194 Chapter 12—Growth in weight of parts and systems of the body....... 195-197 Chapter 13—Growth of organs in relation to body length.............. 198-210 Chapter 14—Growth in terms of water and solids...................... 211-213 Chapter 15—References to the literature..............00 ccc cece cee eee 214-267 BIRT EET. ene ee nee e ceca wee cence ces 269-278

THE RAT

INTRODUCTION

The Norway rat, Mus norvegicus, is the one mammal now easily obtainable both wild and as a domesticated form. This latter is represented by either the Albino or the pied rats so com- mon in our laboratories.

The Albinos are clean, gentle, easily kept and bred, and not expensive to maintain. They are omnivorous, thriving best on table scraps. The span of life is about three years and breeding begins at about three months. Furthermore the species is cos- mopolitan. The litters are large and may be had at any sea- son. The young are immature at birth. The domesticated Albino crosses readily with the wild Norway. The rat, both wild and domesticated, takes exercise voluntarily and is susceptible to training. It is also highly resistant to the usual wound- infecting organisms. For a number of lines of study therefore, the rat seems to be a peculiarly suitable animal.

Through the researches of several investigators at The Wistar Institute (since 1906) and through those of E. H. Dunn and of J. B. Watson at the University of Chicago, of Chalmers Watson and Sir Edward Schafer at Edinburgh, of C. M. Jackson and L. G. Lowrey at the University of Missouri, of J. R. Slonaker at Leland Stanford University, of T. H. Osborne and L. B. Mendel at Yale University, of E. V. McCollum at the University of Wisconsin, as well as through those of several other investigators both in this country and abroad, there has been gathered a con- siderable body of data applying to the weight and size of the do- mesticated albino rat and its parts, as well as some similar data applying to the wild Norway rat, the parent species. It is the body of facts so gathered that it is our purpose to present, as far as possible in tabular form.

1 2 INTRODUCTION

Attention should be called to the fact that the observations presented in the tables have been made mainly on rats in the first year of life and but rarely on those which are older. It follows from this that the data apply to the rat in its most vigor- ous period and do not give = that can be used for the study of old age.

Since the quantitative data appearing in the tables are biologi- cal, they naturally exhibit more or less variability and reflect in each instance something of the conditions under which they have been obtained. It follows therefore that they must not be ex- pected to possess the precision of physical or chemical determi- nations. Nevertheless, so long as the values here presented are not mistaken for absolute standards representing ideal or final determinations, they may be used with advantage.

Most of the matter presented is taken from researches already published in full, but in a few instances data from work in prog- ress have been included also. In the latter instance the author’s name is followed by (MS with date) when it is based on work conducted at The Wistar Institute—while in other instances the laboratory is also named.

In a few of the published tables—mainly from our own lab- oratory—it has been found necessary to make corrections—so that when the tables here printed do not agree with the origi- nals, it is to be assumed that the changes are due to revision.

Owing to the absence of tables for the normal animal or to the failure of the authors to express their results in a quantita- tive form, much of the literature which is cited is unaccompanied by any text. Such papers however often contain valuable in- formation on either the Albino or Norway rat and the citation of them serves to indicate the range of the studies in which this animal has been used.

Extensive reference tables have been computed for the various characters only as these appear under normal conditions, while the modifications which may be experimentally induced in these characters are merely mentioned in the text or presented very briefly. USE OF TABLES a

In a number of cases the results are represented by both graphs and tables. The purpose of the graphs is merely to furnish a general view of the form of change which occurs, while for the exact values, the tables must always be consulted. In those tables which are based on size, the body length of the rat, be- cause it is least subject to incidental variations, is the measure- ment to which the others have been referred.

It is recognized however that some of the characters are func- tions of age and in that case it is of course necessary to know the age of the animal in order to obtain satisfactory results.

All of the longer tables are based on formulas. These formu- las are those for the graphs which most closely fit the observed values—and their utility lies in giving precision to the values ob- tained and in making possible interpolations :—as a rule however they cannot be used for extrapolation. In this connection de- terminations of the normal variability are always wanted, yet although this need has been met in a measure, it is far from being satisfied.

Since heretofore tables of this nature have not been commonly available, a word as to their use is in order.

There exist now—and there will probably continue to appear— strains of the Albino having physical peculiarities related to the locality in which they are bred: e.g., a relatively short tail. The treatment of such an instance by the use of the tables is considered in the paragraph which follows.

As has been stated, the tabular values here given apply to the stock strain reared at The Wistar Institute and furnish data from which deviations found in other local strains can be measured. In all experimental work it is now generally agreed that the control and the test animals should be taken from the same lit- ter, and the determinations of any modification made within the litter—the results for the several litters being given the same statistical weight in the subsequent computations. While this procedure might at first seem to render the reference tables su- perfluous, yet to compare the results from two laboratories work- Ing with different local strains, having according to the example chosen different normal tail lengths, a series of reference values 4 ; INTRODUCTION

such as the tables furnish, serves to reveal the relations in which the control animals from the respective laboratories stand to one another, and thus permits a more trustworthy comparison of the experimental results.!

Moreover in the course of routine work on the same colony one cannot be sure that the animals retain during successive years the same relations to the reference table values. For this reason we have been following the custom of referring all meas- urements to the reference tables and using the difference in devia- tion shown by the controls and by the test animals respectively as the measure of the modification experimentally produced,

By using such a procedure—in place of the assumption that the control animals from the same colony remain similar—the experimental results obtained from year to year are made fairly comparable with one another.?

But there is still another use of the tables which is perhaps the most important of any. In all experiments on the relative weights of parts or organs in which the size of the test animals differs from that of the controls, we readily obtain by weighing or measuring the differences for the entire animal. If however we wish to determine whether the relative size (weight or length) of the parts or organs of the test animals has been affected, we find that this cannot be done by comparing the test and control groups directly—for the relative values of parts and organs differ with the absolute size of the animal—but it can be done by reference to the tables in which the desired values are given ac-

A

1Tf a strain appears in which the length of the tail is on the average 4 per cent below the reference table value then if we compared directly with them the test animals which came from a strain normally in agreement with the reference tables—but which through experiment had had their tail length reduced by 3 per cent—it follows that the test animals, though modified by experiment, would still have relatively longer tails than the first strain.

Consequently to compare with each other the results obtained from the two strains, the deviations of both the controls and the test animals from the refer- ence table values must be determined in both series and the differences within the series be used for the cross comparison.

2 The same principle and procedure as described in Note 1 applies to the treat- ment of different series taken, for example from our own colony, at different times. USE OF TABLES 5

cording to body weight or body length or age, as the case may be. Thus by the use of the tables the determinations of the deviations shown by the test animals taken individually can be made and these values compared with the corresponding = vidual determinations for the control group.*

One further use of the tables when these are based on age, may be mentioned. The comparison of the experimental re-

3 When the experimental conditions produce control and test animals different in size a determination of the relative size of any organ cannot be made directly or by the assumption that its normal size is in proportion to the body lengths or body weights of the contrasted groups—but only by comparison of the observed values with previously established normal values.

The following observed values are taken from Hatai (’15 a), Table3. D. Nor- mal females—1914 series. They read as follows:







GROUP RATION BODY LENGTH ad mas BRAIN WEIGHT mm. gms. gms. Controls........ Mixed 185 137 1.729 Test animals....| Lipoid free and egg fat 162 100 1.569


It is desired to determine in this case whether the relative brain weight of th test animals has been modified by the lipoid-free ration. The absolute brain weight of the test animals is 0.160 grams less than that of If we assume that it should be in proportion to the observed body lengths it appears that the expected brain weight in the test animals would be 1.540. Hence the observed value, 1.569, is

the controls or 9.2 per cent of the larger number.

about 2 per cent high—by such a determination.

If we assume on the other hand that it should be in proportion to the observed body weights it appears that the expected brain weight in the test animals would

be 1.262.

Hence the observed value is some 20 per cent too high by this determi-

nation. No one of these procedures is justifiable though examples of their use The only correct method is to compare the ob-

-ean be found in the literature.

served values with the reference table values for the brain weights of animals having the body lengths of the controls and test animals respectively—to de- termine in each case the percentage difference between the observed and the table value and finally to compare these percentages.

Using table 68 and reading the values for the females, we find that in this case the controls are 0.053 grams or 2.97 per cent below the table value while in the test animals the corresponding differences are 0.103 grams or 6.16 per cent.

The brain in the test animals is therefore smaller than that of the controls by (6.16-2.97) = 3.19 per cent and this value may be taken as expressing the experi- mental modification of the brain in this series.

The foregoing represents the procedure to be generally used for determining

modifications in the relative weight of any organ. 6 ; INTRODUCTION

sults obtained on animals with the corresponding results on man has heretofore been difficult because of the absence of a good basis for comparison. We have found reason to assume that in the case of the rat the postnatal span of life of three years is approximately equivalent to the span of ninety years in man— or to put it another way, that the rat grows thirty times as fast as man. This ratio appears to hold for fractions of the span of life, as well as for the entire span. All of the data for the Albino, based on postnatal age, may therefore be compared fairly with the corresponding data for man, if the time intervals are taken as one for the rat to thirty for man.

Finally it is desirable to explain here a seeming inconsistency in the arrangement of the material presented. In the Preface the statement is made that Part I deals with the albino :at, while Part II deals with the Norway. So far as all of the im- portant tables and records are concerned this statement does not need revision.

4 As an example of the comparison of the rat with man in respect to certain changes which are related to age the observations on the percentage of water in the brain may be quoted—Donaldson (’10):

TABLE 1

Comparison of the percentage of water in the encephalon of man and the albino rat at corresponding ages




W = Weisbach, 1868 K = Koch and Mann, ’09 MAN RAT

Age, years Percentage of water Percentage of water Age, days Birth.................. 88.3 (W) 87.7 Birth 2 years................ 81.1 (K) 81.3 26 days 9.5 years.............. 79.2 (W) 78.6 115 days 25 years maturity...... 77.0 (W)

. 77.8 (K) 77.7 290 days





In table 1 the data for man, collected from various studies, are compared with data for the rat—on the assumption that the conditions in the rat brain at any age will be represented by those in the human brain at that age multiplied by thirty. CLASSIFICATION %

It has been found however in arranging the literature that it would prove most useful to include in Part I all of the incidental and general observations on the wild Norway, on the ground that these applied to the entire species, and to reserve for Part II the more precise data which apply to the wild Norway, as contrasted with the domesticated Albino.

The reader therefore will find in the literature cited in Part I papers referring to M. decumanus, M. norvegicus and Epimys norvegicus as well as to the Albino (M. norvegicus albinus or var. Albino), sometimes designated the ‘white’ rat.

As will be pointed out in the section on The Early History of the rat, there is one more complication in this connection. Through an error, unfortunately perpetuated by some of the natural histories, the common Albino has been described as an Albino of the house rat—Mus rattus.

It thus happens that in some of the papers cited it is reported that the observations had been made on Mus rattus or ratus (sic), the word albino being sometimes added—sometimes omitted. In a few instances it is impossible to determine whether M. rattus is used for the Albino or whether the house rat was really studied.

In forming a judgment on these cases it must be kept in mind that for the last half century the house rat has been rare and hard to obtain both in western Europe and in the northern United States, so that unless the author gives good evidence for the name he has employed, it becomes highly probable that he was working with some form of the Norway. For these reasons it has been found most convenient to include also in Part I all the references to the house rat (Mus rattus).

CLASSIFICATION AND NOMENCLATURE OF THE COMMON RATS

Up to 1881 Mus (Linnaeus, 1758) was used as the generic des- ignation for both the rats and mice. In 1881 Trouessart pro- posed the subgenus Epimys for the larger forms, the rats, reserv- ing Mus for the smaller forms, the mice—Mus musculus being the type. In 1910 Miller established the use of Epimys for the rats and the change has been accepted. 8 . THE COMMON RATS

In the pages which follow however the designation Mus has been retained for the rat—as the older term is well understood, while the new term—Epimys—is at present generally unfamiliar.

The following condensed citations of the place of the original descriptions—with some of the associated references—serve to give a brief history of the nomenclature.

MUS, Linnaeus, 1758 EPIMYS, Trouessart, 1881—Miller, 1910. —norvegicus, Erxleben (1777 descr. orig.) —decumanus, Pallas (1778). —aquaticus, Gessner, 1551. Cosmopolita; ab Asia occident. in Europam navibus translat. et inde in omnes Orbis Regiones. —rattus, Linnaeus (1758 descr. orig.) Cosmopolita; ab Asia occident., in Europam a navibus trans- lat., et inde in omnes orbis regiones. —alexandrinus, Geoffroy, (1812 (or 1829 vide Sherborn, 1897) descr. orig.) Asia minori, Arabia, Aegyptus, Algeria, etc. Italia, Hispania, Gallia merid.—orient. et occid., et inde in om- nes orbis regiones.

Since attention was called to Erxleben’s description in 1777 (Rehn, 1900) his specific name, norvegicus, as the designation for the common brown or Norway rat, has been used in place of decumanus (Pallas, 1778). The designation norvegicus is now well established and will be used here.

There seems no question that Mus rattus and Mus r. alexan- drinus are related to one another as color varieties of the same species (de l’Isle, 1865; Millais, 05) and they are so considered in the following pages. For convenience we shall use the term Norway or Norway rat for Mus norvegicus—and the term Rat- tus or house rat as a general designation for both Mus rattus rattus and M. rattus alexandrinus unless the occasion calls for the precise name.

Albinos of the house rat have without doubt existed in the west of Europe at one time or another ever since this form over- ran that region (Topsell, 1658) and one or more such skins, as well as pied skins, from animals taken within the past fifty years, are in several of our United States museums. CLASSIFICATION 9

At present Albinos of the house rat appear to be not uncom- mon in India (Lloyd, 712) where the house rat population is large. In western Europe and other regions in which the house rat pop- ulation is waning, a careful search by several investigators dur- ing the last decade has failed to reveal a living albino specimen.

At the present time, therefore, the Albino of Mus norvegicus is the only albino variety generally found. In these pages this form is designated Mus norvegicus albinus—when the name is given in full, but where possible the single word Albino is used for it.

When the albino variety is mentioned here the strain as com- monly reared is the one meant. As a rule this strain is far re- moved from its wild ancestor and moderately inbred. It may be conveniently designated as the common albino strain. Inthe colony at The Wistar Institute, we have in addition to this a closely inbred strain reared by Dr. King and also a strain of ‘extracted’ Albinos. These latter are the Albinos descended from the F: generation of hybrids from the wild Norway and the domesticated Albino.

During the first few generations after their appearance, these extracted Albinos show clearly certain Norway characters, which distinguish them from the rats with a longer albino ancestry. With the peculiarities of either the inbred or of the extracted strain, we are however not specially concerned at the present time.

While all Albinos breed true as to color, the composition of the gametes is undoubtedly different among them in accordance with their remote ancestry. Mudge (’10) recognizes thirteen gametic types. The gametic dissimilarity of various Albinos in respect to hair color is shown by the fact that in breeding tests (Doncaster, 06 and Mudge, ’10) Albinos extracted from ancestors with characteristic differences in pigmentation will reveal their origin by producing, when crossed with the pigmented strain, characteristically pigmented descendents, the markings of which can be predicted.

We are naturally concerned with the gametic composition of the general population of Albinos constituting our colonies today. As the several colonies stand, the Albinos forming them do not 10 _ THE COMMON RATS

form a strictly homozygous population, even from the standpoint of color, since in subsequent crosses with pigmented forms they give offspring with different color markings according to their several latent characters. On the other hand it may be fairly said that as yet we have no evidence for any correlation of the somatic characters so far studied, with those slight differences in gametic composition of the common albino strain which we can recognize. It is to be noted moreover that the difficulty which thus appears in the case of the albino rat repeats itself for other mammals also, and therefore it does not constitute a peculiarity of this animal.

CLASSIFICATION: REFERENCES

Alston, 1879-1882. Blasius, 1857. Doncaster, ’06. Erxleben, 1777. Geof- froy, 1812. Gesner, 1551. V’Isle, 1865. Linnaeus, 1758, 1766. Lloyd, ’12. Mil- lais, 05. Miller, 710. Mudge, ’10. Pallas, 1778. Rehn, 1900. Topsell, 1658. Trouessart, 1881, 1897, 710. Tullberg, 1900.

EARLY RECORDS AND MIGRATIONS OF THE COMMON RATS

The common wild rats in the United States usally live in close association with man. There are two species of these, both of which have been introduced from Europe. These are Mus rattus (Linnaeus, 1758; 1766 = Mus rattus rattus, Millais, ’05) together with its gray form, Mus alexandrinus (Goeffroy, 1812; = Mus rattus alexandrinus, Millais, 05) and Mus norvegicus (Erxleben, 1777 = Mus decumanus, Pallas, 1778). This last species is our common gray, brown or Norway rat. In addi- tion to these, all of which are wild, there is a fourth form—the albino rat (Mus norvegicus albinus) a variety of Mus norvegicus (Hatai, ’07) which is known at present only as a domesticated strain (Donaldson, 712 b).

Mus rattus—the house rat—the first species described in west- ern Europe, is probably indigenous to India.1. As now found,

1 Fossil remains of the rat (Mus rattus) are reported in the pliocene in Lom- bardy (Cornalia, 1858) and in the quaternary at Molina di Anosa near Pisa (For- syth Major) and again from the pleistocene cave deposits of the island of Crete (Bate ’12). This species appears in glacial times (Diluvialzeit) and in associa- tion with man in the remains of the Lake dwellers in western Germany and in

Mecklenburg (Blasius, 1857). It is reported also from the diluvial deposits in Bohemia (Woldfich, 1880). EARLY RECORDS AND MIGRATIONS ial

the melanic form of Mus rattus (or Mus rattus rattus, Millais) the ‘black’ rat, is more frequent in the colder latitudes, and Mus rattus alexandrinus (Millais) the gray form (the ‘roof’ or ‘snake’ rat) in the warmer latitudes, but the two are not sharply segre- gated. At the same time both of these seem more dependent on warmth, or more resistant to it, than the Norway rat.

Although we shall have little to say in the following pages about Mus rattus, yet it is desirable to give its history in order to, obtain the proper setting for Mus norvegicus, at present the dominant species. The geological evidence just given indicates the very early appearance of the house rat in Europe but our records of its migrations all fall within the present era.

The history of the early migrations is of necessity vague and incomplete, and even in the later times when dates are given it must be remembered that such animals might have been present for some time without appearing in numbers sufficient to cause © comment.

There is no good evidence that the Greeks or Romans before the present era were familiar with the rat as a pest, and there- fore, even if present, it was probably not abundant at that period on the shores of the Mediterranean.

The history of the house rat from the earliest times to the eleventh century makes an interesting archaeological study, but the conclusions which may be drawn from the scanty records and indefinite allusions are too uncertain to be of value for our present purpose and we therefore pass directly to the later authors.

Possibly as far back as the migration of the hordes (Vélker- wanderung, 400-1100 A. D.) and later in consequence of the increasing use of trade routes with the East, the house rat en- tered western Europe in appreciable numbers (Hehn, 711). It is reported to have arrived there after the twelfth century (Kel- ler, ‘09, citing Theodoros Prodromos). Giraldus Cambrensis,? (1146?-1220) records several anecdotes concerning it.

? Albertus Magnus (d. 1280) is sometimes cited as having mentioned the black rat. This isnot correct. A. de l’Isle (1865) has pointed out that the description in question applies to the dormouse—Myoxus quercinus. 12 _ THE COMMON RATS

As the Norway rat did not reach western Europe until 1727— 1730 it follows that the European rat of the middle ages, the rat of the legends of the Pied Piper® (1284), of the great plagues (before 1700) and of the early anathemas against vermin, was Mus rattus.

The species first brought to South America on the ships of the very early explorers was Mus rattus (Vega, 1609; de Ovalle, 1646). Pennant (1781) gives 1544 as the date of arrival in Peru.* We have also a notable instance of a plague of these rats in the Bermudas in 1615 (Lefroy, 1882).

Of the two species in question, Mus rattus is alone recognized by Linnaeus in his Fauna suesica 1746, and in his Systema (1758 and 1766). It does not concern us here to follow the his- tory of Mus rattus in the United States further than to say that this species only (represented by the two forms) was present up to the time of the arrival of the Norway rat in North America toward the end of the eighteenth century, and that Mus rattus rattus—the black rat—is still found in a number of scattered localities in the northern United States, while in the southern states, Mus rattus alexandrinus is much the more common. It does not appear that either of these forms has ever penetrated far into the interior of the country.

Turning to the cosmopolitan Mus norvegicus—the species at present established in China, Japan, India, western Europe and temperate North America—we find that the historical record of its movements, though by no means complete, has the virtue of being recent.

v. Gesner (Historia animalium, 1551) mentions a Mus aquati- cus which appears to be the form now called Norvegicus, but apparently he himself had never seen it.

According to Pallas (1831) the Norway rat invaded Europe from the East early in the eighteenth century and was observed

  • It may be noted in passing that the ancient inscriptions in Hameln relating

to the Pied Piper do not mention the rat (Meinardus, 1882).

‘ Pennant (1781) says there were no rats in South America before the time of Blasco Minez. Minez is evidently a misprint for Nufiez; Blasco Nufiez being the first Viceroy of Peru, from 1544-1546. EARLY RECORDS AND MIGRATIONS 13

in large numbers crossing the Volga in the Russian province of Astrakhan. Pallas gives 1727 as the year of this migration. In view of other dates, this can hardly be the date of the first in- vasion. The Norway rat reached England—probably by ships —about 1728-1730 (Donndorff, 1792) and was soon designated the ‘Hanover’ rat by those who wished to connect the misfortunes of the country with the recently established house of Hanover.

There is however no reason to suppose that the Norway rat had yet reached Germany and the name has a political rather than a scientific interest.

In 1750 the Norway rats are reported (Donndorff, 1792) to have reached eastern Prussia and in 1753 they were noticed in Paris (Donndorff, 1792). Their early distribution to other lo- calities in Europe need not be recounted, but there is evidence that they spread rapidly and soon displaced more or less com- pletely the Mus rattus which had preceded them.

This historical sketch shows that the migration of Mus rattus into western Europe antedated that of Mus norvegicus certainly by some six hundred years, but the Norway rat being the more pugnacious and powerful species has become dominant wherever it has followed the earlier form.

This dominance is undoubtedly due in part to these charac- ters of the Norway, but it seems probable that the progressive disuse of wood as a building material has been a factor also (Przibram, 712).

We find however that in many places, both in Europe and the United States, where the house rat was thought to have been exterminated, it still survives in small numbers.

The arrival of the Norway rat on the north Atlantic seaboard of the United States is usually given as 1775 (Harlan, 1825). The exact date, though of interest, is hardly important for our present purpose.

Mus rattus was already in possession, but in the course of the years, how rapidly we do not know, the Norway rat became the dominant form in the northern latitudes of this country—moving along the trade routes to all points which furnish a continuous food supply and a moderate summer temperature. 14 THE COMMON RATS

In the. present connection our interest in the Norway rat is due mainly to the fact that the common albino rat (M. n. a bi- nus) kept as a pet or laboratory animal, and concerning which we desire all possible information, is a variety of the Norway rat. This relationship is shown not only by the usual methods of comparison, but also by the haemoglobin crystals (Reichert and Brown, ’09) the shape of skull (Hatai, ’07 c) and the fact that the two forms interbreed freely.

Concerning the place and time of origin of the albino strain there is little information at hand. Allusions to albino rats be- fore the time when the Norway rat appeared in Europe clearly show that there must have been an albino strain of Mus rattus. What we know of the present distribution of Albinos of Mus rat- tus has been given on pages 8 and 9 in the preceding chapter.

By some curious slip however, many of the natural histories and books of reference speak of the common Albino as an Albino of Mus rattus. This of course is not correct, but owing to the confusion thus early introduced, it is difficult to trace the history of the present albino variety® of the Norway.

We do not know whether the common albino variety had a single or multiple origin, or whether the colonies found in Europe (Rodwell, 1858) are directly related to those now existing here. Moss, 1836, mentions Albinos in or near Bristol, England about 1822. In their general physical characters the European and American Albinos are similar (Donaldson, ’12 and 712 a). Judg- ing from the way in which the Albinos of other species arise, we may safely assume that the present strain is derived from one or more albino mutants or sports (Hatai, ’12). These must have been captured and the albino descendents segregated and kept

5 Unfortunately there is one more complicating circumstance—namely, the existence of a melanic variety of Mus norvegicus. This melanic variety is often mistaken for Mus rattus rattus because of its color, and this leads to errors of statement concerning the distribution of: Mus rattus and also concerning the ability of the two species—rattus and norvegicus—to interbreed. They are in fact mutually infertile (Morgan, 09). The number of incidental allusions to this melanic variety of norvegicus shows its occurrence to be widespread. See: Ed- wards, 1871, 1872. Hamy,’06. 1’Isle, 1865. Lapicque and Legendre, 711. Schiff, 1891. Webster, 1892. EARLY RECORDS AND MIGRATIONS 15

as pets, as at present® there is nowhere to be found an established colony of Albinos living in open competition with the common Norways or with forms of Mus rattus, but all of the colonies are maintained practically under conditions of domestication.

In the northern United States, except along the water front of the larger ports, where the house rat arrives from time to time on vessels, we have therefore to deal almost exclusively with the Norway rat. The Norway has been in this region prob- ably not more than a hundred and fifty years. Though living wild, it is more or less dependent on the food conditions found where man is established. The familiar Albino—Mus norvegi- cus albinus—is a sport derived-from the wild Norway, and is the form on which most of the investigations here presented have been made.

EARLY RECORDS AND MIGRATIONS: REFERENCES

Albertus Magnus, b. 1206—d. 1280. Barrett-Hamilton, 1892. Bate, 712 Baumgart, ’04. Blasius, 1857. Borcherding, 1889. Campbell, 1892. Clarke. 1891. Cornalia, 1858-1871. Cornish, 1890. Donaldson, ’12 ’712a.’12b. Donn- dorff, 1792. Edwards, 1871, 1872. Fischer, 1869. Geisenheymer, 1892. Geof- froy, 1812. Gesner, 1551. Giraldus Cambrensis, b. 1146?—d. 1220. Godman, 1826-1828. Gourlay, ’07. Hamy, 06. Harlan. 1825. Hatai, ’07, ’07 c, ’12. Hehn, ’11. Hossack, ’07, ’07 b. I’Isle, 1865. Keller, 709. Keller-Zschokke, 1892. Lantz, ’09. Lapicque, *11. Lefroy, 1882. Liebe, 1891. Lindner, 1891. Linnaeus, 1746, 1758. Lloyd, ’10. ’12. Léns, ’08. Major (see Baumgart, ’04). Meinardus, 1882. Messer, 1889. Middendorff, 1875. Millais, ’04. Mojsisovies, ’97. Moss, 1836. Murray, 1866. Ovalle, 1646. Pallas, 1831. Pennant, 1781. Prodromus, Theodorus (see Keller, 09). Przibram, 712. Reichert and Brown, 709. Rodwell, 1858. Schiff, 1891. Vega, 1688. Ward, 06. Webster, 1892. Woldrich, 1880-1884.

Rattenkénig. Ahrend, ’03. Demaison, ’06. Dollfus, 706. Koepert, ’04.

6 Rodwell, 1858, page 10, mentions what may have been a colony of Albinos living wild at the Ainsworth Colliery near Bury, England.

PART I INO RAT—MUS NORVEGICUS ALBINUS

CHAPTER 1 BIOLOGY

1. Life history. 2. Span of life. 3. Puberty—ovulation—menopause. 4. Period of gestation—lengthening of the gestation period. 5. Superfecundation —Superfetation. 6. Fecundity and weight at birth. 7. Recognition of sex. 8. Sex ratio. 9. Body weight according to sex. 10. Behavior. a) Under natural conditions. b) Under experimental conditions.

1. Life history. The albino rat is born blind, hairless, with a short tail, closed ears and undeveloped limbs. It responds to contacts and olfactory and taste stimuli, utters a squeaking sound and is capable of some locomotory movements which are a combination of wriggling and paddling. The head is always searching. The young can find their way back to the mother at about ten days of age (Watson, ’03). The eyes open at from the 14th to the 17th days, most often on the 15th or 16th. King has also observed that in a given litter the eyes of the females usu- ally open some hours before those of the males. For some seven days more, i.e., up to the time when the young rats are 21—22 days of age, they are dependent on the mother. After this they may be weaned, although if permitted, the young will depend partly on the mother for some days longer.

This adjustment of relations fits with the fact that the female may be impregnated one or two days after casting a litter (Kirk- ham, 710; Kirkham and Burr, ’13) and since the gestation period is about 21.5-22.5 days, this would enable the female to free herself from the first litter before the second one was born. As will be pointed out later, the gestation period may be prolonged in nursing animals.

When the young rats become habituated to independence, i.e., at about 25 days, they enter on a period of activity, the phases of which have been followed by Slonaker (’07, ’12). In the cases which he observed, it was found that increasing age was accom-

19 20 ; BIOLOGY

panied by increasing activity up to the age period of 87-120 days, after which the activity declined.

On the assumption that the span of life in man is thirty times that of the albino rat (Donaldson, ’08) this age of greatest ac- tivity would correspond to the age of 7.5-10 years in man.

As shown by the records of activity (Slonaker, ’12) the albino rat is nocturnal. This habit can be modified more or less by feeding or by disturbance during the day time.

The measure of activity in the cases observed by Slonaker was the number of turns of the revolving cage in which the ani- mal was kept, the cage being set in motion by the voluntary run- ning or other movements of the animal, and the revolutions be- ing automatically recorded. In the case of four rats kept in separate revolving cages from 30 days of age until natural death, the following record of activity was obtained (Slonaker, ’12).

TABLE 2

Total number of miles run during life



AGE IN MONTHS RAT NO. 1 : no.4 no. 2 no. 3 AT DEATH, M. MILES M. MILES M. MILES F. MILES Zon... -- eee 1265 2G ae - «1 eee 1391 82.0.0... 2 eee 2098 O4.......00e oe 5447




This table shows not only great variability in the total per- formances, but also for the one female a record of over five thou- sand miles in a little less than three years. On the average, three- fourths of the total distance is run before the rat has reached middle life, and the last months of old age are always marked by greatly lessened activity.

2. Span of life. The assumption has been made (Donald- son, ’08) that dating from birth, the span of life of the albino rat is three years. A rat three years old therefore may be re- garded as corresponding to a man ninety years old. So far as this assumption has been tested, it appears to be a useful approximation. SPAN OF LIFE—PUBERTY—-PERIOD OF GESTATION 21

Slonaker (12, 712 a) working at Leland Stanford University under the favorable climatic conditions of California, has made some direct tests.

Four albino rats living in revolving cages attained an average age of 29.5 months, while three control animals reared in sta- tionary cages, but under conditions otherwise similar, attained an average age of 40.3 months. In all these cases, death was reported as due to ‘old age.’

The average age of these seven individuals was about 34 months, while the greatest age, attained by one of the controls, was 45 months. The three controls all lived longer than any of the four in the revolving cages. It appears from this that living in the revolving cage shortened the span of life—an unexpected result.

3. Puberty—Ovulation and Menopause. Sexual maturity as indicated by the structure of the gonads usually occurs in both males and females at the age of about two months or less.

According to our observations, puberty in the female may oc- cur at 60-70 days after birth—although the females usually be- gin to breed at 90-100. days. On the other hand there are oc- casional instances of remarkable precocity. In the breeding Al- bino it is found that impregnation most readily follows 14 days after a litter has been cast. This accords with the time of ovu- lation (Kirkham, 710; Sobotta and Burckhard, 710; Kirkham and Burr, 713). During the breeding season of the female ovu- lation occurs at intervals of about three weeks, but only from April to October do the females regularly ovulate 20-48 hours after parturition (Kirkham and Burr, 713). The menopause commonly appears at the age of 15-18 months, but King (MS., 15) reports a female 22 months old—crossed with a male of like age—giving birth to a litter of one.

4. Period of gestation. The gestation period of the non-lac- tating albino rat is usually stated to be about 21-22 days. In the cases where the gestation period has been exactly recorded in our colony the exact time of copulation and of birth having been observed, Stotsenburg (MS 714) has found it to be from 21 days and 15 hours to 22 days and 16 hours. 22 BIOLOGY

Lengthening of gestation period. King (713), makes the follow-. ing statements which apply to lactating Albinos, maintained on a mixed diet.

The gestation period in lactating albino rats is of normal length if the female is suckling five or less young and is carrying five or less young.

The gestation period may be prolonged from one to six days if an al- bino female, suckling five or less young, is carrying six or more young.

The period of gestation is always prolonged when a female is suckling six or more young. In these cases the number of young in the second litter seems to have less influence on the length of the gestation period than has the number of young suckled; but if both litters are very large the gestation period may be extended to 34 days.

5. Superfecundation and superfetation. Superfecundation oc- curs occasionally in the albino rat and causes an interval of two, three or more days between the birth of different members of the litter (King, 713).

In support of this statement the following instances are cited:

1) Litter born October 27, 1911; examined November 10, 1911, 12 individuals—11 of these weighed about 14 grams each. The remaining one had very little hair, weighed 7.1 grams and appeared 4-5 days old.

2) Litter born December 20, 1911; examined January 2, 1912, 10 individuals—9 of like size weighed 16-17 grams each. The remaining one small; hair just appearing; weighed 10.8 grams.

3) Litter born February 26, 1912; examined March 11, 1912, 10 individuals—3 had their eyes open and weighed 10.1-10.5 grams. The remaining seven were apparently but one or two days old and weighed 4.2 grams on the average.

In rare instances ovulation takes place in the albino rat dur- ing pregnancy and superfoetation occurs. In two cases of this kind litters have been produced at intervals of about twoweeks (King, 713, pp. 388 and 389).

6. Fecundity and weight at birth. At the beginning of ovula- tion in the albino rat Sobotta and Burekhard (’10) find on the average a total of thirteen ova in both fallopian tubes. The largest litter we have noted in the common Albino contained sixteen. One instance also of sixteen fetuses 18 days old has been observed Stotsenburg (MS ’15). FECUNDITY AND WEIGHT AT BIRTH 23

Kolazy (’71) reports litters consisting of 5-17 young. Crampe (84) records for 2503 young represented by 394 litters, an av- erage of 6.3 per litter. From 1911-1913, 275 litters (1928 in- dividuals) in our colony gave an average of 7.0 individuals per litter, and in 1914, 814 litters (5691 individuals) gave an average of 6.99 individuals per litter. Litter size does not appear to be influenced by season (King and Stotsenburg, 715).

Under certain food conditions the size of the litters is much modified. When an exclusive diet of ox flesh is given to Albi- nos—2-4 months of age at the beginning of the experiment— and these are compared with control rats fed on bread and milk, Chalmers Watson (’06 a) finds in the meat fed Albinos preg- nancy less frequent, the weight of the mammae less, and the average number of young in a litter, as well as the average weight of the young, both smaller than in the controls. Such an ex- clusive meat diet is therefore unfavorable both for breeding and for early growth. On the other hand, Stotsenburg (MS 715) found that mothers fed on a table scrap diet produced a larger number of fetuses than those fed on bread and milk.

As to the size of the litters at different periods in the life of the female, there are a few observations. Lloyd (’09 a) in his studies on two strains of the house rat, published tables which he interpreted to mean that the number of individuals in a litter was independent of the body weight of the mother. Pearson (10) however was able to show from Lloyd’s data that in both groups the number in a litter increased with the body weight of the mother.

It seems probable however that the heavier rats were also older, as Pearson suggests, and that the proper interpretation of the increase in the size of the litter is to relate it with the age of the mother. In these groups none of the animals were beyond the prime of life and hence the explanation is very probably correct.

There is now available some detailed information on the rela- tion between the weight and age of the mother and the charac- ters of the young.

A study of 11 litters of common ‘albino rats containing 91 young bred by King (MS ’15) at The Wistar Institute, gives 24 BIOLOGY

the average individual birth weight for the male as 4.72 grams and for the female 4.56 grams.

The data from these 11 stock litters used for tables 3, 4, 5, 6 have not been published elsewhere in a separate form. In the paper by King (’15), however these data are combined with corre- sponding data for the inbred Albinos to form similar tables. The results obtained from the stock data here given are quite in agreement with those from the combined data of King (’15). The birth weight may be modified by a series of conditions as shown in the following tables.




TABLE 3. Influence of the age of the mother on birth weight NUMBER OF MOTHER AVERAGE WEIGHT—INDIVIDUALS MOTHERS Body weight Age in days Males No. Females No, gms.

(@))-cp0cocaa00000 165 114 4.50 (12) 4.52 (20) (3) @Bbeoc cdc 0db 201 143 4.52 (14) 4.49 (14) (a) e022... aS 225 217 4.97 (18) 4.81 (13)




Table 3 shows that with increasing age up to 217 days the indi- vidual birth weight increases with the age of the mother. At the same time it is to be seen that the body weight of the mother also increases.

When the same data are arranged according to the bodyweight of the mother, we get the relations shown in table 4.




TABLE 4 Influence of weight of mother on birth weight NUMBER OF MOTHER AVERAGE WEIGHT—INDIVIDUALS MOTHERS Body weight Age in days Males Females gms. (Gy... 2. ee 165 114 4.53 (12) 4.40 (20) (OB. eee eee 200 150 4.65 (14) 4.55 (16) GYR... eee eee. 226 211 4.88 (18) 4.76 (11)






Here the birth weight increases with the increasing body- weight, but the age is also increasing in the successive groups. The influence of the size of the litter on birth weight does not FECUNDITY AND WEIGHT AT BIRTH 25

give regular results, but if we take the extreme records, we find that in the small litters of 6.5 the individual birth weight is higher than in the large litters of 10 or more (table 5).

The failure to get regular results is probaby due to the small number of cases here used.




TABLE 5 The influence of the size of the litter on the individual birth weight _ NUMBER OF MOTHER “WINDIVIDUALS MOTHERS Body weight Age in days | No. in litter Mates | Females gms. Ue... we. eee 195 165 6.5 4.99 (14) | 4.65 (12) (=... eee 199 149 8.3 4.56 (13) | 4.42 (12) (4)........200-- 195 139 10.0 4.60 (17) | 4.53 (23)





Finally, if we take the individual birth weights as the criterion and compare the birth weights under 4.5 grams (for the male) with the birth weights of 5 grams or more (for the male) it ap- pears that the heavier birth weights are associated with the heav- ier weight of the mother—as we should expect from table 4. At the same time it is to be noted that the age at which the heavier birth weights are recorded is greater.

TABLE 6 The individual birth weight in relation to body weight of mother






eer on MOTHER AVERAGE WEIGHT—INDIVIDUALS MOTHERS Body weight Age in days Males Females gms. Woe.........--- 179 133 4.37 (23) 4.28 (28) (8)..........006. 201 144 4.96 (13) 4.80 (14) (@).............. 244 263 5.31 (8) 5.26 (5)




These relations exhibited by table 6 and based on this small number of stock Albinos agrees with those already determined by King on a much larger series which combines the data here used with a large series of litters from inbred Albinos.

This agreement shows that in these respects there is no signi- ficant difference between the stock Albinos and the inbred strain 26 , BIOLOGY

of King. The general conclusion which King reaches is that increasing weight or increasing age of the mother (the two being correlated) give a heavier birth weight, while the increase in the number in a litter tends to diminish the individual birth weight. There is to be observed also a diminution in birth weight in those litters born of mothers below the standard in size, or suffer- ing from infectious disease. With the larger material just men- tioned, it is also possible for King and Stotsenburg (715) to show a modification of the birth weight in relation to the place of the litter in the series of litters born by a given female, see table 7. TABLE 7

Showing the sex ratios and average number of young in 75 litters of stock albino rats. Data arranged according to the position of the litters in the litter series




NUMBER AVERAGE

LITTER SERIES NUMBER OF ee MALES FEMALES Sato a6 xO FEMALES LITTER li... .. eee 21 131 72 59 | 122.0 6.2 ON... ee 21 162 85 77 110.4 Ti Ss OBMMPMMIs coac 18 127 64 63 101.6 7.0 1... Je 15 96 41 55 74.5 6.4 | 75 | 516 262 254 102.1 6.8






The observations indicate that the number of individuals in the litter generally increases from the first to the second litter, and after that decreases. These results would quite accord with Crampe’s conclusions. According to Crampe (’84) the second litter of albino rats is the best. The majority of albino females do not produce more than four or five litters.

7. Recognition of sex. The recognition of sex through ex- ternal characters in the young rat has been studied by Jackson (12). He finds in brief that the male, as contrasted with the female, may be recognized by (1) The larger size of the genital papilla; (2) the greater ano-genital distance (see table 8); (8) the absence of clearly marked nipples. (This test is applicable only up to the age of 16 days, i.e., before the development of hair on the ventral surface.) (4) Small extent of the bare area just ventral to the anus (test applicable only after the 16th day).

EE RECOGNITION OF SEX-—SEX RATIO—BODY WEIGHT 20

As arule the descent of the testes occurs about the fortieth day of age or somewhat earlier. The following is a condensed form of Jackson’s table for the ano-genital distance.

TABLE 8 Ano-genital distance in young albino rats of various ages




« or Uarb EE Onl eeCnie ——— me BODY syhnt Male Female Male Female Male Female

gms. gms. gms. pms

New born..... . 10 2 5.7 5.4 ES 1.2 7 days......... 17 26 11.0 10.4 5.2 2Eai i4 days........ 13 15 19.5 18.2 8.2 4.9 20 days........ 19 26 27.4 27.4 12.0 7.0 42-50 days..... 19 13 Wom 71.0 21.0 13.0






8. Sex ratio. On the basis of 30 litters comprising 255 indi- viduals, Cuenot (’99) reports among albino rats—when the litters are examined shortly after birth—105.6 males to each 100 females.

King (11 b) in 80 litters containing 452 individuals, found 107.3 males to 100 females, and in a later series of 120 litters (which includes the 80 litters just mentioned) containing 690 individu- als, a sex ratio of 107.8 males to 100 females. Finally, in a group of 814 litters, comprising 5691 individuals, King and Stot- senburg (715) found 108.1 males to 100 females.

In a thriving colony therefore a ratio of about 108 males it to be expected. This however is subject to a seasonal variation. At the two periods of greatest reproductive activity—in the spring (March—May) and again in the autumn (September-November) the proportion of males (the sex ratio) is low.

In the first litters of young females the sex ratio tends to be higher than in the later litters—but no relation of sex ratio to size of litter has been found (King and Stotsenburg, 715).

9. Body weight according to sex—at maturity. At maturity the body weight of the male Albino is much greater than that of the female. According to our records for the common strain— ages not known—the four largest males thus far examined weighed 320, 327, 343 and 438 (fat) grams respectively, and the four largest females 280, 287, 319 and 359 (fat) grams. In Albi- 28 BIOLOGY

nos of the common strain, the following maximum weights for each sex at known ages have been observed by King (MS ’15).

TABLE 9 Body weight in grams





AGE IN DAYS MALES FEMALES DO OREE EE LEE) EEEEEEEEECEEELr 284 425 Ree): eee Eee eeor 397 455 Ree Eee EEE Eee eerrrs 409 265 45 Bee eeet tlie ri: 437 { 394


10. Behavior. a) The normal activities of the rat under natural conditions have been studied and described by a num- ber of observers (see references).

b) As the albino rat is easily tamed and responds readily to training it has already been used for a number of studies in which behavior tests have been employed. Studies have been made for example on imitation, temperament, the influence of prac- tice, retentiveness, the réle of the several organs of sense and the relation of the learning rate to age and to the relative brain weight (see references).

BIOLOGY: REFERENCES

Life history. Donaldson, ’08. King, 718. Kirkham, ’10. Kirkham and Burr, 713. McCoy, ’09. Slonaker, ’07, 712. Stewart, 1898. Watson, ’03.

Span of life. Donaldson, ’08. Slonaker, ’12, ’12 a.

Puberty, Ovulation, Menopause. THewer, 714. Kirkham and Burr, 713. Sobotta and Burckhard, 710.

Period of gestation. King, 713.

Superfecundation. King, ’13.

Fecundity and weight at birth. Crampe, ’84. King, ’15. King and Stotsen- burg, 715. Kolazy, 1871. Lloyd, ’09a. Pearson, ’10. Sobottaand Burckhard, 710. Watson, ’06 a.

Recognition of sex. Jackson, 712.

Sex ratio. Cuenot, 1899. King, ’lla,11b. King and Stotsenburg, ’15.

Body weight according to sex. King and Stotsenburg, ’15.

Behavior. a) Under natural conditions. Advisory Committee, 112. Bech- stein, 1801. Bell, 1837-1874. Buckland, 1859. Buffon, 1749-1789. Dehne, 1855. Fisher, 1872. Hewett, 704. Kolazy, 1871. Lambert, ’10. Lantz, 710. Manouvrier, 705. Mitchell, ’11. 6) Under experimental conditions. Adams, 713. Basset, 714. Berry, ’06. Carr and Watson, ’08. Cesana, ’10. Hubbert, 14, 715. Hunter, ’12, ’13. Lashley, ’12. Richardson, ’09. Small, 1899, 1900, 701. Szymanski, 14. Ulrich, 713. Vincent, ’12,’13,’15,’15a,’15b. Watson, J. B., ’03, ’07, 713, 714. CHAPTER 2 HEREDITY

1. General.—2. Coat color

Inbreeding brother and sister from the same litter of Albinos for twenty successive generations (King, 1911-1915, MS) has not been followed by any physical deterioration.

Studies on heredity m the Norway rat have been concerned mainly with the inheritance of coat color. The gray coat of the wild Norway is dominant in crosses between the wild gray and the Albino. The Albinos in the F. generation appear in the proportion of one Albino to three pigmented. In the F, and in the later generations pied animals may be had and the color pattern both fixed and modified by selection (Castle, 12, 12 a, and Castle and Phillips, 714). The inheritance of brain weight in the reciprocal crosses Norway xX Albino has been studied by Hatai (MS ’13).

The references to the literature are grouped into 1) those touching the general problem and 2) those especially applying to coat color.

HEREDITY: REFERENCES

1. General. Castle, ’11, 712, ’12a. Castle and Phillips, ’14. Crampe, 1883, 1884. Darwin, 1883. Hagedoorn, ’11, ’14. Hatai, ’11a, ’12. Lloyd, ’08, 709, "11. Pearson, ’11. Przibram, ’07, ’10,’11. Ritzema-Bos, 1894. Yerkes, 713.

2. Coat color. Bateson, ’03. Castle, ’14a, 714 b.- Castle and Phillips, ’14. Crampe, 1877. Doncaster, ’06. Fischer, 1874. Frédéric, ’07. Haacke, 1895. MacCurdy and Castle, 07. Morgan, ’09. Mudge, 08, ’08 a, 709. CHAPTER 3 ANATOMY

1. Anatomy, general. 2. Embryology. a) Spermatogenesis. b) Ovulation. c) Earlier stages. d) Later stages. 3. Bones, joints and connective tissues. a) Teeth. 4. Muscles. 5. Vesselsand lymphatics. a) Blood. 6. Nervous sys- tem. a) Central 1) Brain. 2) Spinal cord. -b) Peripheral. 1) Cerebral. 2) Spinal nerves and ganglia. 3) Autonomic. c) Technical methods. 7. Sense organs. 8. Integument. 9. Gastro-pulmonary system. a) Gastro-intestinal system. b) Pulmonary system. 10. Uro-genital system. 11. Endocrine system.

Since this book purposes to present mainly those results that can be systematically arranged and are in a quantitative form —there will appear several divisions of.this chapter marked only by references to the literature.

Further, even in those divisions for which there are some available data it happens in many instances that the presentation of them can be better given in the chapters which treat of growth —and in such instances the reader is merely referred to the later place of presentation. These general statements apply to the subsequent chapters as well.

1. Anatomy, general. In only two instances has the rat been used as the basis for a general presentation of mammalian anat- omy. These are in the books by Martin and Moale, 1884, and Goto, 1906. The remaining references are to studies which ap- ply to portions or systems only (see classified references—at the end of the chapter).

2. Embryology, a) Spermatogenesis. According to Hewer (14):

In the newborn animal, active mitosis is occurring in the testis, and at 33 weeks the spermatogonia can be distinguished from the spermato- cytes. No lumen begins to appear in the tubules as a rule until 7 weeks. At 8 weeks spermatids are easily distinguishable: at 8} weeks isolated spermatozoa may occasionally be scen. At 9 weeks typical

ripe spermatozoa are plentiful, but the fully formed epididymis con- tains no free spermatozoa. At 10 wecks all the tubules show active

30 EMBRYOLOGY 31

spermatogenesis: the second crop of spermatozoa is appearing, while the first crop can be seen in the epididymis. Reduced number of chro- mosomes 19. Allen (MS 715).

b) Ovulation. According to the observations of Sobotta and Burckhard, ’10, ovulation is simultaneous in both ovaries—as many as 13 egg cells have been found discharged. The ovum— after fixation with Zenker’s solution containing somewhat less than the usual proportion of acetic acid—measured 60-65 y» in diameter with a nucleus about 25 » in diameter. The reduced number of chromosomes is 16. The full number of chromosomes 32. The authors incorrectly assume that the common Albino is a variety of Mus rattus.

For the diameter of the living unsegmented egg Kirkham and Burr (’13) give 79 u as a mean value.

For the volume of the ovum see table 11.

c) On the early stages of development we have the observations of Huber (15a). His description is as follows:

The material at hand permits the conclusion that in the albino rat the segmenting ova pass from the oviduct to the uterine horn at the end of the fourth day after the beginning of insemination, probably in the 12-cell to 16-cell stage. With the beginning of the fifth day, as will appear from further discussion, all of the ova are to be found in

the uterine horn. The following summary of the data gained by a study of the models of oviducts containing ova in stages from the pronuclear to 12-cell to

TABLE 10

Showing the distance of the ova from the fimbria at various ages. Based on table 8, Huber ('15a)




- 9 <= Te SIDE N & = ae. | BeCON- AGE BER OP STAGE ° . E 2 23 STRUCTED ova cle Senn) 2 oS & = § 5S a 2 Sha ga 2e | go> 3 a = cm. em. 106.......... R. 1 day 8 Pronuclear }j 3.2 | 0.8 | 0.25 DU... .. eee R. 2 days 4 2-cell 2.291] 1.4 | 0.63 Gem.........) LL. 2 days 22 hrs. 5 2-cell 2.451] 2.0 | 0.84 SOee.--.....| Re 3 days 1 hour + 4-cell 2.8 | 2.5 | 0.90 BPE... -- L. 4 days 5 12 to 16 cell | 2.86 | 2.86 | 1.00








1 Not the entire length of oviduct was available for reconstruction. 32 ; ANATOMY

16-cell stages in which latter stage transit to the uterine horn occurs, is presented to indicate rate of transit within the oviduct. The regu- larity of the rate of transit as revealed in the summary may perhaps speak for the trustworthiness of the age data as concerns my material.

It will be observed that the ova approach the uterine end of the ovi- duct while in the 2-cell stage (see table 10); transit through the last portion of the oviduct, where the greater part of the segmentation oc- curs, being relatively slow. It is hoped that these data, for the accuracy of which I am dependent on reconstructions, may be of service to others who may desire to collect segmentation stages of the albino rat.

In order to obtain the volume changes of the ova during transit through the oviduct, beginning with the pronuclear and extending to the 8-cell to 11-cell stages, reconstructions were made at a magnification of 1000 diameters of ova presenting the stage in question. The respec- tive volumes of these models were determined and the data reduced to the actual volumes.




TABLE 11 Volumes of ova and embryos. Based on table 4 Huber (’16 a) RECORD ay soe OF AVERAGE VOL. PER STAGE EGG MASS IN STAGE GIVEN IN CS re Devs Hours c. MM. c. MM. 106.......... 1 0 Pronuclear 0.000151 0.000156 LOG... - eee 1 0 Pronuclear 0.000143 106... .... 1 0 Pronuclear 0.000158 TOG) 2... - ae i} 0 Pronuclear 0.000171 59... 2 0 2 cell 0.000162 0.000173 59...... 2. 2 0 2 cell 0.000183 BOF... 6. secs 3 1 4 cell 0.000183 0.000162 50S. eee 3 1 4 cell 0.000155 Odinee eee 3 17 8 cell 0.000189 0.000184 TEEPE Ee eee 3 17 8 cell 0.000160 OVERS Bee 3 17 8 cell 0.000187 OEE +. ah. oo 3 17 8 cell 0.000182 Mines scccaes 3 17 8 cell 0.000200 EVEEn: «Fae 3 V7, 11 cell 0.000210 0.000210







The uniformity of the figures giving the actual volume of the egg mass, as determined by the weight of-the water displaced by the models of the respective ova reconstructed, leads me to feel that the errors com- mitted in reconstruction were not serious. The last column of the table, giving averages, is of interest since it shows a very slight increase in the volume of the egg mass during segmentation and transit through the oviduct. Following the pronuclear stage, which, as has been seen, extends through a relatively long period and into the beginning of the second day, by which time the ova have migrated about one-fourth of BONES, JOINTS, CONNECTIVE TISSUES 33

the length of the oviduct, there occurs only three successive mitotic divisions, including the first segmentation division, namely mitoses re- sulting in 2-cell, 4-cell, and 8-cell stages while the ova are in transit in the oviduct. In making this statement it is assumed that in the suc- cessive segmentations, the several cells divide synchronously, which is not in conformity with the fact. These three mitotic divisions are spaced at intervals of about 18 hours.

Tn the next following division, the fourth, the ovum passes from the oviduct to the uterine horn. Since the normal gestation period of the non-lactating albino rat is only 21 to 23 days, this slow rate of increase in volume and multiplication of cells during the first four days of de- velopment is of especial interest and is very probably to be accounted for by the inadequacy of the food supply of the ovum during its transit through the oviduct.

d) Later stages. Observations have been made by Stotsen- burg (MS ’15) on the daily increase in the weight of the fetus from the 13th to the 22nd day after insemination. The data and graph are given in chapter 5, pp. 64 and 65.

3. Bones, joints and connective tissues. On the following page is an enumeration of the bones forming the skeleton of the rat.

For data on the growth of the entire skeleton see Chapter 6.

Skull measurements have been made by Hatai (’07c). The following description is extracted from his paper.

For this study 53 male and 51 female skulls of mature Albinos (rats more than 150 days old) were measured. These skulls had been care- fully cleaned and dried at room temperature. The following measure- ments were made with vernier calipers: 1) the length of the entire skull; 2) the fronto-occipital length; 3) the zygomatic width; 4) the length of the nasal bone; 5) the height of the skull; 6) the width of the cranium or the squamosal distance. In every case the maximum length alone was recorded in millimeters.

The horizontal straight line joining the tip of the nasal bone to the end of the occipital bone is called the length of the entire skull. This however is not exactly equal to the sum of the length of the nasal bone and that of the fronto-occipital.

The fronto-occipital length was determined in the following way: Since the length measured with the calipers from the tip of the nasal bone to the posterior end of the inter-parietal bone is usually less than

  • the length measured from the same point to the end of the occipital

bone, both measurements were taken (see fig. 1). The difference be- tween these two measurements was added to the length from the tip of the frontal bone to the end of the inter-parietal bone, and the sum was called the fronto-occipital length.

The width of the cranium (squamosal distance) was determined by 34 ; ANATOMY

LIST OF BONES



(Nasals.........0.0.0c ee ees 2 Sternum ............... 6 Premaxillae.............-- 2 Maxillae..............0005 2 Shoulder tense eB Jugals..... 0... ccc eee ee eee 2 girdle \Clavicle...... 2 Palatines................: 2 Vomer.............-..+--. 1 Pelvic Jlium........ 2 Lachrymals............... 2 irdle Ischium...... 2 Ethmoid.................. 1 gir Os pubis..... 2 Frontals.............-006 2 (Cranium { Sphenoid............... .. 1 Humerus................ 2

Presphenoid.............- 1 Uina®.......... oe eee 2

Parietals............-.-.- 2 Radius.............-006- 2 Squamosals............... 2 Interparietal............. 1 Carpus....... 16 Occipital................. 1 Fore feet [Neti 10 Periotic capsules.......... 2 Phalanges.... 28 Skull ; Tympanic bones.......... 2 Ear | Malleus........... 2 Femur wenn tee eee ee 2 i. Incus............. 2, Tibiay..........- eee 2 {Stapes............ 2) Wibula...-) ee eeeeeeeee 2 Mandible..................00e eee eee 2 | Patellae...... 2 wReGHH. 2... 7... eee. Aen - 16 Sesamoid ; 2 back of bones | Femur..... 4 HV Old) = ee eEE ECE EEC EEE ECE CEE EEE EEEEEEEee 1 Tarsus....... 16 Cervical..............2 cece eens 7 Hind feet [Nessa 10 Dorsal or thoracic.............. 13 Phalanges.... 28 Vertebrae ; Lumbar...............eeeeeeee 6 = Saeralee.......-------eee- seer - 4 281 Caudal...............0. (about) 30 Nails (20) omitted Vertebro-sternal................ 14 Ribs Vertebro-costal................ 6 Vertebral...............-00eeee- 6


taking the maximum distance between the two points (right and left) where the zygomatic bones rest on the lateral walls of the cranium. The height of the skull was determined by measuring a perpendicular distance between the greatest convexity of the parietal bone in the me- dian line and the junction line between the basi-occipital and the basi- sphenoidal bones on the ventral surface.

The cranial capacity was determined in the following way: The skull was held vertically, with the nose downwards and was filled with fine shot (no. 11) to the upper level of foramen magnum and then the nose of the skull gently struck twice against the palm of the hand.

The space thus formed was again filled. Although this is a simple procedure yet it needs the greatest care to produce uniform results. ASE 14

Giving the mean values for several measurements on the cranium, together with the standard deviation and the coefficient of variation and the

respective differences.

Based on table 1.

Hatai (’0%e)


MEAN

STANDARD DEVIATION

COEFFICIENT OF VARIATION


Difference

Difference

Difference


Zygomatic width,..........

Length of the nasal bone...

Fronto-occipital length.....

SIOJOUINTTOT UY

Squamosal distance........

Height of cranium.........


| (Length x width x height)),

e

Cranial capacity in gms. of shot...

H

Rody-weight in @MB............006

(Length of the entire cranium....

oO


MO DO He De Doe HO

yO

43.255 + 0.166 41.549+0.119

21.745+0.109 20 925 + 0.083

1

6.958 +0 .096 15

.962 +0 .075

27.2640 .093 26.373+=0.085

15.273+0,010 15.056 +0.039

11,4930 .049 11.189+0.085

16.875+0.044 16.423 +0,036

10.896 +0.068 10.368+0.070

214.886+5.318 167.345 2.739



1.7060. 204 3.944%

0.8200. 137 3.771%

1.266 +0, 122 7.465%

0.911+0.126 3.341%

0.217+0.040 1.420%

0.354+0.065 3.080%

0.4524 0.056 2.678%

0.528+0.098 4.845%

47.5415 982 22.170%


1.7860.117 1.256 +0.084

1.177+0.077 0.876+0.059

1,038+0.068 0.793+0.053

1,007 +0.066 0.904 0.060

0.3388 +0.022 0.409+0.027

0.526+0.034 0.375 +0.025

0.478+£0.031 0.382 0.026

0.735 +0.048 0.743 + 0,050

52.887 + 3,760 20.474 1.605


0.530 0.144

,

0.301+0.064

0.245+0.086

0.1030 .090

—0.071+0.036

0.151+0.043

0.0960 .040

—0.008+0.069

32.413+4.088

4.1290 .271 3.016 +0.202

5.41240 .356 4,186 +0, 280

6.121 0.403

3.693 +0. 242 3.427 +0, 229

2,.213+0,145 2.716+0,181

4.576+0.300 3.366 +0, 225

2,832 +0.186 2,326 0,155

6.745+0.444 7.166+0.481

25.076+ 2.675 12.2385+0.974

1,113+0,338

1.226+0.453

1.068 0.526

0.256+0.334

— 0.503 0.232

1.2100.375

0.506 +0, 242

—0.421+0.655

12.8414 2,847

co SLVH JO ‘ON | a it

oo

= a

xs

ca 36 , ANATOMY

By practice Hatai has been able to reduce the difference between the first and second filling to less than one per cent. The cranial capacity thus determined in the terms of shot weight can be transformed into brain weight as follows: by dividing the weight of the shot in the case of the males by 5.980 and in the case of the females by 6.009. The re- lations between the cranial capacity, in terms of shot weight, and the body weight are represented by the formulas (8) and (9).

TABLE 13

Showing the range of variates and rate of increase for various characters according to sex Hatai (’07 c)




MALE FEMALE ak | acm | Bee [Mek [ome | RE mm. mm. mm. mm, mm. mm, Length of the entire cran- ium 39.4 43.3 47.4 44.5 41.5 38.9 Rate 100 100 100 100 100 100 Zygomatic width. 19.6 Ni 24.8 28.4 20.9 18.9

Rate 49.81 50.2 52.3 52.5 50.3] 48.5 Length of the nasal bone. | 14.7 17.0 18.7 17.8 15.7 14.4

Rate 37.3] 39.2 39.3 40.0 37.71 37.0 Fronto-occipital length. 24.9 27.3 28.8 28.2 26.4 24.9

Rate 63.2} 63.0 60.7 63.3 63.5) 64.0

Squamosal distance. 14.6 15.3 16.2 16.2 15.1 14.4 Rate 37.0} 35.3 34.1 36.4) 36.2 37.0 Height of cranium 10.4 11.5 13.0 12.2 11.1 10.3

Rate 26.4) 26.5 27.4 27.4, 26.8 26.4








1 Taken from Table 12.



Fia 1. A. Fronto—occipital length. B. Squamosal distance. BONES, JOINTS, CONNECTIVE TISSUES 37

The greatest difference found between the measurements of the skulls for the two sexes is in the nasal bones, which are nearly 2 per cent longer in the male skull. The greater relative length of the nasal bones in the male may be regarded as a sec- ondary sexual character (Hatai).

a) Teeth. Addison and Appleton (’15) report as follows on the size and growth of the incisor teeth in the Albino.

The dental formula of the albino rat is

oe OS L C 0 Po M 3

There is only one set of teeth, and hence the dentition is mono- phyodont. The time of eruption of the various teeth extends over a period of 33 weeks. The incisors are the first to appear, viz., at 8 to 10 days after birth. The first and second molars erupt at about the 19th and 21st days respectively, and it is after this latter period that the young animals may be weaned and are able to maintain an independent existence, as far as food. is concerned. The third molars are delayed until two weeks later and do not appear until about the 35th day.

The incisors are permanently-growing (or rootless) teeth, while the molars have a definite limited period of development and acquire roots. A wide diastema separates the incisors from the molars as may be seen by reference to figure 1 (loc. cit.) The incisors are strongly curved and Owen (1840-1845) has described the lower incisor as being the smaller segment of a larger circle, and the upper incisor as the larger segment of a smaller circle. In the case of lower incisor of the albino rat this statement needs a slight modification.

The times of the early stages of development of the incisors were as follows:

14 day fetus—slight thickening of oral epithelium.

15 day fetus—distinct thickening and growth inwards of oral epithelium. 16 day fetus—dental ledge and beginning of flask-shaped enamel organ. 17 day fetus—dental papilla with crescentic enamel organ capping it.

19 day fetus—both ameloblasts and odontoblasts differentiated. New-born animal—enamel and dentine formation begun.

8 to 10 days—eruption of the tooth. 38 ANATOMY

The rate at which the teeth increase in length during their formative period and prior to attrition is given in the following table:




TABLE 14 LENGTH OF INCISORS Upper Lower mm. mm, 1 day old................... 2.3 3 4 days old.................. 3.6 5 7 days old.................. 5 7-8 10 days old.................- 7 11




Average growth of upper incisor 0.52 mm. and of lower incisor 0.88 mm. per









day. TABLE 15 INCISORS Upper Lower

  1. «

diag Pid svvelss Web, 65 66000000006080000000- 150000000000c0 100-110 140-150 Outer fibrous layer............. eee eee cece e eee eeeees 30-40 20-30 Pigmented portion of outer fibrous layer.............. 8-10-12 6-8 Inner plexiform layer................0.- 2c cece cece eee 70 120-125 TABLE 16 23 41 10 15 5 8 10 DAYS DAYS | WEEKS | WEEKS |MONTHS|MONTHS|MONTHS mm. mm. mm, mm mm. mm. mm. Naso-occipital length............ 29.7 | 32.5 | 39 40 43 44 46.5 Interzygomaticl................. 13.7 | 14 14.5 | 14.6 | 15.4 | 15.1] 15.5 Upper diastema................. 7.4] 9.5] 10 11.4 | 12.3 | 12.5 | 13 Upper incisor—total length...... 12.8 | 15 18.3 | 20.3 | 23.3 | 23.7 | 26.2 Upper incisor—extra alveolar length. .............. cee ee ee 5.1] 5.5] 7 8.4; 8.7] 9 9.3 Lower diastema................. 4.6] 5 5.6] 6 6.7 | 7 6.8 Lower incisor—total length...... 18.1 | 21.7 | 25.5 | 26.4 | 29.4 | 29.9 | 31.3 Lower incisor—extra alveolar length. .-22-eeeee eee eee eee 6.5 | 7 10.5 | 11.4 | 11.6 | 12 12.4









1 Same as ‘squamosal distance,’ figure 1, p. 36. VESSELS AND LYMPHATICS 39

Throughout life growth continues, and in the adult animal is on the average 2.2 mm. per week in the upper and 2.8 mm. per week in the lower incisor.

In a five months animal the thickness of the enamel and its constituent layers measured in the mid-line of the teeth is given in table 15.

Measurements of the incisors and skulls of animals of different ages were made and are shown in table 16.

The lower incisor of a five months animal forms a segment of about four-fifths of a semicircle (140-145°).

4. Muscles. Morpurgo (1898) has furnished data on the Muse. radialis of the albino rat; giving the number of muscle fibers and of nuclei at different ages (table 17). ;





TABLE ‘17

. AREA OF CROSS

ace aoe eee | See Newborn.........--... 5919 570645 552 15 days............... 7252 357764 868

16 days

(very well grown)... 7587 347343 1010 BOldays............... 7625 139861 2766 420 days............4-. 8014 37542 11817


5. Vessels and lymphatics. a) Blood. Specific gravity 1.056 (Sherrington and Copeman, 1893). The diameter of the erythro- cytes is as follows (White, ’01):



FOR M. DECUMANUS a ea IN B Determination by (Treadwell)....................: EP ELOr): - - - - ie 6.5 Determination by (Wormley, 1888)..................c cece eee eens 7.0 Determination by (Gulliver, 1875)............0. 0. cece cece ence eens 6.5



1) Percentage of water in the blood. Hatai (MS ’15) has deter- mined the percentage of water in the blood of a small series of Albinos. 40 ANATOMY

The Albinos were from The Wistar Institute stock strain, grown on the scrap diet and examined before the day’s feeding. The rat was chloroformed, but before the heart ceased beating it was exposed in situ, the tip clipped away and the blood from it caught in a small glass weighing bottle. The fresh weight was immediately taken and after drying at 95°C. for a week the weight of the residue was obtained.

The results are given in table 18.

TABLE 18 Percentage of water in the blood of the Albino, Hatai (MS. ’15)


PERCENTAGE OF WATER ssu5e BO. os poe man IN a Range Mean gms.

Mee...... aa. . 4 106-127 121 79 .47-81 .05 80.09

My BpogGG00000000d 4 135-194 157 79 .05-81.15 80.00

eee eee eee 5 72-100 88 78 .13-81 .12 79.88

eee Eee eEree 6 105-125 117 80 .25-80 .97 80.30





In 50 rats (27 males + 23 females) between the weights of 50 and 150 grams the average number of erythrocytes was found by Chisolm (’11) to be 8.8 millions and the average hemoglobin content 87.8 per cent as measured on the human scale.

TABLE 19 :

Rivas (University of Pennsylvania MS. '14). Observations on the Albino rat ‘ blood—normal.






In 1 cu. MM. PERCENTAGES OF eee a memocioun | ‘eytesim | Stee | marsh. | Iymph. | iymph, | Zosinoph.| Basoph. 85.0.0... 8.6 8,800 68.5 24.9 6.2 85.....--.. 9.2 7,200 56.5 34.4 9.1 0.4 0 88......... 8.2 8,400 47.5 44.9 5.9 3.0 0.85 SOR... .... 7.4 8,000 44.9 49.3 5.2 0.9 0 90......... 8.0 8,000 69.9 25.4 4.2- 0.7 0.70 (0). coon noe 8.4 9,400 42.4 50.5 4.0 0.0 0 93......... 8.4 16,000 43 .6 51.9 4.3 0.5 0.26 Deer 3 « 7.6 11,600 71.6 20.7 4.1 0.6 0 O¥/sno500808 7.6 8,800 56.4 37.6 4.5 1.5 0 100......... 8.4 9,400 51.2 42.1 6.2 0.7 0 NERVOUS SYSTEM 41

In addition the observations of Rivas, University of Pennsyl- vania (MS ’14) are given in table 19. The data are arranged according to the increasing haemoglobin content.

For the wandering cells we have tables’20 and 21 by Kan- thack and Hardy, 1894.

TABLE 20

Showing the percentage and size of the various forms of the wandering cells of the blood in the rat







  • TYPE OF CELL GRANULATION PERCENTAGE OF TYPE DIAMETERS IN #
Coarse 2 10

Oxyphile.............. a 45 7-8 Basophile............. (absent) Hyaline..............- 2 8-10 Lymphocytes.......... 50 6 TABLE 21

(From the same authors)

Shows the percentage and size of various forms of the wandering cells in the peritoneal fluid of the rat




TYPE OF CELL GRANULATION PERCENTAGE OP TYPE DIAMETERS EIN ' Coarse 20-40 10 Oxyphile.............. { Fine (alent)

Coarse 5-10 18

Basophile!.. . - eeeyy- = ie inns Hyaline = 13 Lymphocytes {°""""""* {65-0 | 6.5




1 Basophile cells in connective tissue 23 » in diameter.

6. Nervous system. a) Central. 1) Brain. Specific gravity 1.050-1.056, Reichardt (’06). For brain weight see Chapter 7, p. 90, and table 68. For the percentage of water see Chapter 8, p. 176 and table 74. For the chemical composition see Chapter 9, p. 181 and tables 80, 81. Cell division in the central nervous system continues after birth. The observations of Hamilton (01) are given in table 22. 42

ANATOMY

TABLE 22

The number of mitoses in 13 consecutive sections, each section 6.75 pu in thickness, from the brain and spinal cord of rats at different stages of development. The fetus weighed 0.78 gms. and had acrown-rump length of 1? mm. It was probably

at 17.5 days of gestation.

STAGE OF DEVELOPMENT

BRAIN


Ventricular mitoses

Extra-ventricular mitoses





Foetus.......... 200: cece eee 2196 966 Bich eee eee eee eee rrr 390 595 24 HOUrS....... eee eee eee ee 24 386 4 days... 0. ccc eee eee eee 115 443 LUMBAR CORD Ventricular mitoses Extra-ventricular mitoses Foetus............00 00 ce eee ee 28 18 Birth eee eee eee en 8 45 24 hours...........2.2 cee een | 13 A dayS....... cc cece cee eee 8 64




For the first 25 days after birth Allen (12) has obtained the

results given in table 23.

TABLE 23

Showing the number of mitoses per cubie millimeter of nerve tissue in the central The figures are taken from calculations of the volume of tissue and based on the number of mitoses in the con- secutive sections at each level of the cord, five in the largest portion of the cere- bellum and five in the cerebrum in the region of the optic chiasma. The letters (a) (b) and (c) refer to different rats of the same age

nervous system of the stock Albino at certain levels.



CORD AGE, DAYS CEREBELLUM CEREBRUM Cervical Thoracic Lumbar NRE ee eo oe 208 115 259 1597 430 BET... ae 437 176 351 2111 447 (.0cOgMEEEEIBES c 446 236 320 193 Use eee e es 4848 : MAE ee 46 75 14 839 37 OM... .- ese. 00 00 00 (c) 620 UME... ..-o ee 00 00 00 (b) 61 (b) 27 PMPs. cee 00 00 00 (a) 00 (a) 18 DOWEEEE) : «= «Ae « 00 00 00 00 27 NERVOUS SYSTEM 43

The diameters of the Purkinje cells have been studied by Addison, 711.

The Albinos were from the stock colony of The Wistar Institute, reared on the scrap diet. The cerebellum was fixed in Ohlmach- er’s solution (King, ’10) imbedded in paraffin and stained with carbol-thionine and acid fuchsin. The values for the respective diameters given in table 24 are in each instance averages of ten measurements from the largest cells found in equivalent areas at the several ages. The measurements stop at 20 days of age. After this age there is but little change in the diameters of the

largest cells. TABLE 24

Diameters of Purkinje cells and their nuclet


DIAMETERS IN p


AGE IN DAYS


Cell Nucleus RUG so oe we eee nee 1 7 8 X 6.3 Bw... - 0. eee: eee Con a 14x 8 8.3 X 7.4 PM ee nee eee eee eee 18 X 12 ll XK 8.5 WOM, ace ee ew eee eee 2 Xai 12 X 9.0

(largest) 24 x 19


2) Spinal cord. For the weight of the spinal cord see Chapter 7, p. 90, and table 68. For the percentage of water see Chapter 8, p. 176, and table 74. For the chemical composition see Chap- ter 9, p. 180 and table 80. Cell division in the spinal cord after birth has been studied by Hamilton, ’01, see table 22 and Allen (12) see table 23.

b) Peripheral. 1) Cerebral nerves. Fortuyn (’14) counted 3000 myelinated fibers in the n. cochlearis of the Norway rat.

Boughton (’06) studied the increase with age (body weight) in the number of myelinated fibers in the oculomotor nerve in the albino rat and measured the areas of the entire fiber and the axis in osmic preparations. The results are given in table 25.

2) Spinal nerves and ganglia. One of the larger spinal ganglia from a cervical nerve root of an Albino weighing 140 grams was fixed in a formalin-acetic sublimate mixture (6, loc. 44 ANATOMY

TABLE 25

Oculo motor nerve




NUMBER OF FIBERS AREAS IN p? BODY WEIGHT IN PERCENTAGE GRAMS AND SEX OF AXIS Large Small Total Entire fiber Axis 11 M........ 764 764 14 Meee 880 38 918 13.2 6.6 50 44 M........ 885 220 1105 51 F......... 926 227 1153 80 F......... 887 290 1177 41.8 21.2 51 109 F......... 888 329 1217 1720 oie ee 882 465 1347 192 M........ 932 316 1248 2035 Vere eee 925 383 1308 218 M........ 926 471 1397 278 M........ 901 566 1467 318 M........ 930 379 1309 414 M........ 928 408 1336 56.7 27.3 48








cit. p. 3) by Hatai (’01) and cut in paraffin sections 6-7 yu thick.

Selecting cells according to size from large to small the meas- urements of the cell body and the nucleus were made as in table 26.




TABLE 26 AVERAGE DIAMETERS IN pb SERIES NO. OF CELLS Cell body Nucleus AY... oo. eee 10 55 X 46 18 X15 EM... ee ee 10 38 X 25 15 X 14 Bee... + EOE 5 26 X 23 13 X 12 Dees... ... oe 5 19 X 17 c 10 X 10



Further studies on the spinal roots and ganglia were made by Hatai (’02) and (’03 b).

From a series of male Albinos the spinal ganglia with accom- panying dorsal root nerves were fixed in one per cent osmic acid and cut in paraffin. The measurements on this material Hatai (02) are given in table 27. Incorporated in the same table NERVOUS SYSTEM 45

are the enumerations for the myelinated fibers in the ventral roots (Hatai, ’03 b).

It was found that the number of myelinated fibers in the ven- tral roots diminishes from sections near the spinal cord to those near the spinal ganglion. The amount of the diminution de- creases with the age (body weight) of the rat. The increase in the number of cells in the spinal ganglia from the small to the large rats is certainly due in part to the fact that in the small animals some of the smallest ganglion cells escape enumeration.

The increase in the number of myelinated fibers in the spinal roots with advancing age is due mainly to progressive myelina- tion. Both roots at maturity still contain functional fibers with- out myelin sheaths (Ranson, ’06).

TABLE 27

Number of ganglion cells and number and size of myelinated root fibers in spinal nerves from three levels of the spinal cord at five ages (body weights) Results from Tables II, VI and VIII combined. Hatai (’02)

Also data on ventral root fibers from Hatai (’03 b)



MEAN aie cone TOTAL oF | TOTAL OF por a. oF 20 mii OMS. | VENTRAL | GaNOLION [OLED poor! or MatUne | Fisens | a*veet DOR-

FIBERS ee geEs FIBERS ENTIRE 2; 10.3 558 10996 1998 1043 955 7.5 ‘| 24.5 1007 9793 2569 2263 306 11.6 8| 68.5 1302 11772 3683 3569 114 13.3 167.0 1474 12200 4297 4173 54 13.9

S| 264.3 1522 4028 3 10.3 286 7142 607 283 424 4.8 B| 24.5 434 7068 683 497 366 7.1 A] 68.5 561 7611 1420 1259 161 8.9 167.0 613 7406 1522 1460 82 11.6

>| 264.3 772 1650 5 10.3 333 8315 723 303 420 5.1 2] 24.5 698 $200 911 678 233 8.0 Bl 68.5 704 9514 1317 1181 136 11.3

  • | 167.0 1028 9442 1644 1565 79 12.0

=| 264.3 965 2102 46 ANATOMY

_ For the numerical relations of cells and fibers in the second cervical nerve data have been furnished by Ranson (’06).

TABLE 28 Second cervical nerve Observations on normal male rats (Albinos.) Osmic acid fixation—paraffin sections







NUMBER OF MYELINATED FIBERS AGE IN DAYS BODY WEIGHT eee Dorsal root Ventral root (Cee 110 7721 2472 689 (2a 110 8116 2394 660 (eee Cee 110 1959 590 eee eee 110 2217 591 Eee COOL 155 9343 161 2090 672 240 (left side)... 188 8624 2689 703 240 (right side). 188 2891 773 302 2386 646



When the number of myelinated fibers in the two rami on the distal side of the II cervical spinal ganglion is compared with the total number found in the two roots—a distal excess in the _ number of fibers is found. This is shown in table 29. The dis- tal excess appears to be due to branching of the fibers in their course, Ranson (’06).




TABLE 29 IN ROOTS DISTAL EXCESS IN RAMI BODY WEIGHT - eS Ventral | Dorsal Sum Absolute 8 Sum ious pa 161....... 672 2090 2762 276 10 3098 708 2390 302....... 646 2386 3032 257 8 3289 887 2402









Enumerations of the myelinated fibers in the ventral roots of the II spinal nerve of the Albino have been made by Dunn (712). Each record is the mean of two enumerations of rats of like age. Areas in x? of the entire fiber and of the axis—together with the percentage value of the axis. Each entry is based on the mean of the 20 largest fibers. In this series there is a change - NERVOUS SYSTEM 47

in the relative area of the axis with age, as well as a decrease in the total areas in the oldest group. TABLE 30

Giving for Albinos of different ages the numbers of myelinated fibers in the ventral root of the second cervical nerve and the areas of the fibers. Dunn (’12)








é. AVERAGE AREA|AVERAGE AREA AGE, NUMBER, SEX WEIGHT nk TEN LARGEST =o LI ae grams ‘7 days Two females.... 8.59 368 17.2 10.6 61.6 Two males..... 9.33 366 22.3 13.9 62.3 14 days Two females ... 20.92 542 38.5 18.1 47.0 Two males..... 21233) 565 3269 15.2 46.2 36 days Two females... 42.24 653 78.2 31.2 40.0 ‘Two males..... 41.93 613 80.6 31.7 39.3 75 days Two females... . 136.70 560 115.4 49.6 43.0 Two males..... 169.35 668 116.9 52.8 45.1 132 days Two females... 164.26 683 136.0 59.3 43.6 Two males..... 267 .00 625 141.0 63.2 44.8 180 days Two females....| 212.50 518 168.8 75.9 44.9 Two males..... 264.80 G09 201.3 98 .2 48.7 270 days Two females... . 176.91 176 261.0 133.4 51.3 Two males..... 340.05 617 216.8 107.1 49.4 640 days Three males....| 334.47 S64 170.7 78.2 45.8


From a study of the diameters of the cell bodies and their nuclei in the second cervical spinal ganglion of the adult Albino, values which apply to the mean of the entire cell ‘population’ of this ganglion have been obtained (Hatai, ’07b). The ganglion examined was from a mature male weighing 194 grams. The 48 ANATOMY

ganglion was fixed in osmic acid and imbedded in paraffin. mean values are as follows:

The



TABLE 31 MEAN DIAMETER STANDARD DEVIATION SOE ae “ Cell body............. - 28.6 14.9 18.4 Nucleus..............- 13.1 1.8 13.7





On the basis of these observations, formula (12) was devised for computing the diameter of the nucleus from the diameter of the cell body.

For comparison with the data in table 31 see data in table 26 obtained by a different method of fixation.

The number of myelinated fibers in the peroneal nerve of the normal Albino is given from Greenman’s observations (713) in table 32. Ages not known.

.









TABLE 32 monet gigar | cane car | setae LEVEL OF SECTION COUNTED 104 F. 117 F. 182 M. AVERAGES RIGHT NERVE | RIGHT NERVE | LEFT NERVE 1. Proximal............. see} 2240 2430 2192 2288 Distance from 1 to 2 in TM See EEE Eee eee 3.0 4.7 3.1 2. Middle................... 2118 2292 2418 2276 Distance from 2 to 3 in meee reer re 4.5 2.3 3.3 85 IDLY ooco000000-000080005 2392 2213 2364 2323 AVEFAgeS.......... cece eee 2250 2312 2325 2296 TABLE 33

Normal Albinos: Sectional area of ten largest in u?; relation of axis to sheath


PROXIMAL END

DISTAL END





Body weight | Entirefiber| Axis Percent of | entire fiber | Axis ed 104............ 109.8 55.6 50.6 85.0 42.3 49.7 MNGi e se. cee eee 137.7 75.2 54.6 85.8 42.6 49.6 182............ 150.3 82.9 (a5 I) 113.0 56.7 50.1

Average Same. eee 132.6 71.2 Se 94.6 47.2 49.9 NERVOUS SYSTEM 49

Greenman (713) also found in osmic preparations the sectional areas of the 10 largest myelinated fibers and the areas of their axes. The length of nerve used was 10 mm. The results are given in table 33.

3) Autonomic. In the course of a study intended primarily to determine whether the small myelinated fibers in the spinal accessory could be regarded as representing the fibers of the Tami communicantes, Roth (’05) in a series of cervical nerves, counted on one side the number of myelinated fibers 4 y» or less in diameter, and in the corresponding ramus communicans he also counted the myelinated fibers of like size.. His findings are given in table 34.






TABLE 34 MYELINATED FIBERS LESS THAN 4 4 IN DIAMETEE IN VENTEAL ROOT MYELINATED FIBERS NERVE LESS THAN 4 # IN RAMUS COMMUNICANS RatI Rat II

2nd cervical........... 130 168 None 8rd cervical........... 105 126 None 4th cervical........... 380 363 195 5th cervical........... 432 449 220



c) Technical methods. To determine the effects of various fixatives on the brain of the rat, King (’10) carried through a series of weighings of mature rat brains which had been sub- jected to the action of various fixatives. A summary of the results is given in table 35.

The solution of Ohlmacher (’97), the formula for which is as follows:

Absolute alcohol, 80 parts.

Chloroform, 15 parts.

Glacial acetic acid, 5 parts.

Corrosive sublimate to saturation (about 20 per cent) was found to give excellent results with the cells of the cerebral cortex. 50 ANATOMY

TABLE 35 Summary of Data Collected (King ’10)




eA z z |e | ee e | ae. | 8 | ged | & B n | Be SOLUTIONS USED FOR ° aes g 3 Bom z Q § |Fe FIXATION 2 & EB Sf REOR Se I) |r| See B | ees | ge | ecee | oe e] ie |e las Fel gig | 8F | sac2 | 8: elyi a] 2 |e 56] gee we | BEES | we 2/8) 8] 2 [s8 g<| Be® | RE | pene | BS 1 | o&| 277) 219|1.94) 4% Formaldehyde....} 48 | 2.5750 | +33 | 1.5706 | —19 21) oj 163) 196)1.83) 4% Formaldehyde... .| 48 | 2.8200 | +54 | 1.6463 | —10 3 | @| 158} 199]1.85) Formol-Miiller (cold)} 20 | 2.2437 | +21 | 1.5537 | —16 4] Q| 129] 183)/1.78) 4% Formaldehyde....| 48 | 2.6778 | +50 | 1.6577 | — 7 5 | 97] 164] 188)1.80} Formol-Miller (warm)............ 3 | 2.1880 | +22 | 1.8711 | + 4 6 | o| 187] 198]/1.85) OhImacher...........] 5 | 1.6100 |} —12 | 1.4471 | —22 7 | Q| 137] 184/1.78 mee 2 | 1.7389 | — 2 | 1.4099 | —21 Zenker.............{ 6 | 1.8716 | + 3 | 1.6666 | — 8 Si ceqeuee ioe oF Nae Reels sco s hee 48 Dahlgren.......... 4 | 1.9000 | + 3 | 1.7273 | — 7- 9 | @| 170) 197/1-84) \ Miniler............. 48 10 | @| 182] 186|1.79| Picro-formol......... 4 | 1.7881 | — 0 | 1.4663 | —18 11 | S| 275) 228/1.98) OhImacher........... 6 | 1.8267 | — 8 | 1.6248 | —18 12 | &| 206) 207)1.88) Ohlmacher........... 2 | 1.6924 | —10 | 1.5748 | —16 13 | o| 228) 210/1.90) Ohlmacher........... 4} 1.5787 | —17 | 1.4498 | —25 14 | | 169} 194/1.83) Ohlmacher........... 3 | 1.5458 | —16 | 1.4633 | —20 15 | &) 126] 157/1.65) OhImacher...........] 3 } 1.3978 | —16 | 1.3099 | —21 16 | o| 158) 181]1.77; Ohlmacher........... 3 | 1.4590 | —18 | 1.4000 ; —21 17 | | 232) 199]1.85| Ohlmacher........... 3 | 1.6390 | —11 | 1.4875 | —20 18 | Q]| 111] 154]1.63} Zenker-formol........ | 14# 1.6040 | — 2 | 1.3297 | —18 19 | Q| 106) 159]1.66} Zenker (modified)....} 14] 1.7451 | 4+ 5 | 1.3167 | —21 20) c| 6 0.30; Ohlmacher........... 1 | 0.2523 | —16 | 0.2074 | —31 21) 9] 6 0.29] OhImacher........... 2 | 0.2489 | —14 | 0.2011 | —30 22 | | 108] 156/1.64) 23% K.CroOr......... 48 | 2.8445 | +73 | 2.1409 |} +31 23 | o*| 88} 16311.68} 24% KeCroO7......... 48 | 2.5594 | +52 | 1.7518 | + 4 241 oS 162} 187|1.79) Alcohol K2Cr.O7..... 48 | 2.5073 | +40 | 1.8885 | + 6 25 | @| 190} 207/1.88] Alcohol K2Cr.0;7..... 48 | 2.8169 | +50 | 2.1797 | +16 26 | o| 174! 184]1.78] Weak alcohol........ 27 | 1.7753 | —00 | 1.6201 | — 9 27 | co 168] 1911.81) Alcohol-formol....... 24 | 1.6392 | —10 | 1.5147 | —16 28 | | 221) 198]/1.85) 95% Alcohol......... 24 | 1.4418 | —22 | 1.4611 | —21 29 | o| 151} 184]1.78] Sublimate-acetic..... 14] 1.8604 | + 5 | 1.4484 | —19 30 | oj 213) 202/1.86) Carnoy’s fluid........ 3 | 1.8192 | + 2 | 1.4077 | —24 31 | co] 181] 194]1.82) Carnoy’s fluid........| 4 | 1.7575 | — 3 | 1.3042 | —23 32 | Q| 141] 178/1.75) Graf (5% formalin) | 2%] 2.1520 | +23 | 1.7421 | —00 33 | o| 165} 191}1.81) Graf (10% formalin) | 14] 1.9283 | + 7 | 1.5994 | —12 34 | Q| 149) 184]1.77| Carnoy’s fluid........ 19 | 1.7416 |} — 2 | 1.3110 | —28 NERVOUS SYSTEM 51

TABLE 35—Concluded.













eS z = z¢ e ZS i ae 2B 22 5 233 é 2/2 |s8 3 REZ | 2 os Zz & a | Bz SOLUTIONS USED FOR = Zz 2 Bxc2 | 3 et its) Re FIXATION 2 BER Sie 1 Sete cde a1 2|.8 5 | .28 | £2 |] 22] £8 ¢ =| 4 |2s gal] 2S: ge | 2-2] ge z » | > | 28 "e| £38 | 2? | gee! oF 2/818 |e |3e g2| BSE | 82 | FSee | gz 35 | 9| 167} 189|1.80) Lang’s fluid.......... 20 | 2.0670 | +15 | 1.6794 | — 7 36 |} o| 208} 203)1.86) Lang’s fluid.......... 4} 2.0429 | +10 | 1.7970 | — 3 37 | 9| 173) 194)1.82} Marina’s fluid........| 72 | 1.2219 | —33 | 1.2913 | —29 38 | o| 197} 201}1.86) Marina’s fluid:.......| 96 | 1.2146 | —35 | 1.2546 | —33 39 | | 259] 214}1.92) Cor. sublimate....... 4 | 2.0760 | + 8 | 1.4695 | —23 40 | @| 177| 195)1.83) Cor. sublimate....... 20 | 2.0229 | +11 | 1.4087 | —23 41 | | 265) 216/1.92) Sublimate-formol.....) 4 | 2.3315 | +21 } 1.6565 | —14 42 | | 213) 203)1.86} NaCl + sublimate....| 4 | 1.9927 | + 7 | 1.3947 | —25 43 | 9| 213) 2041.86) Tellyesniczky........ 48 | 1.9643 | + 6 | 1.6372 | —12 44) 9Q| 137) 177)1.74| Tellyesniczky........ 24 | 1.7981 | + 3 | 1.4906 | —14 45 | o} 196) 200}1.85) NaCl + sublimate....) 20 | 2.1549 | +16 | 1.5074 | —19 46 | Q| 135) 179)1.75| Sublimate-formol....} 20 | 2.0512 | +17 | 1.3687 | —22 47 | o| 141) 179)1.75) Cox (osmic).......... 48 | 1.9917 | + 2 | 1.5483 | —12 48 | co") 150) 182)1.76) Cox (osmic).......... 72 | 2.1555 | +22 | 1.8365 | + 4 49 | o"| 171) 192/1.81} Cox (formol-acetic)..| 48 | 1.7687 | — 2 | 1.5003 | —17 50 | oc} 137) 178)1.75| Cox (formol-acetic)..| 72 | 1.8944 | + 8 | 1.5221 | —13


In a later study King (’13 a) followed in some detail the ef- fects of formaldehyde on the brain of the Albino. The conclu- sions reached were as follows:

_ 1. A 4 per cent solution of formaldehyde causes a pronounced swell- ing in the brains of rats of all ages.

2. A solution of formaldehyde undergoes some chemical change on standing, since a solution five months old causes less swelling in the brain of the rat than does a freshly made solution.

3. A 4 per cent solution of formaldehyde neutralized with NaCO; produces a much greater amount of swelling in the brain of the rat than does a solution that has a faintly acid reaction.

4. A strong neutralized solution of formaldehyde causes a greater percentage weight increase in the rat’s brain than does a weak neutral- ized solution. A reverse result is obtained when the solutions are not neutralized. E oe, ; ANATOMY

5. If rats’ brains are subjected to the action of a solution of for- maldehyde that is kept at a constant temperature of 36°C., they under- go a greater amount of swelling than is produced when the solution is kept at a temperature of 8 to 11°C. The maximum weight increase in the brains is reached by the end of the first day in the former case, and not until the third day in the latter case.

6. When the conditions under which the solution acts are uni- form, the maximum weight increase in rats’ brains subjected to the action of a 4 per cent solution of formaldehyde is attained in all cases by the third day, and there is then a gradual decrease in weight. Brains of very young animals tend to reach the maximum earlier than do those of older animals.

7. The percentage weight increase in rats’ brains as the result of the action of a 4 per cent formaldehyde solution tends to be greater in the brains of young animals than in those of adults.

8. In animals of the same age the larger brain does not show a greater percentage weight increase after treatment with a solution of formal- dehyde than does the smaller one.

9. A 4 per cent solution of formaldehyde extracts solids from the brains of rats of all ages. This is shown by the fact that the percentage of solids in brains that have been subjected to the action of such a solution is always less than that found in the fresh brains of animals of the same age. Brains of very young rats lose much more of their solids than do brains of older animals.

10. Brains of animals infected with pneumonia show a slightly greater percentage weight increase when treated with a 4 per cent solution of formaldehyde than do the brains of healthy animals.

11. Even under the most favorable conditions an aqueous solution of formaldehyde is not a satisfactory fixative for the cell structures in brain tissues, as it causes a pronounced distention of the nuclei and gives a poor preservation of the nuclear contents.

The more important data are given in tables 36, 37, 38, 39, 40. NERVOUS SYSTEM

TABLE 36

a3

Percentage weight increase in rats’ brains, each kept for ten weeks on 40 cc. of a neutralized solution of 4 per cent formaldehyde made five months before the expert- ments began (averages for three brains at each age)


AGE OF RATS













TIME SOLUTION ACTED

New- 10 20 40 5 7 100 200

born days days days | days | days days | days

Wielehye.-.....--.----..-.- 29.7!1 28.8 | 25.0 | 25.2 | 26.91} 24.5 | 28.31} 15.3 3 days........-..---..--- 28.0 | 35.0! | 28.31 | 26.3! | 26.8 | 27.3! { 26.8 | 21.0! MBGRYS........-.....6.6.- 27.3 133.0 | 27.3 | 25.0 | 25.1 | 25.1 | 25.7 | 18.6 2 weeks.................. 23.9 | 31.9 | 27.3 | 24.5 | 25.1 | 25.3 | 26.3 | 18.9 3 weeks.................- 23.4 | 31.4 | 28.3 | 24.9 | 25.5 | 24.4 | 25.3 | 19.3 4 weeks........0......... 22.5 130.5 | 26.7 | 24.5 | 24.8 | 25.6 | 26.2 | 19.4 10 weeks...............2.- 17.6 | 27.9 | 26.9 | 24.7 | 25.2 | 25.6 | 25.0 | 19.2 Average percentage gain ..| 24.6 | 31.2 | 27.1 | 25.0 | 25.6 | 25.4 | 26.2 | 18.8

1 Maximum weight increase. TABLE 37

Percentage weight increase in rats’ brains, each kept for ten weeks in 40 cc. of a neutralized solution of 4 per cent formaldehyde made at the time the experiments began (averages for three brains at each age)


TIME SOLUTION ACTED

AGE OF RATS







New- 10 20 40 50 70 100 200

rn days days days days days days days

I Gr 44.41| 58.2 | 39.5 | 37.9! | 39.3) | 34.4 | 45.6! | 32.4

SIGS. -...:......-.-..0- 42.0 | 64.6! | 41.5!) 37.6 | 38.5 | 38.61) 43.1 | 34.73

GSW... 2... eee 41.5 | 62.1 | 40.1 | 36.4 | 35.6 | 34.1 | 41.1 | 30.9

2 weeks.................. 38.0 | 62.9 | 39.7 | 35.9 | 36.1 | 34.9 | 41.0 | 30.8

3 weeks...............2.- 37.7 | 63.4 | 40.0 | 35.7 | 36.9 | 34.3 | 40.4 | 31.2

4 weeks.................. 36.1 | 62.8 | 39.9 | 35.5 | 35.4 | 35.7 | 40.5 | 31.6

10 weeks.................. 33.9 | 61.4 | 39.4 | 35.5 | 36.1 | 35.5 | 37.7 | 31.8 Average percentage gain ../ 39.1 } 62.2 | 40.0 | 36.4 | 36.7 | 35.4 | 41.3 | 31.9






' Maximum weight increase. 54 ANATOMY

TABLE 38

Percentage weight increase in rats’ brains, each kept for four weeks in 40 cc. of a neutralized solution of 4 per cent formaldehyde made fresh for each lot of animals killed (averages for two brains at each age)


AGE OF RATS


TIME SOLUTION ACTED


New- 10 20 40 50 70 100 200

born | days | days | days | days | days | days | days dayne eee EE eEEee rrr: 60.4 | 54.7 | 45.8 | 47.61} 50.4! | 44.9 | 44.21} 36.1 3 dAYS..... 0... cece eee 65.8! | 58.5 | 52.91} 47.4 | 47.7 | 48.81} 42.7 | 40.11 (ad 2yeeee eee eeeerEe. coe 65.4 | 58.5 | 48.3 | 45.6 | 45.1 | 44.2 | 38.3 | 36.2 2 weeks................0.5 65.1 | 58.4 | 48.9 | 45.3 | 44.8 | 43.2 | 38.6 | 33.0 3 weeks................55: 64.8 | 58.2 | 48.9 | 44.7 | 45.2 | 43.9 | 38.8 | 34.7 4 weeks...............000- 61.7 | 57.8 | 50.4 | 45.1 | 45.4 | 44.9 | 39.3 | 34.9




Average percentage gain ..| 63.4 | 57.7 | 49.2 | 35.9 | 46.4 | 44.8 | 40.3 | 35.8








1 Maximum weight increase.

TABLE 39

Percentage weight increase in rats’ brains, each kept for four weeks in 40 cc. of non-neutralized solution of 4 per cent formaldehyde made fresh for each lot of animals killed (averages for two brains at each age)


AGE OF RATS


TIME SOLUTION ACTED


New- 10 20 40 50 70 100 200 born days days days days days days days T

NCE OBB ooo00cccc000c000 34.5! | 37.3 | 36.7 | 39.7! | 44.21) 39.5 | 41.11 | 32.2 BCE B6 co50003000000c0000 18.6 | 45.11 | 45.41] 39.1 | 42.8 | 42.31} 39.4 | 35.4! UF GENS MBG oc accc0ccca0cc000 9.9 | 37.8 | 388.2 | 35.6 | 38.1 | 34.3 | 33.8 | 30.2 2 weeks................0.. 3.5 | 30.4 | 34.6 | 31.5 | 32.6 | 31.5 | 29.0 | 26.7 3 weeks..............2..-. 0.4 | 25.9 | 30.7 | 28.3 | 30.6 | 29.5 | 27.4 | 24.5 4 weeks................... —1.5 | 23.5 | 27.9 | 26.6 | 27.8 | 27.3 | 24.3 | 24.5




Average percentage gain. .| 13.1 | 33.3 | 35.6 | 33.5 | 36.0 | 34.1 | 32.5 | 28.9








1 Maximum weight increase. brain weighis)

NERVOUS SYSTEM

TABLE 40

The percentage of solids in brains of rats of various ages kept from four to eighteen weeks in solutions of 4 per cent formaldehyde (computations made from original

59


EXPERIMENTS

AGE OF RATS













New-| 10 }| 20 | 40 | 50 | 7o | 100 | 200 born days | days days | days | days | days days Brains kept 18 wks. in neu- tralized stock solutions | 8.1 | 10.3 | 14.7 | 18.4 | 19.4 | 19.5 20.9 Brains kept 10 wks. in sol. 5 mos. old.............- 8.1 | 10.1 | 16.5 | 19.4 | 19.4 | 20.5 | 19.7 | 20.5 Brains kept 10 wks. in freshly made sol......... 7.8 | 10.3 | 16.0 | 19.2 | 19.5 | 20.1 | 20.1 | 21.6 Brains kept 4 wks. in 40 ec. neutral sol.......... 8.2 | 10.1 | 16.4 | 19.3 | 19.6 | 19.6 | 20.9 | 21.8% Brains kept 4 wks. in 40 ce. acid sol.............. 9.6 | 10.9 | 16.7 | 19.3 | 19.1 | 20.7 | 20.1 | 21.f Brains kept 4 wks. in 20 cc. neutral sol........... 9.21 9.8 | 16.2 | 19.7 | 20.5 | 19.9 | 20.2 | 21.5 Brains kept 4 wks. in 20 ce. acid sol............. -| 10.5 }] 10.9 | 16.3 | 19.0 | 20.0 | 20.1 | 20.8 | 21.6 Brains kept 4 wks. in neu- ‘ tral sol. at temp. 26°C..| 9.7 | 9.8 | 15.1 | 18.7 | 19.4 | 19.8 | 20.1 | 20.1 Brains kept 4 wks. in neu- tral sol. at temp. 8 to WIC ee se eee cee 8.3 | 10.6 | 16.3 | 19.2 | 19.0 | 20.1 | 20.1 | 21.7 Averages for above series | 8.6 | 10.6 | 16.3 | 19.2 | 19.6 | 20.1 | 20.3 | 21.2 Normal percentage of sol- ids in rats’ brains (Don- aldson)................. 12.2 | 14.6 | 17.5 | 19.5 | 20.9 | 21.1 | 21.3 | 21.6 Percentage loss of solids as result of action of formaldehyde........... 29.5 |29.4| 4] 1.5] 6.2) 4.7) 7 Ws 7. Sense organs. The cochlea makes 2} turns (Fortuyn, 714,

p. 348).

8. Integument (see references).

9. Gastro-pulmonary systems. For the weights of the various viscera see tables 68-72. a) Gastro-intestinal system. The volumes of the liver and pan- creas cells—with those of their respective nuclei—have been de- 56 . ANATOMY

termined by Morgulis (11). The organs were fixed in Zenker’s solution and imbedded in paraffine and were taken from one normal Albino—110 days old; body length 176 mm. ; body weight, 137.7 grams.






TABLE 41 Liver cells naAsUR ERTS Siam w ue nares Dea RS OF OE Entire cell Nucleus OF NUCLEUS NC ee MODs ccccccacccce 5075 247.2 50 7.56 X 8.25 Pancreas cells 100........... 0 1829 94.3 40 5.48 & 6.00






b) Pulmonary system (see references), also table 70. 10. Uro-genital system (see references), also table 70. 11. Endocrine system (see references), also table 77.

ANATOMY: REFERENCES

1. Anatomy, general. Akamatsu,’05. Brisson, 1756. Duesberg,’07. Flower, 1872. Goto, ’06. Hewer, 14. Krause, 1876. Leydig, 1854, 1857. Martin and Moale, 1884. Meyer, 1800. Morrell, 1872. Owen, 1868. Waller, 1693.

2. Embryology. a) Spermatogenesis. Benda, 1887. Brown, 1885. Dues- berg, ’08, 08a, 709. Ebner, 1888. Hewer, ’14. Jensen, 1887. Leeuwenhoeck, 1693. Lenhossék, 1898. Meves, 1898. Montane, 1889. Regaud, ’04. Renson, 1882. Retzius, 09. Wiedersperg, 1885. b) Ovulation. Bellonci, 1885. Blane, 1892. Coe, 08. Kirkham, ’10. Kirkham and Burr, 713. Mark and Long, 712. Sobotta and Burckhard, ’10. Tafani, 1889, 1889 a. c) Early stages. Cristiani, 1892. Fraser, 1883. Huber,’15,’15 a,’15b. Klebs, 1891. Melissinos, 07. Rob- inson, 1892, 04. Ryder, 1888. Selenka, 1883, 1884. Solger, 1889. d) Later stages. Adloff, 1898. Askanazy ,’08. Braun, 1882. Brunn, 1887. Chievitz, 1885. Freund, 1892. Glas, 04. Gottschau, 1888. Henneberg, 1899, 1900. Lewis, 715. Mey- erheim, 1898. Robinson, 1889, 1892, 1892a, 1896. Soulié,’03. Tandler,’02. Uskow, 1883. Weiss,’01. Widakowich,’09. Willach, 1888. Williams,’96. Zuckerkandl, ’03.

3. Bones and joints and connective tissues. Bignotte, 1900. Donaldson, 712 a. Hansemann, ’04. Hartley, ’07. Hatai, 07 c. Hyrtl, 1845. Katzenstein, 703. Kohlmeyer, ’06. Renaut, ’04. Retterer, 05. Weiss, 1900. a) Teeth. Addison and Appleton, 715. Beretta, 713. Brunn, 1880. MacGillavry, 1875, 1876. Owen, 1840-1845. Terra, ’11. Wiedersheim, ’03.

4, Muscles, Bell, ’11. Gulliver, 1839, 1842. Kolster, 01. MeMunn, 1884. Meek, ’99. Mellanby, ’08. Morpurgo, 1898, 1899, 1899 a. Rosenfeld, 1899. Schafer, 1900a. Stirling, 1883. ANATOMY REFERENCES 57

5. Vessels and blood. Chisholm, ’11. Gamgee, ’98. Gulliver, 1875. Halli- burton, 1888. Hoéber,’11. Job,’15. Jolly and Stini, ’05. Kanthack and Hardy, 1894. Minot, 1900. Preyer, 1866, 1871. Quinquaud, 1873. Reichert and Brown, ’09. Schafer, 1898. Sherrington and Copeman, 1893. Tandler, 1899; White, 01. Wormley, 1888.

6. Nervous system. a) Central. 1) Brain. Addison,’11. Allen, ’12. Bech- terew, 1890. Bradley, ’03. Cajal, 1897, 1909-1911. Donaldson, ’08, ’09, ’10, 11, "11 a,’11 b. Donaldson and Hatai,’11,’1lla. Fortuyn,’14. Gentes, ’03. Gold- stein, 04. Haller, ’10. Hamilton, ’01. Hatai, ’03, ’09,’09a. King, J.L., ’10. King, H. D., ’11. Lapicque, ’07. Lewis, 1881. Meek, ’07. Reichardt, ’06 Retzius, 1894. Watson, 03. Wagner, 1841. 2) Spinal cord. Allen, ’12. Bar- deleben, 1899. Hatai,’02b. Lenhossek, 1889. Pontier and Gérard, 1900. Ran- son, 713, ’14a. Retzius, 1893. Robinson, 1892 a. Spitzka, 1886. Sterzi, ’04. Stieda, 1869. Van der Vloet, ’06. b) Peripheral. 1,2) Cerebrospinal. Beck, 1896. Benedicenti, 1892. Berkley, 1893, 1895. Bischoff, 1832. Boughton, ’06. Cabibbe, 704. Cannieu, ’94. Donaldson, 1900, 05. Dunn, ’12. Fortuyn, ‘14. Greenman, ’13. Hamilton, ’01. Hatai, ’01, 01a, ’02, ’02a, ’03, ’03b, ’03 c, 703 d, 04, 07 b. Krause, 1870. Ploschko, 1897. Ramstrém, ’05. Ranson, ’06. Stirling, 1883. 3) Autonomic. Apolant, 1896. Asp, 1873. Barteneff, 1891. Cajal, 1893. Carpenter and Conel, ’14. Fusari and Panasci, 1891. Fusari, 1894. Korolkow, 1892. Martinotti, 1889. Roth, ’05. c) Technical methods. Cajal, 1889, 03. King, 710, ’13a. Obhlmacher, 1897. Turner, ’04.

7. Sense organs. Asai, ’08. Bulle, 1887. Ebner, 1873. Fortuyn, ’14. Gmelin, 1892. Honigschmied, 1873. Woganei, 1885. Lauber, ’01. Lovén, 1868, Mayer, 1843. Minch, 1896. Schafer, 1900 a. Stahr, 03. Tello, 06. Tucker- man, 1892. Wyss, 1870.

8. Integument. Calef, 1900. Durham, ’04. Peters, 1890. Romer, 1896.

9. Gastro-pulmonary systems. a) Gastro-intestinal. Asher, ’08. Asher and Erdely, 03. Asp, 1873. Briimmer, 1876. Bujard, ’05,’09. Custor, 1873. Cu- vier, 1805. Demjanenko, ’09. Edelmann, 1889. Ellenberger and Guenther, 708. Falcone, 1898. Frenkel, 1892. Garnier, 1897. Gillette, 1872. Heuser, "14. Home, 1807. Hoyer, 1890. Klein, 1871. Kupffer, 1876. Langley, 1882. Loewenthal, 1894, 1894 a, 1900, 08. Mayer, 1894. Mazzarelli, 1890. Morgulis, "11. Mouret, 1895. Miller, 1880. Nicolas, 1890. Podwisotzky, 1878. Pod- wyssotzki, 1882. Ranvier, 1883, 1884, 1885, 1886, 1886 a. Rapp, 1839. Retzius, 1841. Rubeli, 1890. Salter, 1859. Saviotti, 1869. Schmidt, 1863. Schwalbe, 1872. Severin, 1885. Toepfer and Fleischmann, 1891. Watney, 1874. Zillin- berg-Paul, 09. Zumstein,1891. 6b) Pulmonary system. Arnstein, 1877. Frank- enhaeuser, 1879. Fuchs-Wolfring, 1898. Gegenbaur, 1892. Guieysse, 1898. Hansemann, 1895. Klein, 1875. Linser, 1900. Livini, 1896. Miller, 1893. Schulze, 1871. Zumstein, 1890.

10. Urogenital system. Beiling, 06. Belloy, 1899. Disselhorst, 1897, 1897 a, 704. Fischel, 714. Harz, 1883. Leydig, 1850. Lowenthal, 1897. Mueller, ’02. Oudemans, 1892. Rauther, 03. Regaud, 1900, 1900 a, 1900 b, 1900 c, 01, Ola, ’01 b, 701 c, 01 d, 02, 02 a, 03. Stutzmann, 1898. Watson and Campbell, 06.

Il. Endocrine system (see also Endocrine system under Physiology). Dos- toiewsky, 1886, 1886 a. Elliot and Tuckett, 06. Erdheim, ’06. Gemelli, ’03, 05, 06. 06 a. Hatai, ’14, 14a. Sandri, ’08. Stendell, 13. Tilney, ’11, ’13. Vincent, 710. Watson, C., ’07, ’09. ~ CHAPTER 4 PHYSIOLOGY

1. Musele and nerve. 2. Nervous system. a) Central. b) Peripheral. b!) Degeneration. b*) Regeneration. 3. Special senses. 4. Blood andlymph. 5. Cireulation—blood and lymph. 6. Respiration. 7. Digestion and secretion (exclusive of ductless glands). 8. Nutrition. a) Body temperature. 9. Repro- duction. 10. Endocrine system.

The quantitative data for the functions of the normal Albino are rather scanty. Those available are given in their topical order and the references at the end of the chapter are also ar- ranged by topics—as usual.

Tabular records for the very important studies of Osborne and Mendel on the modifications of body growth by the use of various proteins are reluctantly omitted because of the general plan of presenting in these pages data for the normal rat only.

8. Nutrition. A study of the nitrogen excretion has been made by Hatai (05). Chicago Colony, ration: Uneeda biscuit and water.

From observations on 89 male rats at different ages and weights the following results were obtained:

1. The total amount of urine increases with the weight up to 120 grams, then decreases very decidedly. From 180 grams it again in- creases up to 220 grams, beyond which weight it remains rather constant. A diminution of urine in animals between 120 and 180 grams, or ap- proximately 70-125 days old, seems to be a normal phenomenon rather than mere statistical variation. Whether or not this is a phenomenon of adolescence needs further investigation. It must be noted, how- ever, that puberty in the rat begins at about seventy days after birth. The smaller animals excrete a relatively greater quantity of urine than the larger animals.

2. The total amount of nitrogen is quite independent of the amount of urine, and increases constantly and continuously throughout life. The smaller rats, however, excrete a relatively greater quantity than the larger animals.

3. The percentage value of urinary nitrogen is 91 per cent of the a in the case of smaller animals, and 89 per cent in the case of the

arger.

r

58 NUTRITION

TABLE 42

Showing the amount of urine, feces, and nitrogen during three days. Male

rats alone were used


































2 2 nS zz | om z | 2 22 | 28 5 sl.s ef |s2] 18 S\as e8 |ef| .¢

me 1Ss| F 3 es |") Ee =e Se) 4 22 | 22] 35

seis] = 2 Ee lige ese Wee |o-| & ¢ | e- (Ea ae

1 r = z e & £ z 5 = a z

gm. ce. mgm. | mgm. | mgm.| mgm. || gm. ec. mgm. | mgm. | mgm.| mgm. 5.73 327 52 4 56 16.13 748 162 32 194 38 | 8 6.25 2. 45 4 49 162) 4 11.50 208 140 i 151 5.00 105 42 1 43 12.00 227 141 16 157 Average 5.7 216 46 3 50 Average 13.2 394 148 20 168 12.62 347 85 il 96 12.13 379 187 17 204 53] 7 9.52 0 65 0 65 178) 4 12.00 482 154 21 175 9.17 57 54 3 37 13.38 374 162 15 177 Average 10.4 135 68 5 73 Average 12.5 412 168 18 185 16.69 395 93 13 106 16.00 liz 194 9 203 70; 8 10.87 205 103 7 110 191 | 3 17.30 163 185 9 194 10.41 68 92 3 95 - 11.30 348 164 17 181 Average 12.8 223 96 8 104 Average 14.9 229 181 12 193 13.9 438 97 22 119 19.30 776 158 29 187 85} 3 12.4 219 102 4 106 207] 4 10.80 516 182 24 206 9.5 330 83 13 96 19.00 195 181 7 188 Average 12.6 329 94 13 107 Average 16.4 496 174 20 194 15.50 556 137 20 157 24.00 809 217 42 259 99} 6] 10.83 38 124 3 127 220] 2] 20.00 235 181 8 189 8.98 199 100 5 105 19.00 382 148 29 177 Average 11.8 264 120 9 130 Average 21.00 475 182 26 208 15.41 374 122 10 132 18.80 794 207 30 237 106] 6 17.67 294 119 5 124 239 4 17.80 502 175 15 190 17.33 248 110 18 128 18.00 404 178 16 194 Average 16.8 305 117 Il 128 Average 18.2 566 187 20 207 22.3 776 143 26 169 20.38 333 204 21 225 M6) 35 14.5 138 135 8 143 266 | 4{| 24.00 896 225 32 237 18.0 39 123 0 123 22.00 690 259 28 287 Average 18.3 318 134 il 145 Average 2981 639 229 27 256 18.25 906 120 26 146 20.25 956 246 37 283 1397 | 4 13.00 346 115 17 132 298] 5] 18.00 638 272. 26 298 18.75 127 129 6 135 17.35 598 262 24 286 Average 16.7 460 121 16 138 Average 18.5 731 260 29 289 17.58 359 153 15 168 16.88 1424 261 23 286 144) 5] 16.25 360 166 10 176 333 | 3 | 26.50 478 280 20 300 15.00 49 113 1 114 19.50 857 297 37 334 Average 16.3 256 144 9 153 Average 20.9 919 279 27 306 13.90 425 126 14 140 13.00 8i7 250 45 295 136; 3 13.90 638 151 16 167 370] 3 12.80 817 289 32 321 15.73 445 169 iv 186 19.30 217 291 9 299 Average 14.5 503 149 16 165 Average 15.00 637 277 29 306 60 : PHYSIOLOGY

4, The total amount of nitrogen eliminated by the rat during twenty- four hours at different weights may be determined with a high degree of accuracy by the formula (38).

The normal protein metabolism of the rat has been studied by Folin and Morris (’13). They find a distribution of nitro- gen in the urine as shown in tables 43, 44.








TABLE 43 Female rat weighing 290 grams. Average of 5 days MGM. PER CENT MtoAN WNfo5500000000000880060600000000000000 173.50 100.00 L5G, INloscoc0000c0000089000000000000000000 143 .20 77.30 Ammonia N.......... 0. ccc eee eees 9.10 5.20 Uric Acid N..... 0. eee eee lee 0.69 . 0.40 Creatinine N............. RAMMICME ooo) coor 4.50 2.65 Creatinine + Creatine N................. 4.70 2.71 TABLE 44 Male rat weighing 197 grams. Average of 6 days MGM. PER CENT BUEN loc 000 0000000005000c0000005000008 126.00 100 .00 WARP INoo000000c000005000000500500cc000000 105.90 84.00 Ammonia N.............2 00-0 c eee eeeees 6.70 5.30 iUriceAcid =) Neseeee eee eee Eee Ee EEE EerEe 0.52 0.41 Creatinine N............ 0c cece ee cece e ees 2.90 2.30 Creatinine + Creatine N................. 3.00 2.38



“It will be seen from examination of the average results that the percentage composition of rat urine differs but little from that of human urine.”

a) Body temperature. Using the mercurial thermometer in the rectum, Pembrey (’95) reports a body temperature of 37.5°C. in adult Albinos. Macleod (’07) by the same method finds a range of 37.5-38.5°C. with a mean of 37.9°C.; Congdon (712) also by the same method a temperature of 37.9°C. in the young; in the adult, when reared at 16°C., a temperature of 36.2°C. and when reared at 33°C., of 37.2°C. Graham and Hutchison NUTRITION 61

(14) using the thermoelectric method of Philips and Demuth— obtained the following:




TABLE 45 BODY TEMPERATURE (C.) EXTERNAL TEMPERATURE High Low PIOMPP se. eee cece Series (a) 36.1 Mt aM Series (b) 34.9 19.0 BRO reece ceca cere enee 38.7 32.4 OM owe ee ee ee eee 41.8 32.9




PHYSIOLOGY: REFERENCES

1. Muscle and nerve. Boinet, 1895. Engelmann, 1877. Lee, 10. Mellanby, 08.

2. Nervous system. a) Central. Ferrier, 1886. Hatai, 03 a, 04a, ’07 a, 08, "15a. Mills, 1897. Schafer, 1900. Watson, ’05. 6) Peripheral. 61) Degenera- tion. 6?) Regeneration. Greenman, ’13. Ranson, ’03, ’04, 06, 714. Tournade, 713.

3. Special Senses. Bogardus and Henke, ’11. Hunter, ’14. Vincent, 712, 13, °15, 15 a, 715 b.

4. Blood and Lymph. Erdély, ’05. Robertson, 12. Rywosch, ’07. Tromms- dorf, 709.

5. Circulation. Rattone and Mondino, 1888, 18S8 a, 1889, 1889 a.

6. Respiration. Bert, 1878. Boycott and Damant, ’0S a. Boycott and Da- mant and Haldane, 08. Pembrey, 1895. Pembrey and Spriggs, 704.

7. Digestion and Secretion (exclusive of the ductless glands). Ackroyd, ’14, 715. Astaschewsky, 1877. Basch, 1870. Basler, 09. Bohlen, 1894. Drasch, 1886. Eimer, 1869. Ellenberger, ’06. Elliott and Barclay-Smith ’04. Gruetz- ner, 1875, 1878, 1894, 1898,’05. Hohmeier,’01. Jolyet and Chaker, 1875. Langley and Sewall, 1879. Langley, 1879. Matthes and Marquardsen, 1898. Paneth, 1888, 1888 a. Ranvier, 1887, 1888, 1894. Schiff, 1859. Zawarykin, 1883.

8. Nutrition and body temperature. Aldrich, 712. Aron, 712, 718. Brining, “M4, "14a. Chidester, 712. Congdon, ’12. Cook, 718. Czermak, 1895. Falta and Noeggerath, 05. Folin and Morris, 13. Forbes and Keith, 714. Frank and Schittenhelm, ’12. Gevaerts, ’01. Graham and Hutchison, ’14. Greg- ersen, ‘11. Gudernatsch, 15. Hart and McCollum, ’13. Hatai, ’05. Hewer, 14. Heymann, ’04. Hill, 713. Hill and Macleod, ’03. Hopkins, 712. Hop- kins and Neville, 712. Hunt,’10. Hunter, Givens and Guion, ’14. Jackson, 15 b. Jacob. ’06. Knapp, 08. Kreidl and Neumann, ’08. Lane-Claypon, ’09. Langlois and Loir, 02. McCollum, 09. McCollum and Davis, ’13, 713 a, "14. Macleod, ’07. Mendel, ’18. Morgulis, 711. Osborne, ’13. Osborne and Men- del, ’11, 711 a, 711 b, 712, 12 a, "12 b, 12 c, °12 d, ’12 e, 12 f, 12 g, 718, 13 a, 13 b ‘14, 714 a, "14 b, ’14¢, 14d, I4e, 15. Paul, 06. Pembrey. 1895. Pitts, 1898. Poljakoff, 1888. Rohdé and Jones, 09. Watson, B. P., 07. Watson, C., ’06, 62 ; PHYSIOLOGY

06 a, ’06 b. ’07 a, ’07 b, ’07 c, ’07 d, 710. ’12. Watson and Lyon, ’06. Watson and Gibbs, ’06.

9. Reproduction. Carmichael and Marshall, ’07. Cuénot, 1899. Fischel, 714. Hewer, ’14. Marshall and Jolly, ’07, 08. Regaud, 1900 d, 1900 e, 1900 f. Steinach, ’10, 711, 12, 713.

10. Endocrine System. Barnabo, 13, Biedl, ’138. Boinet, 1895, 1895 a. Brown-Sequard, 1856. Cristiani, 1893, 1893 a, 1893 b, 1895, 1900. Cristiani and Cristiani, ’02, ’02 a, ’02 b, ’02c, 02d. Erdheim, ’06a, ’07, ’11, ’1la, ’11b. Gemelli, ’06. Goetsch and Cushing, 713. Goldmann, ’09, 712. Harley, 1857, 1858, 1858 a, 1858 b. Hohlbaum, 712. Hunt and Seidell ’09. Iselin, ’08. Leischner, ’07._ Leischner and Kohler, ’11. Leopold and Reuss, ’08. Olds, ’10. Poll, 1898, 1899. Schafer, ’08. Schiff, 1884, 1884a. Steinach, 1894. Strehl and Weiss, 01. Toyofuku, ’11. Vincent, 1897, 1897 a. 712. Vincent and Jolly, 705, 706. Watson, C.,’14. Wiesel, 1899, 1899 a. CHAPTER 5

GROWTH IN TOTAL BODY WEIGHT ACCORDING TO AGE

1. Introduction. 2. Growth before birth. 3. Growth between birth and maturity. 4. Modifications of growth in total body weight. 5. Weight-length ratios.

1. Introduction. Under the general caption of growth several series of data are grouped in this chapter and in the four chapters which follow it. The chapter heads explain the several group- ings and show that some data are presented according to age and other data according to some bodily measurement.

The reasons for this procedure will be evident in each instance. The effort has been made to gather as much of the data as pos- sible under the caption of growth as this seemed the best way to make the records available for reference.

The following tables present the size, weight and composition of the albino rat and some of its parts, under conditions which may be considered normal.

As regards absolute measurements, it must be borne in mind that the Albino is very responsive to external conditions as rep- resented by food, housing, temperature, exercise, and incidental disturbances, especially light and noises.

No two colonies today are kept under more than approximately similar conditions and it follows that the average size of the animals from different colonies varies. The conditions just noted also appear to influence the relative weights of some of the viscera. For these reasons, each set of determinations will be accompanied by a statement, as complete as possible, con- cerning the special conditions surrounding the animals on which the observations were made.

2. Growth before birth. For the data on growth during the first few days of fetal life, see Chapter 3, Embryology, early stages, pp. 31-33 Huber (’15 a) and other references there given.

63 64 GROWTH IN TOTAL BODY WEIGHT

At about the 13th day after insemination the fetus is large enough to be directly weighed and from this date to birth the growth has been followed.

In a series of 38 females, each of which had already boul one litter, Stotsenburg (MS 15) has observed exactly the time of

Fetus of albino rat


Weight in grams 5h 95 @ 4 fp a4 ) a3 2h a2 e

i jhe ai ok, °°


| 2 2 2 2 a 2 a a L oul 13 4 #15 i A 18 19 20 21 22 Days

Chart 1 shows the course of fetal growth from the 13th to the 22nd day gestation. Stotsenburg (MS ’15). The data are given in table 46.


insemination and then weighed the fetuses at the ages given in table 46. Before weighing the membranes were removed and in some instances the crown-rump length was measured (table 47). The graph representing the growth before birth from the 13th day on is given in chart 1, the interval used for one day be- ing two-fifths of that used for one gram. GROWTH BETWEEN BIRTH AND MATURITY 65

3. Growth between birth and maturity. The first observations were made at the University of Chicago by Donaldson, Dunn and Watson (’06) on stock rats fed mainly on milk-soaked bread







TABLE 46 Showing the mean weights of the fetuses at ten ages during gestation AGE IN DAYS NUMBER OF FETUSES agree ane OF ES ae per cent GME se cee eee ee 34 0.040 NER ee ee eee 44 0.112 179 OMe sc cece cee ee 37 0.168 50 110. co03 SOR BBE ee 44 0.310 83 NGMPP EE «eens ee eee 21 0.548 77 HSMM eee ee eee 43 1.000 83 GMP ee ee 30 1.580 58 PMN oo cee cee 25 2 .630 65 PNM ce ee cee ces 42 3.980 51 OMS oo oe cece ee eee 10 4.630 16 TABLE 47

Giving the crown-rump length of fetus in millimeters. Scrap dietonly. The fetuses here measured are part of those used for Table 46



AVERAGE AES SERIAL NUMBER AGS ot) | sipscomn |waicepor) “Tie | ‘Lawemi™ GRAMS ae IN MM. ee 14 8 | 0.093 9.5 | 9.0-10.0 BM... 15 12 | 0.107 9.4 | 9.0-10.0 BIPPEPE To. 0-3 eee eee eee eee 15 8 0.218 12.1 12.0-12.5 MOM... eee 16 11 | 0.322 | 13.0 | 12.5-13.0 MMs... see 17 7 | 0.525 | 16.3 | 16.0-17.0° SOMEET..-..-- +... Sere 18 9) 0.947 19.1 18.0-21.0 DRREEEETL - 2 ----- eee eee 19 8 1.490 22.7 20.5-24.0 OME ee ees e reece 20 10 2.510 27.7 24.0-32.0 BaeeEPry TEE. 2. --- ~~. eee 21 9 4.070 36.7 35 .0-39 .0 EMM eee eee eee ee eeee 22 10 | 4.630 | 30.2 | 36.0-41.0







with corn as a staple. The values before fourteen days of age were obtained from weighing different litters, each litter being weighed only once. The original values at birth and for the first ten days were plainly too high and have been replaced by new 66 GROWTH IN TOTAL BODY WEIGHT

data (Donaldson, MS ’14). After the 14th day the weighing of 19 males and 17 females was made at frequent intervals, so long as the animals kept in good condition. ‘Tables 63 and 64 give for males and females respectively not only the mean values but the range, and in the case of the females, after 90 days, the

'

Growth in body weight. Albino Rat.

Males


Chart 2 Growth in body weight on age. Male albino rat.

A. Observations of Donaldson, Dunn and Watson (’06). See table 63.

B. Observations of Ferry, ’13. See table 65.

B’. Observations of Ferry, ’13. See column 2, table 65.

C. Observations of King (MS 715). Data from two series combined. See table 67.

observed values for the unmated animals are accompanied by a second series of values computed for mated rats on the basis of Watson’s (05) observations which show that mated females gain in weight ‘about 0.03 per cent per diem faster than the unmated. These data are used for graph A, chart 2, males, and graph A, chart 3, females. GROWTH BETWEEN BIRTH AND MATURITY 67

Using the mean values in table 63 for the males from 10 days of age on, and the corresponding values in table 64 for the fe- males and taking the records for the mated females where given, Hatai has determined the graph for which formulas 34 and 35 give the values for the male, and formulas 36 and 37 the values for the female for this special series. By the use of these formu- las the body weights have been computed for each day of age

Growth in body weight Albino Rat.


Chart 3 Growth in body weight on age. Female albino rat.

A. Observations of Donaldson, Dunn and Watson (06). See table 64.

B. Observations of Ferry, ’13. See table 65. ~

C. Observations of King (MS ’15). Data from two series combined. See table 67.

from 10-100 days and at intervals of five days from 100-365 days (see table 62).

The values given for the first ten days of age in table 62 have been obtained from a revised series of direct observations Don- aldson (MS ’14).

The weight at birth as here given, is for rats that have suckled.

A second series of data for body weight on age have been gathered by Miss Ferry. 68 GROWTH IN TOTAL BODY WEIGHT

Using the rats from the colony maintained for the experiments of Osborne and Mendel at the Connecticut Agricultural Station in New Haven, Ferry (13) has recorded the growth with age from the 10th to the 280th day of life.

The diet of the rats consisted of Austin’s dog-biscuit, and sunflower seeds with fresh vegetables (chiefly carrots or corn and string beans) two or three times a week, and a small amount of cooked meat twice a week. A little salt was always kept in the cage. The cages were small.

Table 66 gives the numbers of rats weighed at the several ages and table 65 the mean values for each sex. The females were unmated. In chart 2 graph B shows the values for the males and in chart 3 graph B shows the values for the females.

The broken line record marked B’ in chart 2 gives the values found in column 2, table 65, and probably gives the truer picture for the normal weight change.

Finally at The Wistar Institute King (MS 715) has conducted two series of observations (1912-1913) (1913-1915) on the in- crease in body weight with age in stock Albinos. There were 23 males and 23 females in the first series and 27 of each sex in the second. The records for the two series have been combined. The observations extend from 13-485 days and the weighings were made at the ages given in table 67. These rats received a ‘scrap’ diet (i.e., a diet composed of table refuse from which materials known to be injurious had been removed).

In chart 2 the record for the males is given by graph C and in chart 3 the record for the females by graph C. In chart 4 the graphs for both sexes appear extended to 485 days.

In 1913 Jackson (’18) published a series of body weights for both sexes according to age, but as these animals did not grow well after about 70 days of age, the table has not been copied here.

On comparing the graphs for the males in the several series— (see chart 2):it appears that the males reared by King grew best —while in the graphs for the females (chart 3) the record by Ferry shows the poorest growth for the females. It appears therefore that laboratory conditions including diet (assumed in each case to be wholesome) may modify the growth and that the two sexes are not necessarily affected to a like degree. MODIFICATIONS IN TOTAL BODY WEIGHT 69

4. Modifications of growth in total body weight. No change occurs in the growth of castrated males, Stotsenburg (’09).

A slight increase in growth was observed by Hatai (’03 a, p. 61) after lecithin feeding.

Increased growth occurs in spayed females, Stotsenburg (13). This increase is in part due to the accumulation of fat and in part to general enlargement.

Growth in body weight Albino Rat


Chart 4 Growth in body weight on age for 485 days. Males and females. Observations ww King (MS.,’15). Data from two series combined. See table 67.

Bearing young also causes an increase in body weight in the females, J. B. Watson (’05).

A decrease follows all forms of underfeeding (Hatai, ’04 a, ’07 a, 08; Donaldson, ’11 a) including feeding with certain vege- table proteins. See many references to Osborne and Mendel in chapter 4, Physiology: Nutrition, p. 61.

Decrease also follows an excessive meat diet when begun with young animals (Mus norvegicus) (C. Watson, ’06, ’06 a, ’06 b). 70 GROWTH IN TOTAL BODY WEIGHT

TABLE 48

Giving in grams the values obtained by dividing the body weight by body length in millimeters. Based on data in Table 68






BODY RATIO BODY RATIO BODY RATIO LENGTH LENGTH LENGTH Male Female Male Female Mate Female 50 0.10 | 0.10 86 | 0.22 | 0.23 121 0.37 | 0.39 51 0.10 } 0.10 87 | 0.23 | 0.24 122 | 0.37 | 0.39 52 0.10 | 0.10 88 | 0.23 | 0.24 123 | 0.38 | 0.40 53 0.10 | 0.11 89 | 0.23 | 0.24 124 | 0.38 | 0.40 54 0.10 | 0.11 90 | 0.24 | 0.25 125 | 0.389 | 0.41 55 0.11 0.11 lc 126 | 0.39 | 0.41 56 0.11 0.12 91 0.24 0.25 127 0.40 0.42 57 0.11 | 0.12 92 | 0.24 | 0.26 128 | 0.40 | 0.43 58 0.12 | 0.12 93 | 0.25 | 0.26 129 | 0.41 | 0.43 59 0.12 | 0.13 94 | 0.25 | 0.27 130 | 0.41 | 0.44 60 0.13 | 0.13 95 | 0.26 | 0.27 96 | 0.26 | 0.27 131 0.42 | 0.44 61 0.13 | 0.14 97 | 0.26 | 0.28 132 | 0.42 | 0.45 62 0.138 | 0.14 98 | 0.27 | 0.28 133 | 0.43 | 0.45 63 0.14 | 0.14 99 | 0.27 | 0.29 134 | 0.48 | 0.46 64 0.14 | 0.15 100 | 0.28 | 0.29 135 -| 0.44 | 0.47 65 0.14 | 0.15 136 | 0.44 | 0.47 66 0.15 | 0.16 101 0.28 | 0.30 137 | 0.45 | 0.48 67 0.15 | 0.16 102 | 0.28 | 0.30 1388 | 0.46 | 0.48 68 0.16 | 0.16 103 | 0.29 | 0.30 139 | 0.46 | 0.49 69 0.16 | 0.17 104 | 0.29 | 0.31 140 | 0.47 | 0.50 70 0.16 | 0.17 105 | 0.30 | 0.31 106 | 0.30 j} 0.32 141 | 0.47 | 0.50 71 0.17 | 0.18 107 | 0.30 | 0.32 142 | 0.48 | 0.51 72 0.17 | 0.18 108 | .0.31 | 0.33 148 | 0.48 | 0.52 73 0.17 | 0.18 109 | 0.31 | 0.33 144 | 0.49 | 0.52 74 0.18 | 0.19 110 | 0.32 | 0.34 145 | 0.50 | 0.53 75 0.18 | 0.19 146 | 0.50 | 0.54 76 0.18 | 0.19 111 | 0.32 | 0.34 147 | 0.51 | 0.54 7 0.19 | 0.20 112 | 0.383 | 0.34 148 | 0.52 | 0.55 78 0.19 | 0.20 113 | 0.338 | 0.35 149 | 0.52 | 0.56 79 0.19 | 0.21 114 |} 0.34 | 0.35 150 | 0.538 | 0.56 80 0.20 | 0.21 115 | 0.34 | 0.36 116 | 0.34 | 0.36 151 | 0.54 | 0.57 81 0.20 | 0.21 117 | 0.35 | 0.37 152 | 0.54 | 0.58 82 0.21 | 0.22 118 | 0.35 | 0.37 153 | 0.55 | 0.58 83 0.21 | 0.22 119 | 0.36 | 0.38 154 | 0.56 | 0.59 84 0.21 | 0.23 120 | 0.36 | 0.38 155 | 0.56 | 0.60 85 0.22 | 0.23 156 | 0.57 | 0.61 WEIGHT LENGTH RATIOS

TABLE 48—Concluded

gi







BODY ESTO BODY pe BODY ae LENGTH LENGTH LENGTH Male Female Male Female Male Female 157 0.58 0.61 188 0.84 0.90 219 1.22 1.32 158 0.58 0.62 189 0.85 0.91 220 1.24 1.34 159 0.59 | 0.63 190 0.86 0.92 160 0.60 0.64 221 1.25 1.36 191 0.87 0.94 222 1. 1.38 161 0.60 0.65 192 0.88 0.95 223 1e33 1.40 162 0.61 0.65 193 0.89 0.96 224 1.30 1.41 163 0.62 0.66 194 0.90 0.97 225 1.32 1.43 164 0.63 0.67 195 0.91 0.98 226 1.33 1.45 165 0.63 0.68 196 0.92 1.00 227 1.35 147 166 0.64 0.69 197 0.94 1.01 228 1.37 1.49 167 0.65 0.70 198 0.95 1.02 229 1.38 1.51 168 0.66 0.70 199 0.96 1.03 230 1.40 1.52 169 0.67 0.71 200 0.97 1.05 170 0.67 0.71 231 1.42 1.54 - 201 0.98 1.06 232 1.44 1.56 171 0.68 0.72 202 0.99 1.07 233 1.45 1.58 172 0.69 0.73 | 203 1.01 1.09 234 1.47 1.60 173 0.70 0.75 204 1.02 1.10 235 1.49 1.62 174 0.71 0.76 205 1.03 1.11 236 1.51 1.64 175 0.72 0.77 206 1.04 1.13 237 1.53 1.67 176 0.73 0.78 207 1.06 1.14 238 1.55 1.69 77 0.73 0.79 208 1.07 1.16 239 1.56 1.71 178 0.74 0.80 209 1.08 1.17 240 1.58 1.73 179 0.75 0.81 210 1.10 1.19 180 0.76 0.82 241 1.60 15) “211 1.11 1.20 242 1.62 1s 181 0.77 0.83 212 1.12 1.22 243 1.64 1.80 182 0.78 0.84 213 1.14 1.23 244 1.67 1.82 183 0.79 0.85 214 1.15 1.25 245 1.69 1.84 184 0.80 0.86 215 1.17 1.26 246 is 1.87 185 0.81 0.87 216 1.18 1.28 247 1.73 1.89 186 0.82 0.88 217 1.19 1.29 248 1.735 1.92 187 0.83 0.89 218 1.21 1.31 249 1.77 1.94 250 1.79 1.97











5. Weight-length ratios.

Although it is not our purpose to in-

troduce derived values among the tables, yet it seemed desir- able in this connection to put in a table showing the ratio of body weight to body length. This gives the weight value of a running

millimeter of the animal.

By the use of this table it can be de- 3 GROWTH IN TOTAL BODY WEIGHT

termined whether 2 given rat is emaciated or fat. The values

for the weights and lengths as given in table 68 have been used for obtaining these ratios.

GROWTH IN TOTAL WEIGHT: REFERENCES

2. Growth before birth. Huber, ’15 a. 3. Growth after birth. Chisolm, 711. Donaldson, ’06,’12¢. Dunn, ’08. Ferry, ’13. Jackson, 713. King, ’15. King and Stotsenburg, 715. Robertson, ’08. 4. Modifications of growth. Donaldson, lla. Hatai, 703 a. 04a, ’07 a, ’08, ’18a, 715. Jackson, ’15, ’15 a, ’15b. Os- borne and Mendel (See Physiology: Nutrition). Schafer, ’12. Stotsenburg, 709,138. Watson, C., ’06, 06 a, ’06b. Watson, J. B., ’05. CHAPTER 6

GROWTH OF PARTS AND SYSTEMS OF THE BODY IN WEIGHT

1. Larger divisions. 2. Systems. 3. Teeth. 4. Blood. 5. Fat.

1. Larger divisions. The relative growth of the component parts (head, trunk and limbs) and of the systems (integument ligamentous skeleton, musculature and viscera). has been studied by Jackson and Lowrey (’12).

The rats were reared at the University of Missouri and fed daily with wheat bread soaked in whole milk—a supply of chopped corn being kept constantly in the cages. In addition fresh beef was given once a week. The rats were well grown except at five months and one year, when both sexes were some- what low in body weight—the deficiency being most marked in the females.

The report of the work by Jackson and Lowrey (’12) is given largely in their own words.

The method of dissection was as follows. The animal was taken in the morning before feeding and killed by chloroform. The gross body weight, and the lengths of body and tail were recorded. The head (with skin) was then removed (just posterior to the foramen mag- num and anterior to the larynx) and weighed. In the meantime, the trunk was suspended and the blood (unmeasured) was allowed to es- cape. Then the viscera were carefully removed and weighed indi- vidually (including brain, spinal cord, eyeballs, thyroid, thymus, heart, lungs, liver, spleen, stomach and intestines, both with contents and empty, suprarenals, kidneys and gonads). Urine was estimated if present. The extremities were separated at the shoulder and hip joints and weighed with skin. The skin (including ears, claws and adherent subcutaneous tissue) was next removed and weighed. The trunk weight was estimated by substracting the weight of the head and ex- tremities from the net body weight.

Then the musculature with skeleton was weighed, the few remaining additional structures( genitalia, large vessels, pharynx and oesophagus, larynx and trachea, and masses of fat connected with the musculature) having been carefully removed. Finally the musculature was care-

73 74. GROWTH IN PARTS

fully dissected off and the skeleton, including bones, cartilages and liga- ments, was weighed. This weight, subtracted from that of the skele- ton and musculature together, gives the weight of the musculature, in- cluding the tendons. Evaporation was reduced to a minimum by keeping the various structures in a closed moist container, so far as possible. The net body weight, which is the gross body weight minus con- tents of stomach, intestines and urinary bladder, was used as the basis in calculating the percentage weights. The percentages therefore differ slightly from those calculated upon the gross body weight. The dif- ference is not of material importance in the case of the albino rat, however, as the intestinal and other contents do not average more than 5 per cent of the body at the ages observed (excepting at 6 weeks, where the average was about 8 per cent.) The observations were grouped at seven ages, chosen for the following reasons. At one week the weight at birth has about doubled. At three weeks it has about doubled again, and this moreover is the age at which the animal is usually weaned. At six weeks the body weight has again about doubled, and the animal is well established upon its permanent diet. Ten weeks represents the age of puberty, and the body weight of six weeks has again about doubled. At one year the body weight has again nearly doubled, and this represents nearly the adult weight. Five months was arbitrarily selected as the time when the body weight is approxi- mately half way between those of ten weeks and one year. While therefore observations are not available for the various intermediate age periods, these are sufficiently close together so that no important change in the relative weights of the constituent parts is likely to be overlooked. Moreover, on account of the variations at the different ages in the body weights, these form a fairly continuous series; and the relative weights of the various constituent parts are apparently more closely correlated with the body weight than with the age.

The relative weights of the component parts examined are given in table 49 (modified from table 2, p. 455, loc. cit.).

TABLE 49

Albino rat—Average percentage weight of head, trunk and extremities at various ages—sexes combined (Jackson and Lowrey, ’12)



AGE, DAYB BODY WEIGHT HEAD FORE-LIMBS HIND-LIMBS TRUNE gms. per cent per cent per cent per cent

OW. ......--008 5.4 21.65 7.39 9.45 61.51 UP ino seen 11.6 23.70 8.92 11.97 55.41 PE... ee ee 25.5 20.22 9.25 14.87 55.66 AD. 79.2 11.80 6.72 14.94 66.54 OMe cise ces ee oe 141.9 9.56 5.32 15.59 69.53 BOF. cece ee eee 190.7 9.42 5.87 15.64 69.07 B65........5.66. 222 .2 9.29 4.76 14.63 71.32 GROWTH OF SYSTEMS 75

The authors call attention to the relative increase in the weight of the head during the first week—as peculiar inthe rat—and also point out that the maximum relative weight is shown by the head at one week—by the forelimbs at three weeks, by the hind limbs at five months and by the trunk at a year—the wave of most active growth thus passing from the head caudad with ad- vancing age.

2. Systems. The relative growth of the various systems is also given for the integument, ligamentous skeleton, musculature and viscera. The method of preparing each system has been previously noted. The following table is based on table 4 (loc. cit., p. 460) to which has been added the.average values of the net body weights.

It is to be noted that the percentages in tables 49 and 50 are based on the ‘net body weight’ of the rats. According to Jack- son and Lowrey this is about 95 per cent of the gross weight, and this factor can be used therefore to transform net into gross

weight. TABLE 50 Average percentage weights of integument, ligamentous skeleton, musculature,

viscera and remainder. Based on Jackson and Lowrey (12), table 4. For the corresponding avsolute weights see table 51




PERCENTAGE VALUES—SEXES COMBINED FOR AGE IN DAYS x aKD BODY .

  • : Liga-

Bees) Se Integument " sentous —— Viscera | Remainder gms. M. 9 . 7 1% 24, 8.1 | 20. OMe... . {m a 47 19.8 fe3 4 1 0.4 M. 8 Mo... . is.5 | 22.8 | 19.2 | 13. 7 i M1 } 10.1 25.9 8 6 Me 7 wi... : 26. 21.3 2 I fe i |} xs 29.4 16.6 6.9 12.8 am... tn 5 } 64.3 | 20.9 | 14.0 | 32.7 | 204] 12.0 f......... in , } 120.5 13.7 | 7 | 41.1 | 16.0 | 12.5 . o oy... or ® |} ast.s i341 | us | 42.6] 14.8 | 13.0 ost... ‘on ; } 234.0 13.0 | 10.9 | 454] 13.3 | 19.4 76 j GROWTH IN PARTS

TABLE 51.

Shows for the series of body weights of the albino rat by Jackson and Lowrey (12) the absolute weights of integument, ligamentous skeleton, musculature, viscera and remainder determined by the use of the percentage values given in the preceding table 50










AGE LIGAMEN- etn eo, | SEX NO. | INTEGUMENT TOUS MUSCULATURE] VISCERA | REMAINDER DAYS SKELETON Average gms. gms. gms. gms. gnis. 0 |M.+ F. 5.11} M. 9 1.00 0.87 1.19 0.90 1.15 4.27 Hm 9 0.85 0.75 1.09 0.79 0.79 4.69 0.93 0.81 1.15 0.85 0.97 7 10.47; M. 8 2.79 1.93 2.40 2.00 1.36 9.83 F. 11 2.33 1.70 2.24 1.90 1.30 10.10 2.62 1.87 2.30 1.94 1.37 21 26.91 M. 7 6.35 4.20 7.45 5.71 3.23 22.31 F. § 4.69 3.97 : 5.78 4.77 3.08 24.78 §.55 4.11 6.67 5.28 3.17 42 60.10 M. 6 12.14 9.08 19.41 12.86 6.67 67.80| F. 8 14.51 8.95 |, 22.37 13.36 8.61 64.50 13.48 9.03 21.09 13.16 7.74 70 143.60] M. 5 26.14 15.94 57.15 23.26 21.11 117.50 F. 5 22.56 14.34 49.94 18.68 11.99 130.50 24.40 15.27 53.64 20.88 16.31 150 218.70 M. 6 41.99 22.84 93.38 29.96 25.52 154.80 Ba 26.62 18.73 65.94 24.30 19.20 184.30 33.36 21.38 78.51 27.28 23.77 365 260.20 M. 4 44.75 25.50 120.99 33.83 35.13 183.50 F. 2 35.78 24.22 79.46 25.32 18.72 234.60 42.23 25.57 106.51 31.20 29.09









Ingamentous skeleton. Since the values for the skeleton as given in tables 50 and 51 were obtained by dissection of the soft parts from the bones, it is evident that these determinations for the skeleton, which here corresponds to the ‘ligamentous skeleton’ would be high as compared with those obtained after the soft parts had been completely removed by maceration—thus giving the ‘cartilaginous skeleton’ in the strict sense.

In view of this difference we have made recently a series of determinations of the relative weight of the cartilaginous skeleton after maceration, Conrow (MS ’15). Using these determinations as a basis, table 52 has been formed which gives the values thus =

GROWTH OF SYSTEMS 77

obtained. The differences between the values for the moist skeleton after maceration and those obtained after gross dissec- tion may be designated as values for the ‘periosteum, ligaments, etc.’ and are so entered in table 52.

It is thus possible from these two tables to compare subse- quent determinations of the skeleton after either dissection or maceration. ‘

If rats normal in body weight for their age are compared, we find that the cartilaginous skeleton at birth represents 52.5 per

rs LIGAMENTOUS SKELETON


Chart 5 Giving for the sexes combined the percentage of the entire body weight represented by each of the several systems. Plotted on age in days. Table 50, Jackson and Lowrey (’12).

cent of the weight of the ligamentous skeleton, while at one year it represents 64.5 per cent. The ratio for the weight of the bony skeleton rises therefore one point for each 23 grams increase in body weight, or for each gram of increase in body weight the ratio rises about 0.044 of a point. Within the age limits heregiven, these factors may be used for transforming one set of values into the other. 78 ; GROWTH IN PARTS

Jackson and Lowrey conclude (p. 472) that the data indicate no noteworthy differences between the sexes in the relative weights of the various parts and systems, and that the body of the al- bino rat has practically reached the adult proportions in its com- ponent parts and systems at the age of ten weeks.

Corresponding observations, though less extensive, made on the Norway rat are given in chapter 12.

TABLE 52

Giving the percentage values for the cartilaginous skeleton when this has been pre- pared by maceration (Conrow, MS.’15), also giving—by difference between these values and those in table 50—the percentage values for the ‘‘ periosteum, ligaments, Cicnm




PERCENTAGE VALUE OF MOIST sce pars | sex avo wowuan | ®REMGIS™"| —Cartaginoue | peroncum

(by maceration) | pased on table 50 Oo eeeceeeeees ir ot 4.7 8.95 8.35 7 iF i} 10.1 9.36 9.14 21... es a 24.8 9.61 6.99 2. - sh 64:5 7.46 6.54 70..... a 4) 130.5 7.32 4.38 150.2... seeeeees ie st 184.3 6.32 4.18 a tes ‘I 234.6 6.04 4.05






Weight of entire cartilaginous skeleton. Using a 2 per cent so- lution of the commercial gold dust washing powder (‘Gold dust washing powder’ consists of about 45 per cent sodium carbonate, 30 per cent soap powder, and 25 per cent water), the skeletons of some 70 inbred Albinos (King) have been carefully prepared by Conrow (MS 715) at The Wistar Institute. The animals were reared on a scrap diet. A careful comparison with the stock Albinos has not yet been made, but at the same time there is no suggestion thus far that the values for the inbreds differ from ———

GROWTH OF SYSTEMS

79

those for the stock, when both age and body weight are taken into

consideration. the body weight.

The weight of the skeleton is given in relation to The value for the body used here is that

normal to the body length (see table 68) when the observed body weight is less than that to be expected—but the observed body weight is used when that is above the normal for the body length. In the case of old rats undergoing senile loss of body

weight the maximum body weight is the one used.

The weight of the teeth is included with that of the skeleton —but the weight of the nails is excluded. Under these condi- tions the following table gives the weight of the moist carti- laginous skeleton—immediately after complete cleaning, and also

TABLE 53

Giving data on the cartilaginous skeleton of the (inbred) Albino (Conrow MS 715). The weights for the moist skeleton are given—but not for the room dried skeleton.

The percentage values for both on the body weight have been computed.




sxereTon | PERCENTAGE VALUE oF ox lt 2 a a

skeleton skeleton

mm gms.

M.. ..|.New born 45 4.0 0.379 9.38 1.78 M.. .|New born} 47 | 4.6 | 0.401 | 10.03 | 2.35 HAM... see New born 7 4.7 0.351 7.43 1.70 M.. 4 58 6.8 0.791 11.59 2.48 M.. 2 59 7A 0.986 13.85 3.51 Meee 3 59 7.1 0.613 8.59 2.24 M... 11 65 9.4 0.909 9.63 2:47 HPs oe ee ee 10 65 9.9 0.904 9.09 2.67 ee eee 17 76 14.8 1.469 9.89 3.61 HO. eee 20 90 22.4 2.114 9.40 3.59 =... eee 22 102 30.5 3.005 9.82 3.81 M.. 28 103 29.6 2.543 8.56 3.91 M.. 29 113 37.3 3.301 8.82 3.91 M... 33 118 41.6 3.532 8.46 3.72 NT... 34 123 46.3 4.030 8.73 4.06 M.. 32 125 48 .3 3.965 8.18 3.84 Rc... eee 41 126 52.3 3.959 7.54 3.89 40 131 54.7 4.374 29% 3.85 MEN... ee 36 133 56.9 4.662 8.16 3.74 IMI. 43 135 59.3 4.620 7.76 3.89 Hs ce eee 46 140 69.5 4.997 7.16 4.03 80 GROWTH IN PARTS

TABLE 53—Concluded



PERCENTAGE VALUE OF SEX AGE BODY BODY Se pn a IN DAYS ENGTH WEIGHT MOIST Moist Dry skeleton skeleton mm gms

be... ee 73 145 76.7 5.930 7.70 4.84 i... ee 54 148 81.3 6.349 7.78 4.34 Buc cc cece ee ees 102 153 89.4 7.278 8.12 5.20 FONANAMERS 00500 34 164 109.9 8.114 7.36 4.79 Eee 117 164 109.9 7 424 6.74 4.58 E......2) 3 106 171 125.0 8.876 7.08 4.72 Po eee 189 172 127.3 9.665 7.57 5.36 Po. eee 119 181 149.7 | 10.209 6.80 4.77 | EN oo. 120 183 155.2 9.983 6.41 4.43 1 an 135 185 160.8 | 11.155 6.92 4.56 M...........--- 99 185 149.6 | 10.609 7.07 5.08 M...........00- 105 186 152.3 | 10.539 6.90 4.74 i... ee 125 188 169.6 | 11.469 6.74 4.79 i... eee 190 175.7 | 11.888 6.75 5.00 LRM coc 320 196 223.0 | 13.386 5.98 4.00 M....... cece eee 173 197 184.3 | 11.288 6.10 4.00 Ee... eee 281 199 205.8 | 13.132 6.36 4.64 M..............| 258 199 190.8 | 12.557 6.56 4.82 1 196 200 194.1 | 12.409 6.38 4.53 E).. .. eee 299 202 216.8 | 14.378 6.62 4.57 F..... 5 - oe 302 208 220.7. | 13.974 6.32 4.69 Po... eee 392 203 920.7 | 12.911 5.84 3.56 M...cec eee ee 121 207 218.7 | 13.594 6.22 4.37 W&skeosoccccccc 203 211 234.1 | 14.600 6.23 4,21 M.......-eeeeee 371 211 295.0 | 15.019 5.08 3.42 Mee 169 214 246.3 | 15.543 6.30 4.52 M..........000- 205 215 250.5 | 15.688 6.25 4.58 LY 304 216 307.0 | 16.810 5.47 3.76 Nl 367 219 318.0 | 19.321 6.07 4.26 M......0...0.0e 221 219 267.9 | 16.158 6.02 4.09 M..............] 814 221 344.0 | 20.078 5.83 4.05 Mi. ...... an 462 293 342.9 | 20.277 5.90 4.22 Vile... . . eee 357 295 410.0 | 19.147 4.66 3.47 Ri... .. 518 226 343.0 | 20.433 5.95 4.29 MG... 2. eee 332 226 419.0 | 22.257 5.30 3.93 NY 474 228 355.0 | 19.518 5.49 3.88 Me. ee 276 228 413.0 | 22.323 5.40 3.96 M............0. 726 230 446.0 | 21.720 4.86 3.55 M..............) 255 238 420.0 | 25.390 6.04 4.49 IME... eee eae 253 240 440.0 | 23.698 5.38 4.01 Mi..............] 408 252 463.4 | 23.823 5.03 3.79 GROWTH OF SYSTEMS 81

the weight of the dry skeleton after drying in open, but dust free vessels, for thirty days or more at room temperature (17° 28°C.).

In table 54 the same material has been used to show the lengths of the femur and tibia and the humerus and ulna together with some simple relations. In the case of the Albinos less than 30 days of age, drying in the air may cause so considerable a reduc- tion in the lengths of these bones that no measurements are given in table 54 for dried long bones younger than 30 days—

at which time the skeleton is fairly well calcified. TABLE 54 From some of the same (inbred) Albinos as were used for table 58 the lengths of the femur, tibia, humerus and ulna have been determined and also the percentage

lengths of the humerus and ulna on the femur and tibia, as well as the relation of both of these pairs to the body length (Conrow, MS 715)






MEAN LENGTHS IN Mm. OF PERCENTAGES OF gue | gee sony au. | el Femur | Tibia {Humerus} Ulna rer BaL Ba. L mm. M..... 321} 125} 18.7] 23.0] 15.9] 18.8 83 33 27 ey. ... 41; 126] 18.7} 23.0} 15.4] 18.3 80 33 26 M.....| 40] 181} 18.2] 22.9] 15.4] 18.7 82 31 26 Wie... 36 | 1383} 20.9| 25.0] 16.9 | 20.2 80 34 28 MP... 43 135 19.8 23.6 16.0 18.9 80 32 25 A... 46 140 2 2 24.6 17.1 19.7 80 32 26 He raiess 73 145 23.1 26.4 17.8 21.4 79 34 27 Hip. .... 54 148 23.5 27.4 18.4 22.0 79 34 27 Hy... « 102 | 153 | 25.3] 29.3} 20.5) 23.6 80 35 28 Beye... 84} 164] 26.1) 29.8] 20.7] 24.6 81 34 27 IAB)... 117 | .164 | 27.3) 31.5} 21.3] 25.7 79 35 28 F......| 106; 171 | 27.8] 31.5] 22.1] 25.8 80 34 28 F......| 189 | 172| 28.8} 32.2! 22.6} 26.8 80 35 28 ee... 119 | 181 |; 30.3} 38.0] 28.6] 27.1 80 34 27 ie....| 120 183 29.0 32.9 22.7 27.1 80 33 27 M.....| 119] 483] 30.7] 33.6) 23.9] 26.6 78 35 27 F......} 185 | 185 | 31.5] 34.6] 24.6 | 28.3 80 35 28 99 | 185} 30.6] 34.0} 28.9] 27.1 78 34 27 WE... 105 | 186] 30.8 | 38.8 {| 24.1] 27.4 79 34 27 ae... 125] 188} 30.6] 33.8) 28.6] 28.1 80 34 27 ae... 190} 30.7] 34.6] 24.4] 28.6 Sian 34 27 ae... 730 | 193} 33.5] 36.5] 26.3} 31.5 82 35 20 82 GROWTH IN PARTS

TABLE 54—Concluded







MEAN LENGTHS In mm. OF PERCENTAGES GF moe rH ‘Engr H +U F 1 H U Femur | Tibia |Humerus| Ulna ee T Ba. L Ba L mm.

F...... 320] 196 | 34.8] 36.5] 26.8] 30.5 80 36 29 M.....| 173 | 197} 32.8] 35.6] 25.5] 28.9 79 34 iy M.....| 253] 199} 34.3] 37.4] 26.8] 31.4 81 35 29 Fu... 281} 199] 32.9] 36.5] 25.9] 30.8 81 34 28 M.....| 196} 200] 33.9! 36.9] 26.3] 30.3 79 35 28 F...... 392 | 203] 32.1] 35.1] 25.0] 29.3 80 33 26 Fi... 302 | 203] 34.5] 37.8] 26.6] 31.9 80 35 28 M.....{ 121 | 207] 34.1] 36.9] 26.7] 30.2 80 34 27 M.....| 2083} 211] 34.6] 38.6] 26.9] 31.6 79 34 27 M.....| 371 | 211] 37.0] 39.2] 28.3] 32.5 79 36 28 M.....} 169} 214] 35.0] 37.3) 27.3] 30.7 80 33 27 M.....| 205] 215} 35.1] 37.7] 27.1] 31.3 80 33 27 M.....| 304] 216) 37.9] 41.7] 29.8] 34.6 81 36 29 M.....{ 221} 219! 37.5] 39.8] 28.7] 32.3 78 35 27 M.....| 367 | 219} 37.3] 38.6] 28.9] 31.8 79 34 27 M.....| 314] 221] 38.6] 40.4] 29.9] 34.1 81 35 28 M.....) 4621 223] 37.3] 39.2{/ 29.4} 32.1 80 34 27 M.....| 357 | 225} 39.2] 41.5] 30.5] 34.1 80 35 28 M.....| 518 | 226 | 37.7] 39.2| 29.6] 32.4 80 34 27 M.....| 332} 226] 38.2] 41.5] 29.6] 34.6 80 35 28 M.....| 276} 228} 38.3} 39.7] 29.8] 32.5 79 34 Bi M.....| 474] 228} 40.0] 41.3] 30.9] 34.2 80 35 28 M.....| 726) 230] 39.2] 40.9] 30.5] 33.1 79 34 27 M.....{ 255) 288] 39.6] 42.5) 30.7! 35.9 81 34 27 M.....) 253] 240] 40.7 | 43.8] 32.0] 36.0 80 35 28 M.....| 408 | 252] 41.0] 43.1] 31.7] 36.1 80 33 26











Tests show that after 30 days of age, drying at room tempera- ture causes less than one per cent of shrinkage in the absolute lengths of the bones. The values for the bone lengths given in the table are means for the right and left sides—the length for the two sides usually being very nearly the same. The body length in every case is taken on the rat immediately after chloroforming.

Weight of cranium. Determinations of the weight of the cranium dried at room temperature have been made, Donald- son (12 a). By the cranium is meant the skull with upper GROWTH OF CRANIUM 83

teeth, minus the mandible with lower teeth and minus the ear bones. The mean weights are given in table 55. TABLE 55

The mean weight in grams of the crania in each body weight group of the four series of albino rats from Paris, London, Philadelphia, Vienna (based on table 4) Donald- son (12a). Each weight group is based on siz cases, three males and three females




WEIGHT OF CRANIA IN GRAMS

BODY WEIGHT GROUP

London Paris Philadelphia Vienna

grams

WO... - eee 0.89 1.03 1.05 1.00 Wi). +... 2.2.20. 1.23 1.27 1.41 1.40 Mie...) 5... 1.52 1.52 1.51 1.73 BMD... -- see eee . 1.79 1.87 2.10 DZONE... see ee 2.15






For the corresponding weights of the Norway crania see Table 84.

3. Teeth. For the data on the growth of the incisor teeth (Ad- dison and Appleton, ’15), see chapter 3, p. 37-39.

4. Blood. By means of a formula (19) based on his observa- tions Chisolm (’11) was able to compute approximately the vol- ume of the blood in rats of different body weights. Hatai (MS 14) has added two formulas (19a) (19b) based on that of Chisolm and giving results somewhat closer to the observations when the determinations are made according to sex.

These three formulas have been transformed in turn from vol- ume to weight by using as a factor 1.056—the specific gravity of the blood—and three formulas for blood weight (20) (20 a) (20 b) have been thus obtained. These last have been used to compute the weight of the blood as given in table 70. Table 56 here given presents Chisolm’s data on the other growth changes in the blood.

5. Fat. Boycott and Damant (’08, ’08 a) have recorded the proportion of fat in rats of both sexes and of increasing body weights.

The total fat was determined in healthy animals living under ordinary laboratory conditions as to food. No details given. The fat was estimated by Leathes’ modification of Liebermann’s 84

GROWTH IN PARTS

TABLE 56

Showing growth changes in the blood in rats of increasing age (body weight). Sexes combined—based on tables I and II, Chisolm ('11)


LENGTH

O2 CAPACITY IN CC.

BLOOD VOLUME IN CC.



- <

& 2 | AGE IN| BODY wT. Guin oan, Hs :

3 Ee DAYS IN GMS. IN MM. PER CENT Total ney Total rae 2) 1 3.6 89.0 | 0.0411} 11.59 0.249} 70.3 5 2) 4.8 47 72.0 | 0.0466 9.79 0.350 | 73.5 3] 8 10.0 59 50.3 | 0.0485] 4.83 0.522} 52.0 9! 16 12.8 72 63.0 | 0.0639 | 4.99 0.544] 42.5 3} 21 14.2 82 49.0 | 0.0773 | 5.44 0.863} 60.4 3] 28 14.3 84 44.7 0.0891 6.17 1.070} 74.4 9 37.0 112 76.0 | 0.3730} 10.00 2.620] 70.0 8 57.0 134 84.6 | 0.5630 | 9.92 3.610 | 63.7 8 66.0 140 85.1 0.6490 | 9.88 4.120] 62.7 12 75.0 144 79.9 0.7220 9.60 4.940 65.7 15 86.0 148 82.4 | 0.8600] 10.02 5.670 66.0 8 95.0 155 84.0 | 0.9550] 10.02 6.070 63.9 8 106.0 159 82.4 1.0270 | 9.74 6.810 64.5 11 115.0 166 92.5 1.2130 | 10.51 6.970 60.5 9 125.0 169 92.6 1/2410 | 9.89 7.260} 57.9 8 146.0 178 89.1 1.4460 | 9.92 8.870} 60.8 8 165.0 180 92.0 1.6630 | 10.10 9.890 | 59.3 7 194.0 189 92.4 1.9880 | 10.28 11.820] 61.0 10 227 .0 201 89.9 | 2.1860] 9.68 13.180 | 58.2 8 268 .0 206 85.4 | 2.2300] 8.36 14.150] 53.0










methods (see Hartley, ’07) which is easily applicable to the

entire carcasses of animals.

The figures, given as percentages of

fatty acid on the crude weight of the animal, represent therefore

masked as well as anatomical] fat.

From the table 57 based on body weight it appears that the proportion of fat tends to be greater in the heavier animals, and from the tables based on the data grouped according to sex, it appears that the females have a somewhat larger percentage of fat than do the males. GROWTH OF FAT 85

TABLE 57

Giving the proportion of fat (fatty acids) with increasing age (body weight.) Based on table A, Boycott and Damant (’08 a)





NUMBER AND SEX PERCENTAGE OF FATTY ACIDS BODY WEIGHT IN GMS.

M F. Max. Min. Average 15 10 20- 49 9.2 0.85 4.1

See 50- 99 6.1 1.00 4.0 19 25 100-149 16.1 0.80 6.1 11 17 150-199 14.6 1.30 (26 aa” 2 200-247 9.7 1.30 5.8




Males Jil, -220000000090000000000c0 0B SEBBUOBBBBBEDS - de Hale 0.8 Females 42.............0 0000.0 e cece cece cee eee eeeee 16.1 1.0

ra QD &»

a

GROWTH OF PARTS AND SYSTEMS: REFERENCES

1. Larger divisions. Jackson and Lowrey, 712. 2. Systems. Donaldson, ’11, "11 c, 712, 12a. Donaldson and Hatai, ’11, ’1la. Jackson and Lowrey, ’12. 3. Teeth. Addison and Appleton, 715. MacGillavry, 1875. Meyerheim, 189S. 4. Blood and 5. Fat. Boycott and Damant, ’08,’0Sa. Chisolm,’11. Hartley, ’07. CHAPTER 7

GROWTH OF PARTS AND ORGANS IN RELATION TO BODY LENGTH AND IN RELATION TO AGE

1. Introduction. 2. Methods of examination and graphs. 3. Body length on body weight. Body weight on body length. Tail length on body length. 4. Organs with an early rapid growth: Brain, spinal cord, eyeballs. 5. Organs with a nearly uniform growth: Heart, kidneys, liver, spleen, lungs, blood, ali- mentary tract, thyroid, hypophysis and suprarenals. 6. Organs with a rapid growth just preceding puberty. Ovaries, testes, thymus (on age). 7. Determi- nations of variation. 8. General tables. a) Tables, weight of entire body on age. Before birth; from birth on. 0b) Tables, increase in the length and weight of parts and organs on body length. 9. Table, weight of thymus on age. 10. Table, weight of all viscera combined. 11. Tables, values for characters linked with age. 12. Formulas.

1. Introduction. The organs, the growth of which has been followed are tail (length), brain, spinal cord, eyeballs, heart, kidneys, liver, spleen, lungs (blood), alimentary tract, testes, ovaries, hypophysis, suprarenals, thyroid and thymus.

All the observations were made on stock Albinos from the colony at The Wistar Institute, except those for the total blood which are based on the records of Chisolm, ’11.

The mean values for the several organs were in each instance charted and with these as a guide a theoretical graph was found which could be expressed by a formula or a series of formulas. All the formulas were devised by Hatai.

To present the results in a convenient form the organs are grouped in the text according to the manner of their growth, each organ is accompanied by a chart showing the original data and the graph based on these data.

In each case reference is made to the formula or formulas on which the graph is based, but as a matter of convenience, the formulas utilized here for the graphs are grouped in the section entitled “Formulas” pp. 158-175.

86 BODY LENGTH ON BODY WEIGHT 87

The charts serve to show the form of the graph of growth in each instance, but the precise weight values of the organs are to be read from the tables. For those who desire to find the weight of an organ in a rat of any body length or body weight a series of values—computed by the aid of the appropriate formulas—are given in tables 68-71 inclusive.

In making these tables the determinations for the correspond- ing body weights for each millimeter of length in each sex were first, made by formulas (2a) and (2b) and the body weights so ob- tained were then used in computing the weights of the several organs.

In table 72 for the thymus however, it was found necessary to enter the weight values of the organ according to the age of the rat.

In table 73 the computed weight of the thymus on body weight is given on the assumption that the body weights are normal to age in conformity with the data in table 62.

2. Methods of examination and graphs. Unless otherwise stated the following determinations were made on stock Albinos taken from the colony at The Wistar Institute. The animals were killed with chloroform twenty hours after the last feeding and were dissected according to a fixed procedure.

3. Body length on body weight. Technic: Immediately after killing the rat was laid on its back and gently extended—the tail being drawn out straight. With jointed calipers the dis- tance from the tip of the nose to the tip of the tail was taken and its values in millimeters found by applying the points to a scale. Next the distance from the tip of the nose to the center of the anus was found and its value in millimeters determined in the same way. These measurements give first the total length, second, the body length and by the difference, the tail length.

Chart 6 gives the body length on the body weight. The data used are given in table 68. The values were computed by for- mula (1). The graphs show that for a given body weight the male has the greater body length. Donaldson ’09; Donaldson and Hatai 11. 88 GROWTH OF PARTS AND ORGANS

Body weight on body length. ‘The entire rat was next weighed to one-tenth of a gram. The weight thus obtained was noé cor- rected for the contents of the alimentary canal—which accord- ing to Jackson and Lowrey (’12) amounts to about 5 per cent of the gross body weight. In gravid females a correction was made however by subtracting the weight of the uterus and fetuses from the observed value. The weight of the body on the body


BODY LENGTH METH

Chart 6 Giving for the males and females respectively the body length on the body weight. Formula (1), table 68.

length is given in chart 7. The values for each millimeter of body length in each sex are given in table’68.' The graphs were computed by formulas (2a) and (2b), and show that for a given body length the female has a greater body weight. Donaldson 09, Donaldson and Hatai, ’11.

Tail length on body length. The method of obtaining the tail length has been given under body length. The values for TAIL LENGTH ON BODY LENGTH S9

BODY LENGTH mm


Chart 7 Giving for the males and females respectively the body weight on the body length. Formulas (2 a) and (2b), table 68.

7m

Booy


Chart 8 Giving the length of tail in millimeters on the body length, males, females. Formulas (4) and (5), table 68. 90 GROWTH OF PARTS AND ORGANS

the graphs in chart 8 and for the table 68 were determined by formulas 4 and 5. The tail in the female is relatively longer than in the male. Hatai (MS 714).

4. Following the plan of grouping the organs according to the manner of their growth we shall first consider the weights of the brain, the spinal cord and both eyeballs. All of these organs have an early rapid growth.

Brain weight on body weight. Technic: The rat was first eviscerated—this leaves in the brain a minimal amount of blood. The bones of the skull were removed from above—the meninges being left intact. Care was taken to preserve the flocculi which lie in bony pockets. The brain was severed from the cord by a section at the level of the first cervical nerve—coinciding as a rule with the tip of the calamus as seen from the dorsal aspect. The brain was then raised from the floor of the cranium—the nerves being clipped close to the base. The hypophysis was not included. Care was taken to obtain the olfactory bulbs entire. Thus prepared the brain was dropped into a small glass stoppered weighing bottle in which it was weighed to the tenth of a milli- gram. In this instance, as in the case of all of the other organs, the dissection was made under a glass hood to protect the oper- ator from all drafts which might dry the organ during its prepa- ration. The values for the graph, males only, chart 9 and for table 68 were computed by formulas (6) and (7).

The graph for the male alone is given. As will be seen from table 68, for the same body length the female has a slightly lighter brain and this difference increases to about 1.5 per cent when the female is of the same body weight.

Spinal cord weight on body weight. Spinal cord—Technic: Following the removal of the brain (vide ante) the spinal cord was exposed by removing the arches of the vertebrae from neck tosacrum. The filum terminale was found and the cord raised— so that the roots of the spinal nerves could be clipped close to the cord. The mass thus removed with meninges—was placed in a glass stoppered weighing bottle and weighed to the tenth of a milligram. The values for the graph, males only, in chart 9 and for table 68 were computed by formula (11). Donaldson (08), (’09); Hatai, (09a). WEIGHT OF EYEBALLS ON BODY WEIGHT 91

For convenience the graph for the spinal cord is given on the same chart as that for the brain. The graph for the male only is entered. For the same body length as the male the spinal cord in the female is about 5 per cent heavier, and for the same body weight, about 2 per cent heavier. Donaldson (08, ’09); Hatai (’09a).

BRAIN: . -* TSPINAL CORD


Chart9 Giving the brain weight on the body weight. Males only. Formu- las (6) and (7), table 6S. Also spinal cord weight on the body weight. Males only. Formula (11), table 68.

Weight of both eyeballs on body weight. Technic: Care being taken to remove the muscle attachments, both eyes were’ weighed in a closed weighing bottle. There is usually a close similarity in the weight of the right and left eyeballs. The graph is based on rats studied by Jackson (713). His results have been corroborated by studies on the stock Albinos from the colony of the Wistar Institute, Hatai (13). The values for the graph in chart 10 and those given in table 68 are based on formula (13). The graph for the male only is entered, but the values for the female are like those for the male of the same body weight. Under unfavorable nutritional conditions the weight of the eyeballs follows the age rather than the body weight. Hatai (MS 714). 92 GROWTH OF PARTS AND ORGANS

EYEBALLS 2 WEIGHT GRAMS

0.3

Qn


BODY WEIGHT GRAMS


50

Chart 10 Showing the weight of eyeballs of the male albino rat according to body weight. The observed weights are represented by 149 male rats (Jackson). Table 68, formula (13).

@ Observed weight. —— Calculated weight.

5. Organs with a nearly uniform growth after the first very early phase of rapid growth—heart, kidneys, liver, spleen, lungs (blood), alimentary tract, hypophysis, suprarenals and thyroid.

In case of all of the organs to be described the preparation was carried on beneath a glass hood to prevent drying. The organ was weighed in a small glass stoppered bottle and the weight was taken to a tenth of a milligram.

The weight of the heart on body weight. Technic: The heart

- was removed after cutting all its vessels close to their proximal ends. It was then opened by longitudinal slits through its walls and the clots removed from the cavities thus exposed.

The graph given in chart 11 and the values in table 69 have been determined by formula (14).

The weight of the heart is closely correlated with that of the body and no difference according to sex has been noted. Hatai (13); Jackson (’18).

Weight of both kidneys on body weight. Technic: All vessels were cut close to the hilum and any superficial fat removed.

The graph given in chart 12 and the values in table 69 were determined by formula (15). WEIGHTS OF HEART AND KIDNEYS 93

17 \6r 0 HEART 1.5 | WEIGHT GRAMS 18

ul 1.0 0.9 08

0.6

05 05

BODY WEIGHT GRAMS oO 200 250 300 350

Chart 11 Showing the heart weight of the male albino rat according to body weight. ‘The observed weights are represented by 134 male rats. Table 69, for- mula (14).

@ Observed weight. —— Calculated weight. ©


9

KIDNEYS 2 WEIGHT GRAMS

BODY WEIGHT GRAMS


Chart 12 Showing the weight of kidneys of the male albino rat according to bedy weight. The observed weights are represented by 136 male rats. Table 69, formula (15).

@ Observed weight. —— Calculated weight. 94 GROWTH OF PARTS AND ORGANS

No sex difference was observed but the graph represents the determinations for the male only. Hatai (’13); Jackson (’13).

Weight of the liver on the body weight. Technic: The vessels were cut close to their entrance into the liver and the blood in the larger vessels gently pressed out. The graph given in chart 13 and the values in table 69 were determined by formula (16).

LIVER . WEIGHT GRAMS

BODY WEIGHT GRAMS


Chart 13 Showing the weight of liver of the male albino rat according to body weight. The observed weights are represented by 136 male rats. Table 69, for- mula (16).

@ Observed weight. —— Calculated weight.

No sex difference in the weight of the liver has been noted— but the graph is given for the males only. Considerable vari- ability is to be expected in the weight of an organ with such com- plex functions as those of the liver and this appears. A heavy liver usually accompanies a heavy spleen (Hatai). Hatai (713); Jackson (13). WEIGHT OF LUNGS ON BODY WEIGHT 95

The weight of the spleen on the body weight. Technic: The vessels were cut close to the hilum. The determination of the weight of the spleen is complicated by the occurrence of “ en- larged spleens’—so called. These differ from the normal by being often several times the normal weight, darker in color, soft to the touch and showing on the surface dark or grayish patches. Spleens with these characters plainly marked were not used. The graph in chart 14 and the values in table 69 were determined

, 15 SPLEEN

WEIGHT GRAMS

BODY WEIGHT GRAMS


Chart 14 Showing the weight of spleen of the male albino rat according to body weight. The observed weights are represented by 87 male rats. Table 69, formula (17).

@ Observed weight. —— Calculated weight.

by formula (17). No sex difference was observed but the graph is based on male records only. Hatai (13); Jackson (’13).

The weight of both lungs on the body weight. Technic: The lungs are severed from the trachea and the portion of the esoph- agus usually taken out with them is removed. After the first three months of life the lungs of the rat are often infected. Such infected lungs may be highly altered—but are always abnormally heavy. The endeavor has been made to exclude infected lungs from the series—but doubtless some have been used. The graph in chart 15 and the values in table 70 were determined by 96 GROWTH OF PARTS AND ORGANS

LUNGS 2 WEIGHT GRAMS

BODY WEIGHT GRAMS


Chart 15 Showing the weight of lungs of the male albino rat according to body weight. The observed weights are represented by 90 male rats. Table 70, formula (18).

@ Observed weight. ——~- Calculated weight.

formula (18). No sex difference has been noted but the graph is based on male data alone. Hatai (13); Jackson (13). Weight of the total blood on body weight. Technic: The observations on this relation were made by Chisolm 711 on AI- binos and pied rats. His methods are given in the paper cited above (pp. 207-208) and depend on determinations of the oxygen capacity. Chisolm’s formulas have been revised by Hatai (MS ’14). The graph in chart 16 and the values in table 70 have

WEEMS res

Bopy


Chart 16 Giving weight of total blood on body weight. Males, females. Formulas (20), (20a), and (20b), table 70. WEIGHT OF THYROID GLAND ON BODY WEIGHT 97

been determined by formulas (20), (20a), and (20b). The data are for both sexes combined. Chisolm (’13); Jolly and Stini (05). The weight of the alimentary tract on body weight. Technic: The digestive tube from the level of the diaphragm to the anus. was removed in its entirety—the pancreas, mesentery and small, masses of fat being left adherent. The stomach and the large intestine were cut open and the contents removed while gentle 18,

ALIMENTARY TR WEIGHT GRAMS

'. BODY WEIGHT GRAMS 450


Chart 17 Showing the weight of alimentary tract of the male albino rat ac- cording to body weight. The observed weights are represented by 112 (Jackson) rats below 50 grams in body weight, and 82 (Wistar) rats above 50 grams in body weight. Table 70, formula (21).

@ Observed weight. —— Calculated weight.

pressure on the small intestine—exerted from above down- wards—served to expel what it contained. The records are based on one series examined by Jackson (’13) and another series from The Wistar Institute colony. Allare males. The graph in chart 17 and the values in table 70 were determined by formula (21). Hatai (’13); and Jackson (’13).

Weight of the thyroid gland on body weight. Technic: Sev- eral minute muscles nearly the color of the gland must be re- 98 GROWTH OF PARTS AND ORGANS

moved before weighing. The data are from observations by Jackson (’13), as well as from those made at The Wistar Institute. A study of the data has not revealed any difference according to sex and the graph therefore is for both sexes combined. The graph in chart 18 and the values in table 71 have been determined by formula (82). Hatai (’13); Jackson (’13).

THYROID WEIGHT GRAMS

BODY WEIGHT GRAMS


Chart 18 Showing the weight of thyroid gland of the albino rat according to body weight. The observed weights are represented by 42 (Jackson) female rats below 50 grams in body weight, and 49 (Wistar) male rats above 50 grams in body weight; and 36 (Jackson) female rats below 50 grams in body weight, and 27 (Wistar) female rats above 50 grams in body weight. Table 71, formula (32).

@ Observed weight male. —— Calculated weight for both sexes. Oo Observed weight, female.

The weight of the hypophysis on body weight. Technic: After the removal of the brain, the hypophysis is readily picked up from the floor of the skull with a small forceps. It is weighed as removed.

At about 40-50 days of age there appears a difference in the weight of the hypophysis according to sex and with advancing age this difference tends to increase. The female has the heavier hypophysis. The graph for the male in chart 19 and the values for the male in table 71 have been determined by formula (28). WEIGHT OF SUPRARENALS ON BODY WEIGHT 99

The graph for the female and the corresponding tabular values by}formulas (28) and (29). Hatai (’13).

The weight of the suprarenals on body weight. Technic: The suprarenals are usually imbedded within some fat tissue—but with a little practice they may be dissected out cleanly. At about 40-50 days of age there appears a difference in the weight

YSIS WEIGHT GRAMS

BODY WEIGHT GRAMS


Chart 19 Showing the weight of hypophysis of the albino rat according to body weight. The observed weights are represented by 78 male and 80 female rats. Table 71, formulas (28) and (29).

@ Observed weight, male. © Observed weight, female.

—— Calculated weight, male. ~~--- Calculated weight, female.

of the suprarenals according to sex and with advancing age this difference tends to increase. The female has the heavier supra- renals. The graph for the male in chart 20 and the values for the male in table 71 have been determined by formula (30). The graph for the female and the corresponding tabular values, by formula (31). Hatai (’13); Jackson (’13). 100 GROWTH OF PARTS AND ORGANS

6. The third group of the organs here considered is formed by those the growth of which is represented by a sinuous graph in which the most marked rise appears shortly before puberty. These organs, so far as examined, are the ovaries, the testes and the thymus.

8 SUPRARENALS 2 WEIGHT. GRAMS


BODY _ WEIGHT GRAMS °

Chart 20 Showing the weight of suprarenals of the albino rat according to body weight. The observed weights are represented by 92 (Jackson) male rats below 50 grams in body weight, and 53 (Wistar) male rats above 50 grams in body weight; and 84 (Jackson) female rats below 50 grams in body weight, and 29 (Wistar) female rats above 50 grams in body weight. Table 71, formulas (30) and (31).

@ Observed weight, male. ' © Observed weight, female.

—— Calculated weight, male. ---- Calculated weight, female.

The weight of both ovaries on the body weight. Technic: The ovaries must be carefully dissected from their capsules and from the end of the fallopian tube. When the animal is small it is sometimes necessary to do this under a dissecting microscope. The data collected by Jackson (’13) are those used. The graph in chart 21 and the values in table 70 have been determined by formulas (25), (26), and (27). Hatai (13, ’14a); Jackson (713). WEIGHT OF OVARIES ON BODY WEIGHT 101

OVARIES 2 WEIGHT GRAMS

BODY WEIGHT GRAMS


Chart 21 Showing the weight of ovaries of the female albino rat according to body weight. The observed weights are represented by 136 (Jackson) rats. Table 70, formulas (25), (26) and (27).

© Observed weight. ----Caleulated weight.

35. TESTES 2

WEIGHT

WEIGHT GRAMS


Chart 22 Showing the weight of testes of the male albino rat according to body weight. The observed weights are represented by 121 male rats. Table 70, formulas (22), (23) and (24).

@ Observed weight. — Calculated weight. 102 GROWTH OF PARTS AND ORGANS

The weight of both testes on body weight. ‘Technic: The epi- didymis was removed before the testes were weighed. The graph in chart 22 and the values in table 70 were determined by formulas (22), (23) and (24). Hatai (’13); Jackson (’13).

THYMUS GLAND weight grams


Age in days. 0

Chart23 Showing the weight of thethymus of the albino rat according to age. The observed weights are represented by 229 males (164 Jackson and 64 Wistar) and 207 females (179 Jackson and 28 Wistar). Table 72, formulas (38) and (39).

Observed weight © male, o female, —— computed weight.

Weight of thymus on age. In the case of the thymus the data are more useful when presented according to age than when pre- sented according to body weight.

Technic: In preparing the thymus care must be taken to dis- sect away the large lymph glands as well as the fat lying about it. The records by Jackson (13) have been combined with those from The Wistar Institute. The graph in chart 23 and the values in table 72 have been determined by the formulas (38) and (89). No weight difference according to sex has been noted. Hatai (14); Jackson (’13).

ee DETERMINATION OF VARIATION 103

7. Determinations of variation. Variation in body weight and organ weight. In table 58 Jackson (’13) gives a series of determi- nations of the coefficient of variation for body weight on a litter basis and in age groups. The animals were selected by the method of ‘random sampling.’ These values are to be compared with those determined by King (MS 715). In King’s series the same groups of rats were examined at different ages (table 67).

For the same animals as were used in table 58 Jackson (’13) also gives for the several organs the coefficient of variation (table 59) and the coefficients of correlation with the body weight (table 60). The coefficients of variation for body weight on age are given by King (MS ’15) in her growth series (table 67).

TABLE 58.

Coefficient of variation in body weight for total population by ordinary method, and on litter basis (fraternal variation) estimated by various methods (Jackson,’13).



z 2 £ = = 2 : 5 z Pi-iaic|2e}8

Total population.......... { Male 13.6% 16.91} 24.4%) 20.8] 18.81} 18.5! (ordinary method) \ Female | 9.9'] 13.7!) 29.43] 24.27] 16.8] 15.33

Litter basis................ f Male 7.0\| "6-1 5.7] "6:6| 58s |) a (average of litters calcu- | | Female| 4.4] 5 4.0} 5.9] 12.0] 10.4 lated by ordinary me- thod)

Litter basis................ J Male 6.8] 7.6] 6.8] 7.1] 6.1] 8.1 (calculated from Yule’s | \ Female | 5.2] 4.4] 4.5] 7.9] 12.2] 9.3 formula)

Litter basis................| { Male 7.3|, S4i) 16.0| 7:2'| 6.7) Sts (from Kellogg’s for- \ Female} 5.2] 4.5]- 4.1] 8.5] 12.0] 9.0 mula)









! For net body weight.

  • For gross body weight, larger series.

104 GROWTH OF PARTS AND ORGANS

TABLE 59

Coefficients of variation in organ weights, albino rat at different ages. Arranged according to mean values in the last column (Jackson, ’12).












0 pays 7 DAYS 2ipays | 42 pays | 70 pays } 150 pays | AVERAGE

Brain.............. 12 7 12 10 Eyeballs........... 16 15 13 8 11 9 12 Head.............. 10 11 15 10 14 13 12 Total body........ 12 16 28 21 20 19 19 Lunggs............. 23 17 24 19 21 21 Kidneys........... 24 22 34 15 17 19 22) Heart............. 18 20 34 30 18 21 24 Liver.............. 22 19 41 19 33 25 26 Suprarenals....... 24 20 SS) 22 21 39 26 Testes............- 25 18 30 27 35 41 29 Thymus........... 31 32 43 50 25 22 34 Spleen............. 39 34 51 26 38 19 34 Intestinal canal

(plus contents) 38 29 42 30 35 Ovaries............ 42 47 51 33 43 Average of viscera 23 22 31 24 26 24 25

TABLE 60

Coefficients of correlation of organ weights with the body weight: albino rat at different ages. Arranged according to mean values in the last column (Jackson, ’13).











0 pays 7 DAYS 2lpays | 42 pays | 70 pays | 150 pays | AVERAG#

Head.............. 0.76 0.89 0.93 0.95 0.75 0.85 0.86 Kidneys...........| 0.70 0.79 0.96 0.92 0.90 0.91 0.86 Liver.............. 0.76 0.76 0.97 0.84 0.74 0.87 0.83 Lungs............. 0.74 0.80 0.87 0.94 0.62 0.80 Brain............. 0.69 0.78 0.88 0.78 Healtieeeeene eerie 0.58 0.50 0.91 0.97 0.86 0.84 0.78 Testes.............] 0.67 0.75 0.95 0.75 0.48 0.88 0.75 Ovaries............ 0.73 0.64 0.82 0.81 0.75 Intestinal canal

(plus contents)..} 0.29 0.59 0.84 0.76 0.62 Thymus........... 0.67 0.74 0.89 0.90 0.51 |—0.09 0.60 Spleen.............] 0.54 0.44 0.97 0.50 0.41 0.46 0.55 Eyeballs........... 0.67 0.52 0.67 0.31 0.22 OR32, 0.45 Suprarenals....... 0.51 0.13 0.58 0.41 0.41 0.35 0.40 Average...........| 0.63 0.63 0.85 0.75 0.62 0.70 0.70 WEIGHTS OF FETUSES 105

8. General Tables. The tables which are not represented by charts in the text are usually short and have been introduced where they are mentioned, but as a matter of convenience all of those which are so represented are here grouped together as general tables under the following heads:

a). Tables for the increase in the weight of the entire body on age. Tables 61-67.

b). Tables for the increase in the length of the tail, in the weight of the entire body, and in the weight of several of the viscera according to body length. Tables 68-71 (72).

9. Table 72 for the weight of the thymus—bdased not on body length but on age.

10. Weight of all the viscera combined. Table 73.

11. Tables giving the values for characters other than body weight, linked with age. Table 74.

For the most part the tables are preceded by a slight descrip- tive heading only. Reference is made to the corresponding charts in connection with which ail the details concerning them have been noted.

Tables showing the increase in the weight of the entire body with age.

Growth before birth, Stotsenburg (MS ’15) (p. 64), table 61. This table duplicates table 46, but gives one additional entry.

TABLE 61

Showing the mean weights of the fetuses at ten ages during gestation and at birth. Stotsenburg (MS ’15). Chart 1




AGE IN DAYS NUMBER OF FETUSES Die eee Fy weiente ¥ grams per cent

MGR ee eee 3 0.040

WAR eee 44 0.112 179 WO... we eee eee 37 0.168 50 16...... 0.2... eee ee eee 44 0.310 83 MG... eee eee ees 21 0.548 17 See... ee ere se 4B 1.000 83 Oe ee ce cee tence 30 1.580 58 PMD Tele tcc ete ce wanes 25 2.630 65 PANETT ys eet sce neon 42 3.980 51 DOS as oiosalclsjoleicisies +++ +s 10 4.630 16 Strictly new born...... 37 | 4.680 106

GROWTH OF PARTS AND ORGANS

Growth after birth, tables 62-67.

TABLE 62

Body weight on age—both sexes.

(87) females. Donaldson (MS ’15).

Based on records by Donaldson, Dunn and Watson (’06) and computed from 10-365 days, by formulas (34), (85) males; (86),

The values for the first ten days are from direct observation, Not charted


AGE DAYS.

BODY WEIGHT

AGE

BODY WEIGHT


DAYS

AGE DAYS.

BODY WEIGHT

AGE

BODY WEIGHT


DAYS





Male | Female Male {| Female Male | Female| Male | Female B. 4.8) 4.7 33 | 32.8] 34.4 66 | 94.5) 89.4 99 | 164.3) 145.1 it 5.5) 5.4 34] 34.1) 35.7 67 | 97.0) 91.5]) 100 | 165.8] 146.2 2 5.9) 5.8 35 | 35.4) 37.0 68 | 99.5) 93.6 3 6.44 6.3 36 | 36.8) 38.3 69 | 102.1) 95.8]) 105 | 172.7; 151.4 4 6.9! 6.8 37 | 38.1] 39.6 70 | 104.7; 98.0)) 110 | 179.1) 156.3 5 7.6 7.5 38 | 39.6} 40.9 115 | 185.2} 160.9 6 8.5} 8.4 39 | 41.0) 42.3 71 | 107.3) 100.2|| 120 | 190.9) 165.2 7 9.5) 9.4 40 | 42.5] 43.7 72 | 110.0) 102.4/} 125 ; 196.2] 169.2 8 10.5} 10.4 73 | 112.7) 104.7]! 130 | 201.2) 173.0 9] 11.8) 11.6 41 | 44.1) 45.1 74 | 115.5} 107.0)] 135 | 206.0} 176.5 10) 13.5) 13.0 42 | 45.7) 46.6 75 | 118.3} 109.3}| 140 | 210.5) 179.9 43 47.3] 48.1 76 | 121.1; 111.6]| 145 | 214.7) 183.1 Il 13.9] 13.7 441 48.9) 49.6 77 | 124.0) 114.0]! 150 | 218.7) 186.1 12; 14.4) 14.4 45 | 50.6) 51.1 78 | 126.8) 116.4 13] 14.9) 15.1 46 | 52.3) 52.7 79 | 129.8) 118.8]; 155 | 222.5) 188.9 14 15.5) 15.8 47 54.1] 54.3 80 | 132.8] 121.3]) 160 | 226.0) 191.6 15 |. 16.1) 16.5 48 55.9) 55.9 165 | 229.4) 194.2 16} 16.7) 17.3 49 | 57.7| 57.5 81 | 134.7] 122.6]] 170 | 232.6) 196.5 17} 17.3) 18.1 50; 59.6) 59.2 82 | 136.5] 124.0]| 175 | 235.7} 198.8 18 | 18.0} 18.9 83 | 138.4) 125.4)| 180 | 238.6! 201.0 19 | 18.7| 19.8 51 | 61.5) 60.9 84 | 140.2} 126.8]| 185 | 241.3) 203.0 20 | 19.5! 20.7 52 | 63.4) 62.6 85 | 142.0) 128.1]| 190 | 243.9) 204.9 ‘ 58 | 65.4| 64.3 86 | 143.7) 129.5]} 195 | 246.3] 206.7 21 / 20.3) 21.6 54 | 67.4) 66.1 87 | 145.5} 180.8]; 200 | 248.6) 208.4 22) 210 R22Ra 55 | 69.5) 67.9 88 | 147.2) 132.1 23 | 22.0) 23.4 56 | 71.6) 69.7 89 | 148.9) 133.41) 205 | 250.9) 210.1 24 | 22.9] 24.4 Oval aaa le 90 | 150.5) 134.6]} 210 | 253.1) 211.6 25 | 23.9] 25.4 58 | 75.9] 73.4 215 | 254.9) 213.1 26 | 24.9) 26.5 59 | 78.1) 75.3 91 | 152.1) 135.8]| 220 | 256.8] 214.4 27 | 25.9) 27.5) 60 | 80.3) 77.3 92 | 153.7) 187.1] 225 | 258.6) 216.8 28 | 27.0) 28.6). . 93 | 155.3] 138.3]} 230 | 260.2) 217.0 29] 28.1) 29.7) G61] 82.5) 79.2 94 | 156.9) 139.4]| 235 | 261.9] 218.1 30 | 29.2! 30.9 62 | 84.9) 81.2 95 | 158.4) 140.6]| 240 | 263.3) 219.2 63 | 87.2] 83.2 96 | 160.0] 141.8]| 245 | 264.8) 220.3 31 | 30.4) 32.0 64] 89.6] 85.2 97 | 161.4} 142.9] 250 | 266.1) 221.2 32 | 31.6} 33.2 65 | 92.0} 87.3 98 | 162.9] 144.0 BODY WEIGHT ON AGE

TABLE 62—Concluded





BODY WEIGHT BODY WEIGHT BODY WEIGHT BODY WEIGHT AGE AGE AGE AGE DAYS DAYS DAYS DAYS

Male | Female! Male | Female Male | Female Male | Female 255 | 267.3} 222.1|/ 290 | 274.2) 226.9)) 320 | 277.7} 229.3)| 355 | 279.7| 230.4 260 | 268.5) 223.0|} 295 | 274.9] 227.4]| 325 | 278.1) 229.5]| 360 | 279.8) 230.4 265 | 269.6) 223.7]; 300 | 275.5) 227.9)| 330 | 278.5) 229.8/| 365 | 279.9) 230.4 270 | 270.7) 224.5 335 | 278.8] 229.9 275 | 271.6] 225.1]} 305 | 276.2) 228.3]} 340 | 279.1) 230.1 280 | 272.5) 225.8)]| 310 | 276.8) 228.7|| 345 | 279.3) 230.2 285 | 273.4) 226.4]] 315 | 277.2) 229.0)) 350 | 279.6] 230.3 108 GROWTH OF PARTS AND ORGANS

TABLE 63

Body weight on age. Male Albinos unmated. Chicago colony. Donaldson, Dunn and Watson, (06). The records for the first ten days as given in the original table are here omitted. Those values may be obtained from table 62. In addition to the average values the highest and lowest are also given. See graph A inchart 2




BODY WEIGHT IN GRAMS AGE IN DAYS Re Average Lowest Highest eee 13.3 13.0 13.6 4 12..... oer 14.8 11.4 19.5 6 3 eee eee 15.3 14.1 16.0 5 1A) eo oe 15.2 14.0 17.6 6 15.......2.-... 16.5 12.5 22.4 19 APEC 17.8 13.9 24.0 19 19............. 19.5 15.2 26.0 19 2 eee ero 21.2 14.6 30.1 19 2 ORE 22.9 17.9 82.5 19 25... cece eee 25.3 19.0 35.8 19 CIEE 27.4 19.8 38.3 19 OR eee ee 29.5 22k 39.3 19 Seer 31.8 25.9 41.2 19 C4 EEE roe 34.9 27.4 43.3 19 SEE EEEeErEe 37.8 28.5 48.0 19 40........0.0.. 42.2 30.8 52.2 19 43...0...... See 46.3 Son 62.4 19 4B. eee 50.5 35.9 66.2 19 Ch 56.7 38.9 73.9 19 62). 2. eee 62.5 39.8 82.5 19 55... eee 68.5 40.6 87.5 19 58.........---- 73.9 45.1 100.1 19 61... eee 81.7 49.0 116.6 19 or 89.1 52.7 129.6 19 WiepBBooccocccc 99.3 57.7 140.2 19 (BBB 600000000 106. 71.2 148.5 19 @3....---eeeee 113.8 71.4 152.4 19 Ge... .- eee 121.3 89.8 157.5 19 7i9n..... eee 128 .2 97.0 161.2 19 S2h.. 2 eee 135.0 105.1 165.5 19 SOE... eee 143.8 117.0 168.5 19 SSEEr . . - eee 148.4 124.5 174.0 19 2... ...-- se 152.3 124.0 179.6 19 OUP... eee ne 160.0 124.0 180.7 19 WO2............. 168.8 120.0 192.2 19 MO ele sc. .s secs 177.6 120.0 206 .0 19 MONEY) «ss esses es 183.8 125.0 215.6 19 BODY WEIGHT ON AGE

TABLE 63—Concluded

109


BODY WEIGHT IN GRAMS



AGE IN DAYS le Averege Lowest Highest We 191.4 130.0 223.0 19 MAM ee ee 197.3 123.0 238 .2 19 Met... 2. eee 202.5 132.4 249.2 19 WSS... ++. see 209.7 145.6 248 .4 19 1438..,.....0.... 218.3 153.5 259 .4 19 150.......-..... 225.4 162.4 268.2 19 Heyes... .-.-e 227 .0 162.4 271.4 19 Wet. .......---. 231.4 159.0 271.8 17 iW. .---......- 235.8 165.2 289 .0 17 79.066 00 239.4 167.9 291 .2 17 WSDee ss... eee 239.8 176.0 294.0 15 PMG) ........-.-- 252.9 190.5 294.5 10 BRIGh =. ....-..--- 263.4 190.5 310.0 10 RM)... ee 279 .0 203 .6 320.0 6 MeO. ........... 308 .5 285.0 375.6 6 110

GROWTH OF PARTS AND ORGANS

TABLE 64

Body weight onage. Female albinos unmated. Values for ‘mated’ computed (Watson 105) Chicago colony. Donaldson, Dunn and Watson, (’06). the first ten days as given in the original table are here omitted. Those values may be obtained from table 62. In addition to the average values the highest and

lowest are also given.

See graph A, in chart 8.

The records for




BODY WEIGHT IN GRAMS AGE IN DAYS Aa Average Lowest Highest 11... Bee 12.8 12.1 13.6 2 12.5... eee 15.1 13.6 17.7 5 13..... cece eee 15.1 14.7 16.0 5 14............. 15.6 13.5 18.1 5 155 eee eee 17.7 13.1 23.2 17 17... 3... See 19.2 15.1 24.5 17 19... ee. .2.. # 20.6 16.9 27.0 17 2. Eee LEE 22.6 16.1 38.1 17 23...--- eee 24.9 17.3 33.3 17 255. . eee 27.4 20.8 36.0 17 ieee 30.0 23.9 38.5 17 295 Eee eee 31.4 24.0 39.0 17 SEE Eeer ere 32.9 26.3 42.8 17 84.0.0... 2 eee 35.7 26.4 44.1 17 OEE EEE CELE 39.5 29.8 47.4 17 40... cca 43.7 30.6 52.4 17 4B. cae ee 47.9 35.0 60.7 17 MG. eee 52.0 41.4 63.0 16 4D cee eae 57.7 42.0 69.2 16 O23 eee 62.9 41.7 74.8 16 5D... ee eee eee 68.4 49.8 80.7 13 58... eee 74.6 53.6 86.6 13 6)... eee 78.4 56.2 96.7 13 G4....... ee 85.8 57.5 106.8 12 67... o-p eee 96.0 lene 114.1 12 10: ... - eee 99.8 79.0 122.6 ile Woe. « > eee 105.6 80.2 126.5 11 On... eee 110.4 89.6 131.6 il (On... . eee 118.8 97.7 136.0 il 82.0... 0... eee ee 124.7 101.0 139.2 11 85........2000- 131.5 mated | 105.0 mated 143.2 mated 11 88...... cece eee 136.0 115.6 157 .4 ll Picea beueeooocc 139.6 139.8 | 118.7 118.9 161.4 161.6 ll re 145.9 146.3] 119.6 120.0 174.5 175.0 11, MOD... ...---...- 152.4 153.1] 124.6 125.2 185.7 186.5 11 MOE. ose cece 154.9 155.8 | 129.6 130.3 191.4 192.5 ILO MO ec cea ee 160.2 161.4 | 138.5 139.5 193.6 195.0 11






Ue ee eee eC BODY WEIGHT ON AGE 111

TABLE 64—Concluded




BODY WEIGHT IN CRAMS wares) oe AGE IN DAYS - ANIMALS Average Lowest Highest

eee... --- 166.5 168.0} 142.5 143.8] 199.0 200.8 11 Oe... 170.7 172.6} 146.4 148.0] 206.7 209.0 ll ee. 178.6 181.0} 151.2 153.0} 214.7 217.5 u S85............ 182.2 185.0] 151.0 153.3] 210.2 213.4 11 HOBE.... 2... e ee 183.4 186.6] 154.0 156.7] 219.4 223.4 11 150... 184.6 188.2] 153.7 156.7 | 220.7 225.0 11 WA... 2... see 184.0 188.0} 154.9 158.2] 217.6 222.4 11 HGte le. 185.1 189.5} 154.0 157.6] 215.0 220.1 ll APPL... eee 187.4 192.2} 154.0 158.0] 210.0 215.4 11 WASe............ 191.7 197.0] 153.0 157.2] 215.0 221.0 u SE os eee ee 194.2 200.0] 152.0 156.6] 215.0 221.4 BT te 195.9 202.2] 155.0 160.0] 217.0 224.0 11 Mops... 226.4 171.4 280.0 7 HI GROWTH OF PARTS AND ORGANS

TABLE 65

Increase in the body weight of the albino rat with age, based on a personal communi- cation, Ferry (13). New Haven Colony. See graphs B and B' Chart 2, and

B, Chart 8




. BODY WEIGHT AGE IN DAYS Males Females (1) (3

grams grams 10.. 14.6 13 20). eee eee eeree 22.3 25 SXUMBBIG oo000000000c0000 35.3 38 40.. 51.7 54 50) eee EEE 73.1 73 60), PEEL EELECeeeee 96.8 89 70) Seer eee 113.6 100 S30 BIG ooo 0000c000000000 127.7 105 (URI G55 o0G0000cqo00ag 143.7 115 IKODB 8 o5G06000000000c0c 157 .3 120 IMO. -- eee eeeE eee 168.3 125 WANS 6 6000000ccc0000000 180.8 133 ISO BB 5 oo nocc0000cc000c 190.4 137 140... 2... eee eee 197.4 146 150. 208 .3 150 MGS Gab0ccccccc0cc0000 211.9 Males. 152 1702 =- epee eee eee 218.3 158 180. .........0..2..0.. 225.7 160 5 | 233.5 (2) 164 200.2... eee eee eee 243.1 168 210). . 2 eeeeeeeeeeeee 254.0 169 22005. eee EE EEEEEEEe 253.3 262.0 172 2380. ccc ccc cee ees 264.0 172 240. 0... cece e eee ees 268 .2 270.0 172 250). . ... -p eee EEE 272.0 170 PXRUMINIBIBD 6 0000000000000 259.1 276.0 171 270)... .. epee 280.0 173 7... | 265 .2 287.0 176

SUSI 60000000000 267 .4






Column 1, males, includes some rats declining in body weight after 200 days.

Column 2, males, contains values from the normal growth curve (New Haven series).

Column 3, females, contains values read directly from normal growth curve, New Haven. VARIATION IN BODY WEIGHT 113

TABLE 66

Giving the number of animals used by Ferry, (’18) in computing her growth table 65, for the rats at the Connecticut Agricultural Experiment Station in New Haven. (Personal Communication). a

In both groups the marimum number of obsercations was made at 80 days of age







MALES FEMALES Age in days Number of rats Age in days Number of rats 20- 80 47-81 20- 90 39-68 90-170 30-40 100-160 20-37 180-210 18-27 170-190 11-14 220-280 6-12 200-280 6- 8 TABLE 67

Giving the increase in body weight with age—stock Albinos. Mean of two series— King (MS ’15) and giving also the coefficients of variation with their probable er- rors. The Wistar Institute Colony. See graph C, Charts 2 and 8, and Chart 4.









MALES FEMALES

Agein No. - Average Coefficient of No. Average Coefficient of

days individuals] bd. wt. variation individuals} bd. wt. variation

grams grams

13 50 17.2 11.8+0.795 50 15.7 11.4+0.76S8 30 50 48.5 10.2+0.687 50 45.7 11.0+0.741 60 50 122.9 17 .0+1.140 30 107.1 15.7+1.050 90 50 184.8 14.8+0.998 39 148.0 12.5+0.951 120 50 223.2 13.40.9083 42 173.4 10.3+0:755 151 30 244.8 13 .3+0.896 45 186.3 10.4+0.735 182 50 258 .4 14.2+1.220 42 196.5 12.3+0.903 212 48 268.0 | 14.0+0.964 49 197.3 | 12.4+0.910 243 ai 279.7 13.90 .998 43 209.6 12.6+0.910 273 41 280.9 13 .4+0.997 38 210.8 11.5+0.890 304 36 296.1 14.0+1.110 38 219.1 10.3+0.795 334 33 300.8 | 13.71.1830 35 222.4 | 10.8+0.870 365 28 306.1 13.0+1.160 31 223 1 10.7+0.910 395 24 314.1 12.61 .220 31 220.5 11.5+0.984 425 23 312.2 13.4=1.320 30 215.8 10.9+0.944 455 15 323.9 13 .6=1.670 18 220.2 8.9+0.998 485 12 326.0 15.0+2.060 13 234.7 13 .4=1.770 114 GROWTH OF PARTS AND ORGANS

The four tables 68, 69, 70 and 71 which follow have been worked out on the basis of body length by the use of the appropriate formulas. The details touching the organs represented, as well as the corresponding graphs, are to be found in the earlier para- graphs of this chapter. The values for the body weights are repeated in each table.

Weights of viscera combined. Using the data in tables 68- 71 (72) the total weight of the viscera—brain, spinal cord, both eyeballs, heart, both kidneys, liver, spleen, both lungs, alimen- tary tract, both testes, both ovaries, hypophysis, both supra- renals, thyroid and thymus (given separately)—has been entered after the total body weight at each millimeter of body length and for each sex. For obvious reasons the weight of the total blood (see table 70) has not been included.

For the thymus, the weight of which is most closely correlated with age, the following procedure has been employed. Using table 62 for the values for the body weights at given ages, the relation between age, body weight and thymus weight has been directly tabulated, and using these data as a basis, the values of the thymus for the body weight—which is assumed to be nor- mal to the age—have been determined as given in table 73. Owing to the manner in which they have been obtained, it has seemed best to give the thymus values in a separate column.

The entries for the thymus cease after a body length of 221 mm. for males and 198 mm. for females, as these mark the limit of the data in table 62. But in animals of this size or larger, the value for the thymus has become very small both absolutely and relatively.

Tables giving characters which depend primarily on age.

Table 74 gives the percentage of water in the brain and in the spinal cord for each sex from birth to 365 days. These values have been computed by formulas (40), (41) and (42). The graphs corresponding to these data for the males are given in chart 26. WEIGHTS OF ORGANS ON BODY LENGTH

TABLE 68

115

Giving for each sez the tail length and the weights of the brain, spinal cord and both

eyeballs for each millimeter of body length. See Charts 6, 7, 8, 9, 10
















MALES FEMALES = - Body Weight in gms. Bo th a Body Weight in gms. Both length} length | weight eh Spinal balls length | weight — s Spinal balls mm. mm. gms. gms mm. gms. gms. Ay 14.9 4.9 0.226 0.033 0.029 15.4 4.7 0.211 0.083 0.028 48 15.8 4.9 0.226 0.033 0.029 16.6 4.7 0.214 0.033 0.028 49 16.9 5.0 0.232 0.034 0.030 17.8 4.9 0.217 0.034 0.029 50 18.0 5.1 0.238 0.0384 0.031 19.0 5.0 0.222 0.085 0.029 51 19.2 5.2 0.252 0.0385 0.031 20.2 5.1 0.227 0.085 0.030 52 20.4 5.3 0.266 0.0386 0.032 21.5 5.3 0.255 0.036 0.032 53 21.6 5.4 0.280 0.087 0.083 Doni 5.5 0.283 0.038 0.034 54 a2 7 5.6 0.300 0.038 0.034 23.9 5.8 0.323 0.041 0.0386 55 23.9 5.8 0.320 0.040 0.036 23.2 6.2 0.361 0.044 0.089 56 25.0 6.1 0.358 0.043 0.039 26.4 6.5 0.398 0.048 0.041 a7 26.2 6.4 0.395 0.046 0.041 27 .6 6.9 0.433 0.051 0.044 58 27.3 6.8 0.431 0.049 0.044 28.8 7.2 0.468 0.054 0.046 59 28.5 7.1 0.465 0.052 0.046 30.0 7.6 0.500 0.057 0.049 60 29.6 7.5 0.498 0.055 0.048 SEZ 8.0 0.532 0.061 0.051 61 30.7 7.9 0.530 0.059 0.050 32.3 8.4 0.564 0.064 0.053 62 31.9 8.2 0.561 0.062 0.052 33.5 8.7 0.594 0.068 0.055 63 33.0 8.6 0.591 0.065 0.054 34.7 9.1 0.624 0.071 0.057 64 34.1 9.0 0.621 0.068 0.056 35.9 9.5 0.652 0.074 0.059 65 35.2 9.4 0.650 0.071 0.058 37.0 9.9 0.679 0.077 0.061 66 36.3 9.8 0.678 0.075 0.060 38 .2 10.3 0.7 0.081 0.063 67 37.4 10.1 0.695 0.078 0.062 39.4 10.8 0.726 0.084 0.065 68 38.5 10.6 0.711 0.081 0.064 40.5 11.2 0.772 0.088 0.067 69 39.6 11.0 0.761 0.084 0.066 41.7 11.6 0.811 0.091 0.068 70 40.7 11.4 0.803 0.088 0.068 42.8 12.0 0.846 0.095 0.070 71 41.8 11.8 0.840 0.091 0.069 43.9 12.5 0.876 0.098 0.072 72 42.9 12.2 0.872 0.094 0.071 45.1 12.9 0.904 0.101 0.073 7 44.0 12.7 0.901 0.098 0.073 46.2 13.4 0.929 0.105 0.075 74 45.1 18.1 0.928 0.101 0.074 Ad .3 13.9 0.952 0.108 0.077 75 46.2. 13.6 0.952 0.164 0.076 48.5 14.3 0.974 0.112 0.078 76 47.2 14.0 0.974 0.107 0.077 49.6 14.8 0.994 0.115 0.080 77 48.3 14.5 0.995 0.111 0.079 50.7 15.3 1.013 0.119 0.082 7 49.4 15.0 1.015 0.114 0.081 51.8 15.8 1.031 0.122 0.083 79 50.4 15.4 1.083 0.117 0.082 52.9 16.3 1.047 0.126 0.085 80 51.5 15.9 1.051 0.121 0.084 54.0 16.8 1.064 0.129 0.086 116

GROWTH OF PARTS AND ORGANS

TABLE 68—Continued


MALES

FEMALES

















Body Tai, Body, Weight in gms. Both teil Body Weight in gms. Both we . wei, : & Brain ae balls & Brain oo balls mm, mm gma. gms. mm. gms. gms. 81 52.6 16.4 1.067 0.124 0.085 55.1 17.3 1.079 0.133 0.088 82 53.6 16.9 1.083 0.128 0.087 56.3 17.9 1.093 0.136 0.089 83 54.7 17.4 1.098 0.131 0.088 57.4 18.4 1.107 0.140 0.091 84 55.7 18.0 1.112 0.134 0.090 58.5 19.0 1.121 0.148 0.093 85 56.8 18.5 1.126 0.138 0.091 59.5 19.5 1.134 0.147 0.094 86 57.8 19.0 1.139 0.141 0.093 60.6 20.1 1.146 0.150 0.095 87 58.9 19.6 1.152 0.144 0.094 61.7 20.7 1.159 0.154 0.097 88 59.9 20.1 1.165 0.148 0.095 62.8 21.2 1.170 0.158 0.098 89 61.0 20.7 1.177 0.151 0.097 63.9 21.8 1.181 0.161 0.100 90 62.0 21.3 1.188 0.155 0.098 65.0 22.4 1.1938 0.165 0.101 91 63.0 21.9 1.200 0.158 0.100 66.1 23.1 1.203 0.168 0.103 92 64.1 22.4 1.211 0.162 0.101 67.2 23.7 1.214 0.172 0.104 93 65.1 23.0 1.221 0.165 0.102 68.2 24.3 1.224 0.176 0.105 94 66.2 23.7 1.231 0.168 0.104 69.3 25.0 1.234 0.179 0.107 95 67.2 24.3 1.242 0:172 0.105 70.4 25.6 1.244 0.183 0.108 96 68.2 24.9 1.252 0.175 0.107 71.4 26.3 1.253 0.186 0.109 97 69.2 25.6 1.261 0.179 0.108 72.5 27.0 1.262 0.190 0.111 98 70.38 26.2 1.271 0.182 0.109 73.6 27.7 1.271 0.194 0.112 99 71.8 26.9 1.280 0.186 0.111 74.6 28.4 1.280 0.197 0.114 100 72.3 27.5 1.289 0.189 0.112 75.7 29.1 1.289 0.201 0.115 101 73.3 28.2 1.298 0.193 0.113 76.8 29.8 1.298 0.205 0.116 102 74.3 28.9 1.307 0.197 0.115 77.8 30.5 1.306 0.209 0.118 103 75.4 29.6 1.315 0.200 0.116 78.9 31.8 1.314 0.212 0.119 104 76.4 30.3 1.3823 0.204 0.117 79.9 32.0 1.322 0.216 0.120 105 77.4 31.1 1.3382 0.207 0.119 81.0 32.8 1.330 0.220 0.122 106 78.4 31.8 1.340 0.211 0.120 82.0 33.6 1.338 0.223 0.123 107 79.4 32.5 1.348 0.214 0.121 83.1 34.4 1.346 0.227 0.124 108 80.4 383.3 1.356 0.218 0.123 84.1 35.2 1.354 0.231 0.126 109 81.4 34.1 1.3863 0.221 0.124 85.2 36.0 1.361 0.235 0.127 110 82.4 34.9 1.371 0.225 0.125 86.2 36.9 1.368 0.2388 0.128 111 83.4 35.7 1.878 0.228 0.126 87.3 37.7 1.376 0.242 0.180 112 84.4 36.5 1.3886 0.2382 0.128 88.3 38.6 1.383 0.246 0.131 113 85.4 37.3 1.393 0.236 0.129 89.4 39.5 1.390 0.250 0.132 114 ° 86.4 38.2 1.400 0.239 0.130 90.4 40.3 1.897 0.253 0.134 115 87.4 39.0 1.407 0.243 0.132 91.4 41.3 1.404 0.257 0.135 116 88.4 39.9 1.414 0.246 0.133 92,5 42.2 1.411 0.261 0.136

nn ee ee i WEIGHTS OF ORGANS ON BODY LENGTH

TABLE 68—Continued

117


















MALES FEMALES

ee. —_ Body Weight in gms. Both Tai Body Weight in gms. Both

length | length | weight incl, Spinal balls engt. weight =. Spinal bale mm mm. gms. gma. mm. gms. gms. 117 89.4 40.8 1.421 0.250 0.134 93.5 43.1 1.418 0.265 0.138 118 90.4 41.6 1.428 0.254 0.136 94.5 44.1 1.424 0.268 0.139 119 91.4 42.6 1.435 0.257 0.137 95.6 45.0 1.431 0.272 0.140 120 92.4 43.5 1.442 0.261 0.138 96.6 46.0 1.488 0.276 0.142 121 93.4 44.4 1.448 0.265 0.140 97.6 47.0 1.444 0.280 0.143 122 94.4 45.4 1.455 0.268 0.141 98.7 48.0 1.450 0.284 0.144 123 95.4 46.3 1.461 0.272 0.142 99.7 49.1 1.457 0.287 0.146 124 96.4 47.3 1.468 0.276 0.143 100.7 50.1 1.463 0.291 0.147 125 97.4 48.3 1.474 0.279 0.145 101.7 51.2 1.469 0.295 0.148 126 98.4 49.3 1.480 0.283 0.146 102.8 52.3 1.476 0.299 0.150 127 99.3 50.4 1.487 0.287 0.147 103.8 53.4 1.482 0.303 0.151 128 100.3 51.4 1.493 0.290 0.149 104.8 54.5 1.488 0.307 0.153 129 101.3 52.5 1.499 0.294 0.150 105.8 55.6 1:494 0.310 0.154 130 102.3 53.6 1.505 0.297 0.151 106.8 56.8 1.500 0.314 0.155 131 103.3 54.7 1.511 0.301 0.153 107.9 58.0 1.506 0.318 0.157 132 104.2 55.8 1.517 0.305 0.154 108.9 59.2 1.512 0.322 0.158 133 105.2 56.9 1.523 0.309 0.155 109.9 60.4 1.518 0.326 0.159 134 106.2 58.1 1.529 0.312 0.157 110.9 61.6 1.523 0.330 0.161° 135 107.2 59.3 1.535 0.316 0.158 111.9 62.9 1.529 0.334 0.162 136 108.2 60.5 1.541 0.320 0.160 112.9 64.2 1.535 0.3388 0.164 137 109.1 61.7 1.546 0.323 0.161 114.0 65.5 1.540 0.341 0.165 1388 110.1 62.9 1.552 0.327 0.162 115.0 66.8 1.546 0.345 0.166 1389 111.1 64.1 1.558 0.331 0.164 116.0 68.1 1.552 0.349 0.168 140 112.1 65.4 1.563 0.335 0.165 117.0 69.5 1.557 0.353 0.169 141 113.0 66.7 1.569 0.338 0.166 118.0 70.9 1.563 0.357 0.171 142 114.0 68.0 1.575 0.342 0.168 119.0 72.3 1.568 0.361 0.172 143 «4115.0 69.3 1.580 0.346 0.169 120.0 73.7 1.574 0.365 0.174 144 115.9 70.7 1.586 0.349 0.171 121.0 75.2 1.579 0.369 0.175 145 116.9 72.1 1.591 0.353 0.172 122.0 76.7 1.585 0.373 0.177 146 «#117.9 73.5 1.597 0.357 0.173 123.0 78.2 1.590 0.377 0.178 147 «118.8 74.9 1.602 0.361 0.175 124.0 79.7 1.595 0.380 0.180 148 119.8 76.3 1.607 0.365 0.176 125.0 81.3 1.601 0.384 0.181 149 120.8 77.8 1.613 0.368 0.178 126.0 82.8 1.606 0.388 0.182 150 121.7 79.3 1.618 0.372 0.179 127.0 84.4 1.611 0.392 0.184 151 122.7 80.8 1.623 0.376 0.181 128.0 86.1 1.616 0.396 0.186 152. 123.7 +82.4 1.629 0.380 0.182 129.0 87.7 1.622 0.400 0.187 118

GROWTH OF PARTS AND ORGANS

TABLE 68—Continued


MALES

FEMALES



Weight in gms.


Weight in gms.












Body | Tail | Body Both Tail | Body Both

length | length | weight — Spinal bells length | weight — Spinal Pie

mm. | mm. gms. gms. mm. gms. gms.

153 124.6 83.9 1.634 0.383 0.183 130.0 89.4 1.627 0.404 0.189 154 125.6 85.5 1.639 0.387 0.185 131.0 91.1 1.682 0.408 0.190 155 126.5 87.1 1.644 0.891 0.186 132.0 92.9 1.637 0.412 0.192 156 127.5 88.7 1.649 0.395 0.188 133.0 94.6 1.642 0.416 0.193 157. 128.5 90.4 1.654 0.398 0.189 134.0 96.4 1.647 0.420 0.195 158 129.4 92.1 1.659 0.402 0.191 135.0 98.3 1.652 0.424 0.196 159 1380.4 98.8 1.664 0.406 0.192 136.0 100.1 1.657 0.428 0.198 160 131.38 95.6 1.670 0.410 0.194 137.0 102.0 1.662 0.4382 0.200 161 (1382.3 97.3 1.675 0.414 0.196 137.9 103.9 1.667 0.436 0.201 162 133.3 99.2 1.680 0.417 0.197 138.9 105.9 1.672 0.440 0.203 163 1384.2 101.0 1.685 0.421 0.199 139.9 107.9 1.677 0.444 0.204 164 1385.2 102.8 1.690 0.425 0.200 140.9 109.9 1.682 0.448 0.206 165 186.1 104.7 1.695 0.429 0.202 141.9 111.9 1.687 0.452 0.208 166 137.1 106.7 1.699 0.483 0.203 142.9 114.0 1.692 0.456 0.209 167. 138.0 108.6 1.704 0.486 0.205 143.9 116.1 1.697 0.460 0.211 168 139.0 110.6 1.709 0.440 0.207 144.9 118.3 1.702 0.464 0.213 169 139.9 112.6 1.714 0.444 0.208 145.9 120.5 1.707 0.468 0.215 170 «=©140.9 114.8 1.719 0.448 0.210 146.8 122.7 1.711 0.472 0.216 171 141.8 116.7 1.724 0.452 0.212 147.8 125.0 1.716 0.476 0.218 172 142.8 118.9 1.729 0.456 0.213 148.8 127.3 1.721 0.480 0.220 173 1483.7 121.0 1.734 0.459 0.215 149.8 129.6 1.726 0.484 0.222 174 «(144.7 123.2 1.738 0.463 0.217 150.8 132.0 1.731 0.488 0.223 175 «145.6 125.4 1.743 0.467 0.218 151.8 134.4 1.7385 0.492 0.225 176 146.6 127.7 1.748 0.471 0.220 152.7 186.8 1.740 0.496 0.227 177, 147.5 130.0 1.753 0.475 0.222 153.7 139.3 1.745 0.500 0.229 178 148.5 182.3 1.757 0.479 0.224 154.7 141.9 1.750 0.504 0.231 179 §=149.4 134.6 1.762 0.483 0.225 155.7 144.4 1.754 0.508 0.232 180 150.4 137.0 1.767 0.486 0.227 156.7 147.1 1.759 0.512 0.234 181 151.3 139.5 1.771 0.490 0.229 157.6 149.7 1.764 0.516 0.236 182 152.3 142.0 1.776 0.494 0.231 158.6 152.4 1.768 0.520 0.238 1838 153.2 144.5 1.781 0.498 0.233 159.6 155.2 1.773 0.524 0.240 184 154.1 147.0 1.785 0.502 0.234 160.6 158.0 1.778 0.528 0.242 185 155.1 149.6 1.790 0.506 0.236 161.5 160.8 1.782 0.5382 0.244 186 °156.0 152.3 1.795 0.510 0.238 162.5 163.7 1.787 0.536 0.246 187 157.0 155.0 1.799 0.513 0.240 163.5 166.6 1.791 0.540 0.248 188 157.9 157.7 1.804 0.517 0.242 164.5 169.6 1.796 0.544 0.250 WEIGHTS OF ORGANS ON BODY LENGTH

TABLE 68—Continued

119


MALES

FEMALES


Weight in gms.


Weight in gms.















ORR —| ee || Zak | Boy, eve. wel 2 2

eneu ers ee | rain Spinal balls Brain Spinal balls mm. mm. gms. gms. mm, gms. gms. 189 158.9 160.5 1.808 0.521 0.244 165.4 172.6 1.801 0.548 0.252 190 159.8 163.3 1.813 0.525 0.246 166.4 175.7 1.805 0.552 0.254 191 160.7 166.2 1.818 0.529 0.248 167.4 178.8 1.810 0.556 0.256 192 161.7 169.1 1.822 0.533 0.250 168.4 182.0 1.814 0.560 0.258 193 162.6 172.0 1.827 0.587 0.252 169.3 185.2 1.819 0.564 0.261 194 163.6 175.0 1.831 0.541 0.254 170.3 188.5 1.823 0.569 0.263 195 164.5 178.1 1.836 0.545 0.256 171.3 191.9 1.828 0.573 0.265 196 165.4 181.2 1.840 0.548 0.258 172.2 195.3 1.832 0.577 0.267 197 166.4 184.3 1.845 0.552 0.260 173.2 198.7 1.837 0.581 0.269 198 167.3 187.5 1.849 0.556 0.262 174.2 202.2 1.841 0.585 0.272 199 168.3 190.8 1.854 0.560 0.264 175.1 205.8 1.846 0.589 0.274 200 «4169.2 194.1 1.858 0.564 0.266 176.1 209.4 1.850 0.593 0.276 201 170.1 197.4 1.863 0.568 0.268 177.1 213.1 1.855 0.597 0.278 202 «6171.1 200.8 1.867 0.572 0.271 178.0 216.8 1.859 0.601 0.281 203 «172.0 204.3 1.872 0.576 0.273 179.0 220.7 1.864 0.605 0.283 204 172.9 207.8 1.876 0.579 0.275 180.0 224.5 1.868 0.609 0.286 205 173.9 211.4 1.880 0.583 0.277 180.9 228.4 1.872 0.613 0.288 206 4174.8 215.0 1.885 0.587 0.280 181.9 232.4 1.877 0.617 0.290 207 «175.7 218.7 1.889 0.591 0.282 182.9 2386.5 1.881 0.621 0.293 208 176.7 222.5 1.894 0.595 0.284 183.8 240.6 1.886 0.625 0.295 209 «#4177.6 226.3 1.898 0.599 0.288 184.8 244.8 1.890 0.630 0.298 210 «178.5 230.2 1.903 0.603 0.289 185.8 249.1 1.894 0.634 0.301 211 179.5 234.1 1.907 0.607 0.291 186.7 253.4 1.899 0.638 0.303 212 «180.4 238.1 1.911 0.611 0.294 187.7 257.8 1.903 0.642 0.306 213 «181.3 242.2 1.916 0.615 0.296 188.7 262.3 1.908 0.646 0.308 214 182.3 246.3 1.920 0.619 0.299 189.6 266.9 1.912 0.650 0.311 215 183.2 250.5 1.924 0.623 0.301 190.6 271.5 1.916 0.654 0.314 216 184.1 254.7 1.929 0.626 0.304 191.5 276.2 1.921 0.658 0.317 217 =185.0 259.1 1.933 0.630 0.306 192.5 281.0 1.925 0.662 0.319 218 186.0 263.5 1.937 0.634 0.309 193.5 285.8 1.929 0.666 0.322 219 186.9 267.9 1.942 0.688 0.312 194.4 290.8 1.934 0.670 0.325 220 «187.8 272.5 1.946 0.642 0.314 195.4 295.8 1.938 0.675 0.328 221 188.8 277.1 1.950 0.646 0.317 196.3 300.9 1.942 0.679 0.331 222 189.7 281.8 1.955 0.650 0.320 197.3 306.1 1.947 0.683 0.334 223 «6190.6 286.5 1.959 0.654 6.322 198.3 311.3 1.951 0.687 120

GROWTH OF PARTS AND ORGANS

TABLE 68—Concluded


MALES

FEMALES


Weight in gms.


Weight in gms.















Body | Tail | Body Born Tail | Body Both

Tehgth | Tema eres Spinal belie || length | weight Brain | Spinal belie

mm, mm. gms. gms. mm. gms. gms. 224 191.5 291.4 1.963 0.658 0.325 199.2 316.7 1.955 0.691 0.340 225 192.5 296.3 1.968 0.662 0.328 200.2 322.1 1.960 0.695 0.343 226 «193.4 301.3 1.972 0.666 0.331 201.1 327.7 1.964 0.699 0.346 227 «194.3 306.4 1.976 0.670 0.334 202.1 333.3 1.968 0.703 0.349 228 195.3 311.5 1.981 0.673 0.337 203.0 339.0 1.972 0.707 0.352 229° 196.2 316.8 1.985 0.677 0.340 204.0 344.8 1.977 0.712 0.355 230 197.1 322.1 1.989 0.681 0.343 205.0 350.7 1.981 0.716 0.359 231 «198.0 327.5 1.993 0.685 0.346 205.9 356.7 1.985 0.720 0.362 232 «=©198.9 333.0 1.998 0.689 0.349 206.9 362.8 1.989 0.724 0.365 233 «6199.9 338.6 2.002 0.693 0.352 207.8 369.0 1.994 0.728 0.369 234 200.8 344.3 2.006 0.697 0.355 208.8 375.3 1.998 0.732 0.372 235 201.7 350.0 2.010 0.701 0.358 209.7 381.7 2.002 0.736 0.375 236 «6202.6 355.9 2.014 0.705 0.361 210.7 388.2 2.006 0.740 0.379 237 «203.6 361.9 2.019 0.709 0.365 211.6 394.9 2.011 0.744 0.383 238 «6204.5 367.9 2.023 0.713 0.368 212.6 401.6 2.015 0.749 0.386 239 «205.4 374.1 2.027 0.717 0.3871 213.5 408.4 2.019 0.753 0.390 240 206.3 380.3 2.031 0.721 0.375 214.5 415.4 2.023 0.757 0.393 241 207.3 386.6 2.036 0.725 0.378 215.4 422.4 2.028 0.761 0.397 242 208.2 393.1 2.040 0.729 0.382 216.4 429.6 2.032 0.765 0.401 243 209.1 399.6 2.044 0.7383 0.385 217.3 436.9 2.036 0.769 0.405 244 210.0 406.3 2.048 0.737 0.389 218.3 444.3 2.040 0.773 0.409 245 210.9 413.1. 2.052 0.741 0.392 219.2 451.9 2.044 0.777 0.413 246 «211.9 419.9 2.057 0.745 0.396 220.2 459.5 2.049 0.782 0.417 247 «212.8 426.9 2.061 0.748 0.400 221.1 467.3 2.053 0.786 0.421 248 213.7 484.0 2.065 0.752 0.403 222.1 475.2 2.057 0.790 0.425 249 214.6 441.2 2.069 0.756 0.407 223.1 483.3 2.061 0.794 0.429 250 215.5 448.5 2.073 0.760 0.411 224.0 491.5 2.065 0.798 0.433 WEIGHTS OF ORGANS ON BODY LENGTH

TABLE 69

121

Giving for each sex the weights of body, heart, both kidneys, liver and spleen—for each millimeter of body length. See Charts 11, 12, 18 and 14
















MALES FEMALES Posy =. Heart ee. Liver | Spleen ae Heart whi Liver | Spleen mm. | gms. | gms. | gms. | gms. gms. | gms. gms. | gms. | gms. | gms.

47 4.9 0.031 0.046 0.21 0.009 4.7 0.030 0.046 0.20 0.008 48 4.9 0.031 0.047 0.21 0.009 4.7 0.030 0.046 0.20 0.008 49 5.0 0.0382 0.048 0.22 0.009 4.9 0.0382 0.048 0.21 0.009 50 5.1 0.033 0.049 0.22 0.009 5.0 0.033 0.050 0.22 0.009 51 5.2 0.083 0.052 0.22 0.010 5.1 0.034 0.052 0.23 0.009 aD 5.3 0.034 0.055 0.23 0.010 5.3 0.0385 0.055 0.23 0.009 53 5.4 0.0385 0.058 0.23 0.010 5.5 0.036 0.062 0.24 0.011 54 5.6 0.036 0.064 0.24 0.011 5.8 0.038 0.070 0.25 0.012 55 5.8 0.0388 0.070 0.25 0.012 6.2 0.042 0.081 0.27 0.014 56 6.1 0.041 0.078 0.26 0.014 6.5 0.044 0.088 0.28 0.015 57 6.4 0.043 0.086 0.28 0.015 6.9 0.047 0.097 0.30 0.017 58 6.8 0.046 0.095 0.29 0.017 7.2 0.049 0.108 0.32 0.018 59 7.1 0.049 0.101 0.31 0.018 7.6 0.052 0.112 0.34 0.020 60 7.5 0.052 0.110 0.33 0.020 8.0 0.056 0.119 0.36 0.022 61 7.9 0.055 0.117 0.35 0.021 8.4 0.058 0.127 0.38 0.023 62 8.2 0.057 0.123 0.37 0.023 8.7 0.061 0.132 0.40 0.025 63. 8.6 0.060 0.130 0.40 0.024 9.1 0.064 0.139 0.43 0.026 64 9.0 0.063 0.137 0.42 0.026 9.5 0.067 0.145 0.45 0.028 65 9.4 0.066 0.143 0.45 0.027 9.9 0.069 0.151 0.48 0.029 66 9.8 0.069 0.150 0.48 0.029 10.3 0.072 0.157 0.52 0.031 67 10.1 0.071 0.154 0.50 0.080 10.8 0.076 0.165 0.59 0.033 68 10.6 0.074 0.162 0.56 0.032 11.2 0.079 O.171 90.63 0.034 69 11.0 0.077 0.168 0.61 0.033 11.6 0.081 0.176 0.68 0.036 70 11.4 0.080 0.173 0.66 0.035 12.0 0.084 0.182 0.73 0.087 71 11.8 0.083 0.179 0.71 0.086 12.5 0.087 0.188 0.79 0.039 72 12.2 0.085 0.184 0.75 0.038 12.9 0.090 0.194 0.83 0.040 73 12.7 0.089 0.191 0.81 0.039 13.4 0.093 0.200 0.89 0.042 74 13.1 0.091 0.194 0.85 0.041 13.9 0.097 0.206 0.94 0.044 75 13.6 0.095 0.203 0.91 0.042 14.3 0.099 0.211 0.98 0.045 76 14.0 0.097 0.207 0.95 0.044 14.8 0.102 0.217 1.03 0.047 77 14.5 0.100 0.214 1.00 0.046 15.38 0.105 0.223 1.09 0.048 78 15.0 0.104 0.220 1.06 0.047 15.8 0.109 0.229 1.14 0.050 79 15.4 0.106 0.224 1.10 0.049 16.3 0.112 0.285 1.19 0.051 80 15.9 0.109 0.230 1.15 0.050 16.8 0.115 0.241 1.24 0.053 122

GROWTH OF PARTS AND ORGANS

TABLE 69—Continued

















MALES FEMALES

weet, ee Heart Ko Liver | Spleen ey _ | Heart Kee Liver | Spleen

mm. gms. gms. gms. gms. gms. gms. gms. gms. gms. | gms. 81 16.4 0.112 0.286 1.20 0.052 17.3 0.118 0.246 1.28 0.055 82 16.9 0.115 0.242 1.24 0.053 17.9 0.121 0.253 1.34 0.057 83 17.4 0.118 0.247 1.29 0.055 18.4 0.124 0.258 1.39 0.058 84 18.0 0.122 0.254 1.35 0.057 19.0 0.128 0.265 1.44 0.060 85 18.5 0.125 0.259 1.40 0.059 19.5 0.131 0.270 1.49 0.062 86 19.0 0.128 0.265 1.44 0.060 20.1 0.1384 0.277 1.54 0.064 87 19.6 0.181 0.271 1.50 0.062 20.7 0.138 0.2838 1.59 0.065 88 20.1 0.1384 0.277 1.54 0.064 21.2 0.141 0.288 1.64 0.067 89 20.7 0.138 0.283 1.59 0.065 21.8 0.144 0.294 1.69 0.069 90 21.3 0.141 0.289 1.64 0.067 22.4 0.147 0.300 1.74 0.07] 91 21.9 0.145 0.296 1.69 0.069 23.1 0.151 0.307 1.79 0.073 92 22.4 0.147 0.300 1.74 0.071 23.7 0.155 0.3813 1.84 0.075 93 23.0 0.151 0.306 1.79 0.072 24.3 0.158 0.319 1.89 0.076 94 23.7 0.155 0.313 1.84 0.075 25.0 0.162 0.326 1.95 0.078 95 24.3 0.158 0.319 1.89 0.076 25.6 0.165 0.332 1.99 0.080 96 24.9 0.161 0.325 1.94 0.078 26.3 0.169 0.339 2.05 0.082 97 25.6 0.165 0.332 1.99 0.080 27.0 0.172 0.344 2.10 0.084 98 26.2 0.168 0.338 2.05 0.082 27.7 0.176 0.352 2.15 0.086 99 26.9 0.172 0.345 2.09 0.084 28.4 0.180 0.359 2.21 0.088 100 27.5 0.175 0.350 2.14 0.086 29.1 0.183 0.365 2.26 0.090 101 28.2 0.178 0.357 2.19 0.088 29.8 0.187 0.372 2.31 0.092 102 28.9 0.182 0.364 2.24 0.090 30.5 0.190 0.3878 2.36 0.094 103 29.6 0.186 0.370 2.29 0.092 31.3 0.194 0.386 2.41 0.097 104 30.3 0.189 0.377 2.34 0.094 32.0 0.198 0.392 2.46 0.099 105 31.1 0.193 0.384 2.40 0.096 32.8 0.202 0.400 2.52 0.101 106 31.8 0.197 0.390 2.45 0.098 33.6 0.206 0.407 2.57 0.103 107 32.5 0.200 0.397 2.50 0.100 34.4 0.209 0.414 2.63 0.106 108 33.3 0.204 0.404 2.55 0.102 35.2 0.2138 0.421 2.68 0.108 109 34.1 0.208 0.411 2.61 0.105 36.0 0.217 0.428 2.73 0.110 110 34.9 0.212 0.419 2.66 0.107 36.9 0.221 0.4386 2.79 0.113 111 35.7 0.216 0.426 2.71 0.109 37.7 0.225 0.444 2.84 0.115 112 36.5 0.219 0.483 2.77 0.112 38.6 0.229 0.451 2.90 0.117 113 37.3 0.223 0.440 2.82 0.114 39.5 0.284 0.459 2.96 0.120 114 38.2 0.227 0.448 2.88 0.116 40.3 0.237 0.466 3.01 0.122 115 39.0 0.231 0.455 2.93 0.118 41.3 0.242 0.475 3.07 0.125 116 39.9 0.235 0.468 2.98 0.121 42.2 0.246 0.483 3.13 0.127 117 40.8 0.239 0.471 3.04 0.123 43.1 0.250 0.491 3.18 0.130 WEIGHTS OF ORGANS ON BODY LENGTH

TABLE 69—Continued


















MALES FEMALES

me, a Heart aes g| Liver | Spleen as Heart kee Liver | Spleen mm. gms. gms. gms. gms. gms. gms. gms. gms. gms. | gms. 118 41.6 0.243 0.478 3.09 0.126 44.1 0.254 0.499 3.24 0.133 119 42.6 0.248 0.486 3.15 0.128 45.0 0.258 0.507 3.29 0.135 120 43.5 0.252 0.494 3.20 0.131 46.0 0.263 0.515 3.35 0.138 121 44.4 0.256 0.502 3.26 0.133 47.0 0.267 0.524 3.41 0.141 122 45.4 0.260 0.510 3.32 0.136 48.0 0.272 0.5382 3.47 0.143 123 46.3 0.264 0.518 3.37 0.139 49.1 0.276 0.542 3.53 0.146 124 47.3 0.269 0.526 3.43 0.141 50.1 0.281 0.550 3.59 0.149 125 48.3 0.273 0.5385 3.49 0.144 51.2 0.285 0.559 3.65 0.152 126 49.3 0.277 0.543 3.54 0.147 52.3 0.290 0.568 3.71 0.155 127 50.4 0.282 0.553 3.61 0.150 53.4 0.295 0.578 3.77 0.158 128 51.4 0.286 0.561 3.66 0.152 54.5 0.299 0.587 3.83 0.161 129 52.5 0.291 0.570 3.72 0.155 55.6 0.304 0.596, 3.89 0.164 130 53.6 0.295 0.579 3.78 0.158 56.8 0.309 0.606 3.96 0.167 131 54.7 0.300 0.588 3.84 0.161 58.0 0.314 0.616 4.02 0.170 132 55.8 0.305 0.598 3.90 0.164 59.2 0.319 0.626 4.09 0.173 133 56.9 0.309 0.607 3.96 0.167 60.4 0.324 0.685 4.15 0.177 134 58.1 0.314 0.617 4.03 0.171 61.6 0.328 0.645 4.21 0.180 135 59.3 0.319 0.626 4.09 0.174 62.9 0.334 0.656 4.28 0.183 136 60.5 0.324 0.636 4.15 0.177 64.2 0.339 0.666 4.35 0.187 137 61.7 0.329 0.646 -4.22 0.180 65.5 0.344 0.677 4.41 0.190 138 62.9 0.384 0.656 4.28 0.183 66.8 0.349 0.687 4.48 0.194 139 64.1 0.3388 0.666 4.34 0.186 68.1 0.354 0.698 4.54 0.197 140 65.4 0.344 0.676 4.41 0.190 69.5 0.360 0.709 4.61 0.201 141 66.7 0.349 0.687 4.47 0.193 70.9 0.365 0.720 4.68 0.204 142 68.0 0.354 0.697 4.54 0.197 72.3 0.370 0.732 4.75 0.208 143 69.3 0.359 0.708 4.60 0.200 73.7 0.376 0.743 4.82 0.212 144 70.7 0.364 0.719 4.67 0.204 75.2 0.382 0.755 4.89 0.216 145 72.1 0.370 0.730 4.74 0.208 76.7 0.387 0.767 4.97 0.220 146 73.5 0.375 0.741 4.81 0.211 78.2 0.393 0.779 5.04 0.224 147 74.9 0.380 0.752 4.88 0.215 79.7 0.399 0.791 5.11 0.228 148 76.3 0.386 0.764 4.95 0.219 81.3 0.405 0.8038 5.19 0.232 149 77.8 0.391 0.775 5.02 0.223 82.8 0.410 0.815 5.26 0.236 150 79.3 0:397 0.787 5.09 0.227 84.4 0.416 0.828- 5.33 0.240 151 80.8 0.403 0.799 5.16 0.230 86.1 0.422 0.841 5.41 0.244 152 82.4 0.409 0.812 5.24 0.235 87.7 0.428 0.854 5.48 0.248 153 83.9 0.414 0.824 5.31 0.239 89.4 0.435 0.867 5.56 0.253 124

GROWTH OF PARTS AND ORGANS

TABLE 69—Continued


MALES

FEMALES

















inn ae Heart eee Liver | Spleen ee Heart ee Liver | Spleen mm. | gms gms. | gms. | gms. gms. gms. gms. | gms. | gms. | gms. 154 85.5 0.420 0.836 5.38 0.243 91.1 0.441 0.880 5.64 0.257 155 87.1 0.426 0.849 5.46 0.247 92.9 0.447 0.894 5.72 0.262 156 : 88.7 0.4382 0.862 5.53 0.251 94.6 0.458 0.908 5.80 0.266 157 90.4 0.488 0.875 5.61 0.255 96.4 0.460 0.922 5.88 0.271 158 92.1 0.444 0.888 5.68 0.260 98.3 0.467 0.987 5.96 0.276 159 93.8 0.450 0.901 5.76 0.264 100.1 0.473 0.951 6.04 0.281 160 95.6 0.457 0.916 5.84 0.269 102.0 0.480 0.965 6.12 0.285 161 97.3 0.463 0.929 5.92 0.273 103.9 0.486 0.980 6.21 0.290 “162 99.2 0.470 0.944 6.00 0.278 105.9 0.493 0.996 6.29 0.295 163 101.0 0.476 0.958 6.08 0.283 107.9 0.500 1.011 6.38 0.301 164 102.8 0.4838 0.971 6.16 0.287 109.9 0.507 1.026 6.47 0.306 165 104.7 0.489 0.986 6.24 0.292 111.9 0.514 1.042 6.55 0.311 166 106.7 0.496 1.002 6.33 0.298 114.0 0.522 1.058 6.64 0.316 167 108.6 0.502 1.016 6.41 0.302 116.1 0.529 1.074 6.73 0.322 168 110.6 0.510 1.0382 6.50 0.308 118.3 0.5386 1.091 6.82 0.327 169 112.6 0.517 1.047 6.58 0.313 120.5 0.544 1.108 6.92 0.3383 170 114.7 0.524 1.063 6.67 0.318 422.7 0.551 1.125 7.01 0.339 171 s-:116.7 0.581 1.079 6.76 0.323 125.0 0.559 1.142 7.10 0.344 172 118.9 0.588 1.096 6.85 0.329 127.3 0.567 1.160 7.20 0.350 173 121.0 0.545 1.112 6.94 0.334 129.6 0.575 1.178 7.29 0.356 174 123.2 0.553 1.129 7.03 0.340 132.0 0.5838 1.196 7.39 0.362 175 125.4 0.560 1.145 7.12 0.345 134.4 0.591 1.214 7.49 0.368 176 «127.7 0.568 1.168 7.22 0.351 136.8 0.599 1.282 7.59 0.375 177 —-:180.0 0.576 1.181 7.31 0.357 139.3 0.607 1.251 7.69 0.381 178 182.3 0.584 1.198 7.40 0.363 141.9 0.615 1.271 7.79 0.387 179 «134.6 0.591 1.216 7.50 0.369 144.4 0.624 1.290 7.89 0.394 180 187.0 0.599 1.234 7.60 0.375 147.1 0.632 1.311 8.00 0.401 181 189.5 0.607 1.253 7.70 0.381 149.7 0.641 1.330 8.10 0.407 182 142.0 0.616 1.272 7.80 0.388 152.4 0.650 1.851 8.21 0.414 183 144.5 0.622 1.291 7.90 0.394 155.2 0.659 1.372 8.32 0.421 184 147.0 0.6382 1.310 8.00 0.400 158.0 0.668 1.893 8.43 0.428 185 149.6 0.641 1.330 8.10 0.407 160.8 0.677 1.414 8.54 0.435 186 152.3 0.649 1.350 ° 8.21 0.414 163.7 0.686 1.486 8.65 0.443 187 155.0 0.658 1.870 8.381 0.421 166.6 0.696 1.458 8.77 0.450 188 157.7 0.667 1.391 8.42 0.428 169.6 0.705 1.481 8.88 0.458 189 160.5 0.676 1.412 8.53 0.435 172.6 0.715 1.503 9.00 0.465 190 163.3 0.685 1.4838 8.64 0.442 175.7 0.725 1.526 9.12 0.473 WEIGHTS OF ORGANS ON BODY LENGTH

TABLE 69—Continued

125
















MALES FEMALES eels ee Heart Ke, | Liver | Spleen i, Heart ia 3| Liver | Spleen mm gms. gms. | gms. | gms. | gms. gms. gms. | gms. | gms. | gms. 191 166.2 0.694 1.455 8.75 0.449 178.8 0.734 1.550 9.23 0.481 192 169.1 0.704 1.477 8.86 0.456 182.0 0.744 1.574 9.36 0.489 1938 172.0 0.713 1.499 8.98 0.464 185.2 0.755 1.598 9.48 0.497 194 175.0 0.722 1.521 9.09 0.471 188.5 0.765 1.622 9.60 0.505 195 178.1 0.732 1.544 9.21 0.479 191.9 0.776 1.648 9.73 0.514 196 181.2 0.742 1.568 9.33 0.487 195.3 0.786 1.67. 9.86 0.522 197 184.3 0.752 1.591 9.45 0.495 198.7 0.797 .1.699 9.99 0.531 198 187.5 0.762 1.615 9.57 0.503 202.2 0.808 1.725 10.12 0.540 199 190.8 0.772 1.640 9.69 0.511 205.8 0.819 1.752 10.25 0.549 200 194.1 0.782 1.664 9.82 0.519 209.4 0.830 1.779 10.39 0.558 201 197.4 0.793 1.689 9.94 0.528 213.1 0.841 1.806 10.52 0.567 202 200.8 0.803 1.714 10.07 0.536 216.8 0.853 1.834 10.66 0.577 203 204.3 0.814 1.740 10.20 0.545 220.7 0.865 1.863 10.80 0.586 204 207.8 0.825 1.767 10.33 0.554 224.5 0.876 1.891 10.94 0.596 205 211.4 0.836 1.793 10.46 0.563 228.4 0.888 1.920 11.09 0.606 206 215.0 0.847 1.820 10.59 0.572 232.4 0.900 1.950 11.23 0.616 207 218.7 0.859 1.848 10.73 0.581 236.5 0.913 1.980 11.38 0.626 208 222.5 0.870 1.876 10.87 0.591 240.6 0.925 2.011 11.53 0.636 209 4226.3 0.882 1.904 11.01 0.600 244.8 0.938 2.042 11.68 0.647 210 230.2 0.894 1.933 11.15 0.610 249.1 0.951 2.074 11.84 0.657 211 234.1 0.905 1.962 11.29 0.620 253.4 0.964 2.106 11.99 0.668 212 238.1 0.918 1.992 11.44 0.630 257.8 0.977 2.1388 12.15 0.679 213 49242.2 0.930 2.023 11.59 0.640 262.3 0.990 2.171 12.31 0.691 214 246.3 0.942 2.053 11.74 0.6350 266.9 1.004 2.205 12.47 0.702 215 250.5 0.955 2.084 11.89 0.661 271.5 1.018 2.239 12.64 0.713 216 254.7 0.968 2.115 12.04 0.671 276.2 1.082 2.274 12.80 0.725 217 «259.1 0.981 2.148 12.20 0.683 281.0 1.046 2.310 12.97 0.737 218 263.5 0.994 2.180 12.35 0.694 285.8 1.060 2.345 13.14 0.749 219 267.9 1.007 2.213 12.50 0.704 290.8 1.075 2.382 13.32 0.762 220 272.5 1.021 2.247 12.67 0.716 295.8 1.090 2.419 13.50 0.774 221 277.1 1.084 2.281 12.84 0.727 300.9 1.105 2.457 13.67 0.787 222 281.8 1.048 2.316 13.00 0.739 306.1 1.120 2.495 13.86 0.800 223 4«06286.5 1.062 2.3850 13.17 0.751 311.3 1.185 2.583 14.04 0.813 224 291.4 1.077 2.386 13.34 0.763 316.7 1.151 2.573 14.23 0.826 225 296.3 1.091 2.423 13.51 0.775 322.1 1.167 2.613 14.41 0.840 226 301.3 1.106 2.460 13.69 0.788 327.7 1.183 2.654 14.61 0.854 227 «306.4 1.121 2.497 13.87 0.801 333.3 1.200 2.695 14.80 0.868 126

GROWTH OF PARTS AND ORGANS

TABLE 69—Concluded


MALES

FEMALES















ioe Boi Heart Were Liver | Spleen aS. Heart kitty Liver | Spleen mm, gms. gms. gms. gms. gms. gma. gms. gme. gms. gms. 228 311.5 1.186 2.535 14.05 0.813 339.0 1.216 2.737 15.00 0.882 229 316.8 1.152 2.574 14.23 0.826 344.8 1.233 2.780 15.20 0.896 230 322.1 1.167 2.613 14.41 0.840 350.7 1.250 2.823 15.40 0.911 231 327.5 1.183 2.652 14.60 0.853 356.7 1.268 2.867 15.61 0.926 232 ©333.0 1.199 2.693 14.79 0.867 362.8 1.285 2.912 15.82 0.941 233 388.6 1.215 2.734 14.99 0.881 369.0 1.308 2.957 16.03 0.956 234 344.3 1.232 2.776 15.18 0.895 875.3 1.321 3.004 16.24 0.972 235 350.0 1.248 2.818 15.38 0.909 381.7 1.340 3.050 16.46 0.988 236 «6355.9 1.265 2.861 15.58 0.924 388.2 1.358 3.098 16.68 1.004 ‘237 «=: 361.9 1.283 2.905 15.79 0.939 394.9 1.377 3.147 16.91 1.021 238 367.9 1.300 2.949 15.99 0.954 401.6 1.397 3.196 17.14 1.037 239 «374.1 1.318 2.995 16.20 0.969 408.4 1.416 3.246 17.37 1.054 240 380.3 1.386 3.040 16.42 0.984 415.4 1.486 3.297 17.61 1.072 241 386.6 1.354 3.086 16.63 1.000 422.4 1.456 3.349 17.84 1.089 242 393.1 1.372 3.134 16.85 1.016 429.6 1.477 3.401 18.08 1.107 243 «4399.6 1.391 3.182 17.07 1.032 436.9 1.497 3.455 18.33 1.125 244 406.3 1.410 3.231 17.30 1.049 444.3 1.518 3.509 18.58 1.143 245 413.1 1.429 3.280 17.53 1.066 451.9 1.540 3.564 18.838 1.162 246 419.9 1.449 3.330 17.76 1.083 459.5 1.561 3.620 19.09 1.181 247 426.9 1.469 3.381 17.98 1.100 467.3 1.583 3.677 19.35 1.200 248 434.0 1.489 3.483 18.23 1.118 475.2 1.606 3.734 19.61 1.220 249 441.2 1.509 3.486 18.47 1.136 483.3 1.628 3.794 °19.88 1.240 250 «4448.5 1.580 3.539 18.72 1.154 491.5 1.652 3.853 20.15 1.260 WEIGHTS OF ORGANS ON BODY LENGTH 127

TABLE 70 Giving for each sex the weights of body, lungs, blood, alimentary tract and gonads (testes and ovaries) for each millimeter of body length. See Charts 15, 16, 17, 21 and 22.


MALES FEMALES


Body | Body Alimen. Body Alimen. . length woikht Lungs | Blood |“*;hct_ | Testes weight Lungs | Blood |*", tice | Ovaries













mm. gms. gms gms. gms gms. gms gms. gms gms. gms. 474.9 0.078 0.44 0.14 0.008 4.7 0.078 0.41 0.14 0.0006 48 4.9 0.079 0.44 0.14 0.00 4.7 0.079 0.41 0.14 0.0006 49 5.0 0.080 0.45 0.15 0.00f 4.9 0.080 0.43 0.15 0.0008 50 5.1 0.081 0.45 0.15 0.008 5.0 0.081 0.44 0.15 0.0009 51 5.2 0.082 0.46 0.15 0.00 5.1 0.082 0.45 0.15 0.0009 52 5.3 0.083 0.47 0.16 0.006 5.3 0.084 0.47 0.16 0.0010 53 5.4 0.085 0.48 0.16 0.006 5.5 0.086 0.49 0.16 0.0011 54 5.6 «0.087 0.50 0.17 0:007 5.8 0.090 0.51 0.18 0.0013 55 5.8 0.090 0.51 0.18 0.007 6.2 0.094 0.54 0.19 0.0015 56 6.1 0.093 0.53 0.19 0.009 6.5 0.097 0.56 0.20 0.0016 57. «6.4 «(0.096 «(0.56 «420.20 0.011 6.9 0.102 0.60 0.22 0.0019 5S 6.8 0.101 0.59 0.21 0.018 7.2 0.105 0.62 0.23 0.0020 59 «7.1 C.10f 0.61 0.22 0.016 7.6 0.109 0.65 0.24 0.0022 60 7.5 0.108 0.64 0.24 0.019 8.0 0.113 0.68 06.25 0.0024 61 7.9 0.112 0.67 0.25 0.023 8.4 0.117 0.71 0.27 0.0025 62 8.2 0.115 0.69 0.26 0.026 8.7 0.120 0.73 0.27 0.0026 63 8.6 0.119 0.73 0.27 0.0381 9.1 0.124 0.76 0.28 0.0028 64 9.0 0.123 0.76 0.28 0.086 9.5 0.128 0.79 0.30 0.0029 65 9.4- 0.127 0.79 0.29 0.041 9.9 0.131 0.82 0.31 0.0031 66 9.8 0.130 0.82 0.30 0.017 10.3 0.135 0.85 0.34 0.0032 67 10.1 0.133 0.8f 0.31 0.050 10.8 0.139 0.89 0.41 0.0034 68 10.6 0.188 0.88 0.39 0.051 11.2 0.143 0.92 0.47 0.0035 69 11.0 0.141 0.91 0.44 0.052 11.6 0.146 0.95 0.52 0.0036 70 11.4 0.145 0.93 0.50 0.053 12.0 0.150 0.98 0.58 0.0037 71 11.8 0.1448 0.96 0.55 0.054 12.5 0.154 1.02 0.64 0.0039 72 12.2 0.152 0.99 0.60 0.055 12.9 0.157 1.04 0.69 0.0010 73° 12.7 0.155 1.08 0.67 0.057 13.4 0.161 1.08 0.76 (.0041 74 13.1 0.159 1.06 0.72 0.058 13.9 0.165 1.12 0.82 0.0042 7 13.6 0.163 1.10 0.78 0.060 14.3 0.169 1.13 0.87 0.C043 76 14.0 0.166 1.12 0.83 0.061 14.8 C.173 1.18 0.93 0.0044 77 «14.5 0.170 1.16 0.89 0.063 15.3 0.177 1.22 0.99 C.0C46 78 15.0 0.174 1.20 0.95 0.065 15.8 0.180 1.25 1.04 0.0047 79 15.4 O.177 1.28 1.00 0.067 16.3 0.184 1.29 1.10 0.0048 80 15.9 0.181 1.26 1.05 0.069 16.8 0.188 1.33 1.16 0.0049 128 GROWTH OF PARTS AND ORGANS

TABLE 70—Continued


MALES FEMALES


Body | Body Alimen. Body Alimen. . Tenet hn lerceieice Lungs | Blood an Testes Seis Lungs | Blood “Tae Ovaries













mm. gms. gma. gms. gms. gms. gms. gms. gms, gms. gms. 81 16.4 0.185 1.80 1.11 0.071 17.3 0.192 1.36 1.21 0.0050 82 16.9 0.189 1.3838 1.17 0.073 17.9 0.196 1.40 1.28 0.0051 83 17.4 0.193 1.37 1.22 0.076 18.4 0.200 1.44 1.33 0.0052 84 18.0 0.197 1.41 1.29 0.078 19.0 0.204 1.48 1.39 0.0053 8 18.5 0.201 1.45 1.84 0.081 19.5 0.208 1.52 1.44 0.0054 86. 19.0 0.204 1.48 1.389 0.084 20.1 0.212 1.56 1.50 0.0055 87 19.6 0.209 1.52 1.45 0.087 20.7 0.216 1.60 1.56 0.0056 88 20.1 0.212 1.56 1.50 0.089 21.2 0.220 1.68 1.61 0.0057 89 20.7 0.216 1.60 1.56 0.093 21.8 0.224 1.68 1.67 0.0058 90 21.3 0.221 1.64 1.62 0.096 22.4 0.228 1.72 1.73 0.0058 91 21.9 0.225 1.68 1.68 0.100 23.1 0.233 1.76 1.79 0.0059 92 22.4 0.228 1.72 1.73 0.108 23.7 0.237 1.81 1.85 0.0060 93 238.0 0.282 1.76 1.78 0.107 24.3 0.241 1.85 1.90 0.0061 94 23.7 0.237 1.81 1.85 0.112 25.0 0.246 1.90 1.96 0.0062 95 24.38 0.241 1.85 1.90 0.116 25.6 0.250 1.94 2.02 0.0063 96 24.9 0.245 1.89 1.96 0.120 26.3 0.254 1.98 2.08 0.0064 97 25.6 0.250 1.94 2.02 0.125 27.0 0.259 2.03 2.14 0.0065 98 26.2 0.254 1.98 2.07 0.130 27.7 0.264 2.08 2.20 0.0066 99 26.9 0.258 2.02 2.13 0.135 28.4 0.268 2.138 2.25 0.0067 100 27.5 0.262 2.06 2.18 0.140 29.1 (0.273 2517 2RSiORO0GT 101. 28.2 0.267 2.11 2.24 0.145 29.8 0.277 2.22 2.37 0.0068 102 28.9 0.271 2.16 2.30 0.151 30.5 0.282 2.27 2.42 0.0069 103. «29.6 0.276 2.21 2.35 0.157 31.3 0.287 2.32 2.49 0.0070 104. 30.38 0.280 2.25 2.41 0.163 32.0 0.291 2.37 2.54 0.0071 105 31.1 0.285 2.31 2.47 0.171 82.8 0.296 2.42 2.60 0.0071 106 31.8 0.290 2.35 2.53 0.177 33.6 0.301 2.47 2266 (020072 107. 32.5 0.294 2.40 2.58 0.184 34.4 0.306 2.53 2.72 0.0073 108 33.3 0.299 2.45 2.64 0.192 35.2 0.311 2.58 2.78 0.0074

109 34.1 0.3804 2.51 2.70 0.200 36.0 0.316 2.68 2.84 0.0075 110 34.9 0.309 2.56 2.76 0.208 36.9 0.321 2.69 2.90 0.0075

lil 35.7 0.314 2.61 2.82 0.216 37.7 0.326 2.74 2.96 0.0076 112 36.5 0.319 2.66 2.88 0.225 38.6 0.382 2.80 3.02 0.0077 113 387.3 0.824 2.72 2.938 0.234 39.5 0.337 2.86 3.09 0.0078 114 38.2 0.329 2.78 3.00 0.244 40.3 0.342 2.91 3.14 0.0078 115 39.0 0.334 2.83 3.05 0.253 41.3 0.348 2.98 3.21 0.0079 116 39.9 0.339 2.89 8.11 0.264 42.2 0.353 3.04 3.27 0.0080 117. 40.8 0.345 2.95 3.17 0.275 43.1 0.358 3.09 3.33 0.0081 WEIGHTS OF ORGANS ON BODY LENGTH 129

TABLE 70—Continued
















MALES , FEMALES

ody | eegy, | Lungs | Blood | Aten.) Testes || Body | Lungs | Blood | Alime™-| Ovaries mm gms. gms. gms. gms, gms. gms. gms. gms. gms. gms. 118 441.6 0.349 3.00 3.23 0.285 44.1 0.364 3.16 3.39 0.0081 119 42.6 0.355 3.06 3.29 0.298 45.0 0.369 3.22 3.45 0.0082 120, 48.5 0.361 3.12 3.35 0.309 46.0 0.375 3.28 3.51 0.0083 121 44.4 0.366 3.18 3.41 0.321 47.0 0.381 3.35 3.58 0.0084 122 45.4 0.372 3.24 3.47 0.385 48.0 0.387 3.41 3.64 0.0084 123 46.3 0.377 «3.30 3.53 0.348 49.1 0.393 3.48 3.71 0.0085 124 47.3 0.383 3.36 3.59 0.362 50.1 0.399 3.54 3.77 0.0086 125 48.3 0.389 3.48 3.66 0.377 51.2 0.405 3.61 3.83 0.0086 126 49.3 0.394 3.49 3.72 0.392 52.3 0.411 3.68 3.90 0.0087 127 50.4 0.401 3.56 3.78 0.408 53.4 0.418 3.75 3.96 0.0088 128 51.4 0.406 3.63 3.84 0.424 54.5 0.424 3.82 4.03 0.0089 129 52.5 0.4138 3.69 3.91 0.442 55.6 0.430 3.89 4.09 0.0089 130 53.6 0.419 3.76 3.97 0.460 56.8 0.437 3.97 4.15 0.0090 131 54.7 0.425 3.83 4.04 0.478 58.0 0.444 4.04 4.22 0.0091 132 55.8 0.431 3.90 4.10 0.497 59.2 0.450 4.12 4.29 0.0091 1383 56.9 0.437 3.97 4.16 0.516 60.4 0.457 4.19 4.36 0.0092 134 58.1 0.444 4.05 4.23 0.537 61.6 0.464 4.27 4.42 0.0093 18 59.3 0.431 4.12 4.30 0.559 62.9 0.471 4.35 4.49 0.0093 136 60.5 0.458 4.20 4.36 0.581 64.2 0.478 4.43 4.56 0.0094 137 61.7 0.464 4.27 4.43 0.604 65.5 0.485 4.51 4.63 0.0095 138 62.9 0.471 4.35 4.49 0.627 66.8 0.492 4.59 4.70 0.0099 139 64.1 0.477 4.42 4.56 0.651 68.1 0.499 4.67 4.77 0.0102 1440 65.4 0.485 4.50 4.63 0.677 69.5 0.507 4.76 4.84 0.0106 141 66.7 0.492 4.58 4.70 0.704 70.9 0.515 4.84 4.91 0.0110 142 68.0 0.499 4.66 4.76 0.731 72.3 0.522 4.93 4.98 0.0115 143 69.3 0.506 4.74 4.83 0.759 73.7 0.580 5.01 5.05 0.0120 144 70.7 0.514 4.83 4.90 0.790 75.2 0.5388 5.11 5.18 0.0126 1445 72.1 0.521 4.92 4.97 0.821 76.7 0.546 5.20 5.20 0.0132 146 73.5 0.529 5.00 5.04 0.853 78.2 0.554 5.29 5.27 0.0139 147 74.9 0.586 5.09 5.11 0.885 79.7 0.562 5.388 5.35 0.0147 148 76.3 0.544 5.17 5.18 0.918 81.3 0.871 5.48 5.42 0.0155 149 77.8 0.552 5.27 5.26 0.955 82.8 0.579 5.57 5.50 0.0164 150 79.3 0.560 5.36 5.34 0.991 84.4 0.587 5.67 5.57 0.0173 151 80.8 0.568 5.45 5.40 1.031 86.1 0.596 5.77 5.65 0.0184 152 82.4 0.577 5.54 5.48 1.055 87.7 0.605 5.86 5.72 0.0195 153 83.9 0.585 5.64 5.55 1.078 89.4 0.614 5.97 5.80 0.0207 130

GROWTH OF PARTS AND ORGANS

TABLE 70—Continued


MALES

FEMALES













eek, ay, Lungs | Blood Alien. Testes ee. Lungs | Blood Sy Ovaries mm. gms. gms, gms. gms. gms. gms. gms. gms, gms. gms. 154 85.5 0.593 5.73 5.63 1.102 91.1 0.623 6.07 5.88 0.0219 155 87.1 0.602 5.838 5.70 1.125 92.9 0.632 6.18 5.96 0.0233 156 88.7 0.610 5.92 5.77 1.148 94.6 0.641 6.28 6.04 0.0247 157. 90.4 0.619 6.03 5.85 1.173 96.4 0.651 6.389 6.12 0.0262 158 92.1 0.628 6.13 5.93 1.196 98.3 0.661 6.50 6.20 0.0279 159 93.8 0.637 6.23 6.00 1.219 100.1 0.670 6.61 6.28 0.0296 160 95.6 0.646 6.34 6.08 1.2438 102.0 0.680 6.72 6.46 0.0314 161 97.3 0.655 6.44 6.16 1.265 103.9 0.690 6.838 6.44 0.0334 162 99.2 0.665 6.55 6.24 1.290 105.9 0.700 6.95 6.538 0.0344 163 101.0 0.675 6.66 6.32 1.313 107.9 0.711 7.07 6.62 0.0377 164 102.8 0.684 6.77 6.40 1.335 109.9 0.721 7.18 6.70 0.0400 165 104.7 0.694 6.88 6.48 1.358 111.9 0.731 7.30 6.78 0.0411 166 106.7 0.704 7.00 6.56 1.882 114.0 0.742 7.43 6.87 0.0419 167 108.6 0.714 7.11 6.65 1.404 116.1 0.753 7.55 6.96 0.0425

> 168 110.6 0.725 7.28 6.73 1.428 118.3 0.764 7.68 7.05 0.0431

- 169 112.6 0.7385 7.34 6.81 1.450 120.5 0.776 7.81 7.14 0.0435 170 114.7 0.746 7.47 6.90 1.473 122.7 0.787 7.938 7.28 0.0439 171 116.7 0.756 7.58 6.98 1.495 125.0 0.799 8.07 7.32 0.0443 172 118.9 0.768 7.71 7.07 1.519 127.3 0.811 8.20 7.41 0.0446 173 121.0 0.778 7.88 7.16 1.541 129.6 0.822 8.33 7.50 0.0449 174 123.2 0.790 7.96 7.25 1.564 132.0 0.8385 8.47 7.60 0.0452 175 125.4 0.801 8.09 7.33 1.586 134.4 0.847 8.61 7.69 0.0455 176 127.7 0.818 8.22 7.48 1.609 186.8 0.859 8.75 7.78 0.0457 177 130.0 0.824 8.36 7.52 1.682 139.3 0.872 8.89 7.88 0.0459 178 132.3 0.886 8.49 7.61 1.654 141.9 0.885 9.04 7.98 0.0462 179 184.6 0.848 8.62 7.70 1.675 144.4 0.898 9.19 8.07 0.0464 180 1387.0 0.860 8.76 7.79 1.698 147.1 0.911 9.34 8.18 0.0466 181 139.5 0.873 8.90 7.89 1.721 149.7 0.925 9.49 8.28 0.0468 182 142.0 0.886 9.05 7.98 1.748 152.4 0.9388 10.22 8.38 0.0469 183 144.5 0.898 9.19 8.08 1.765 155.2 0.952 10.39 8.48 0.0471 184 147.0 0.911 9.26 8.17 1.787 158.0 0.967 10.56 8.58 0.0473 185 149.6 0.924 9.383 8.27 1.809 160.8 0.981 10.73 8.69 0.0474 186 152.3 0.9388 9.40 8.37 1.8382 163.7 0.995 10.90 8.79 0.0476 187 155.0 0.951 9.50 8.47 1.854 166.6 1.010 11.07 8.90 0.0477 188 157.7 0.965 9.64 8.57 1.876 169.6 1.025 11.25 9.01 0.0479 189 160.5 0.979 9.80 8.68 1.898 172.6 1.040 11.48 9.12 0.0480 190 163.3 0.998 9.95 8.78 1.920 175.7 1.055 11.62 9.23 0.0482 WEIGHTS OF ORGANS ON BODY LENGTH

TABLE 70—Continued

131















MALES FEMALES i gy. Lungs | Blood |Alimen.| Testes eee! Lungs | Blood |Alimen| Ovaries mm. gms. gmé. gms. gms gms. gms. gms. gms. gms. gms. 191 166.2 1.008 10.11 8.88 1.942 178.8 1.071 11.80 9.34 0.0483 192 169.1 1.022 10.27 8.99 1.964 182.0 1.087 11.99 9.45 0.0484 193 172.0 1.037 10.438 9.09 1.985 185.2 1.103 12.18 9.56 0.0485 194 175.0 1.052 10.59 9.20 2.007 188.5 1.119 12.38 9.68 0.0487 195 178.1 1.067 10.76 9.31 2.080 191.9 1.186 12.58 9.80 0.0488 196 181.2 1.083 10.93 9.42 2.0512 195.3 1.153 12.78 9.92 0.0489 197 184.3 1.098 11.10 9.53 2.073 198.7 1.170 12.98 10.03 0.0490 198 187.5 1.114 11.27 9.64 2.094 202.2 1.188 13.18 10.15 0.0491 199 190.8 1.131 11.45 9.76 2.117 205.8 1.206 13.39 10.28 0.0492 200 194.1 1.147 11.63 9.87 2.1388 209.4 1.223 13.61 10.40 0.0493 201 197.4 1.164 11.81 9.99 2.159 213.1 1.242 13.82 10.53 0.0494 202 200.8 1.181 11.99 10.11 2.181 216.8 1.260 14.04 10.65 0.0495 203 «4204.3 1.198 12.18 10.23 2.203 220.7 1.279 14.26 10.78 0.0496 204 207.8 1.215 12.36 10.35 2.224 224.5 1.298 14.48 10.91 0.0497 205 4211.4 1.233 12.56 10.47 2.246 228.4 1.317 14.71 11.04 0.0498 206 «215.0 1.251 12.75 10.59 2.267 232.4 1.337 14.94 11.17 0.0499 207) «218.7 1.269 12.95 10.71 2.289 286.5 1.357 15.18 11.31 0.0500 208 222.5 1.288 18.15 10.84 2.311 240.6 1.378 15.42 11.44 0.0501 209 226.3 1.307 13.35 10.97 2.332 244.8 1.398 15.66 11.58 0.0502 210 230.2 1.326 138.46 11.10 2.354 249.1 1.419 15.90 11.72 0.0503 211 «234.1 1.346 13.76 11.23 2.375 253.4 1.441 16.15 11.86 0.0504 212 «238.1 1.365 13.98 11.36 2.397 257.8 1.462 16.41 12.00 0.0505 213 242.2 1.386 14.19 11.49 2.418 262.3 1.484 16.66 12.14 0.0506 214 246.3 1.406 14.41 11.63 2.489 266.9 1.507 16.92 12.29 0.0507 215 4250.5 1.426 14.63 11.76 2.461 271.5 1.530 17.19 12.44 0.0508 216 «4254.7 1.447 14.85 11.90 2.482 276.2 1.553 17.45 12.59 0.0508 217) «=259.1 1.469 15.08 12.04 2.503 281.0 1.576 17.73 12.74 0.0509 218 263.5 1.490 15.31 12.18 2.525 285.8 1.600 18.00 12.89 0.0510 219 267.9 1.512 15.54 12.32 2.546 2090.8 1.624 18.28 13.05 0.0511 220 «272.5 1.534 15.78 12.47 2.567 295.8 1.648 18.57 13.21 0.0512 221) «(277.1 1.557 16.02 12.62 2.588 300.9 1.673 18.85 13.36 0.0512 222 «281.8 1.580 16.26 12.77 2.609 306.1 1.705 19.15 13.53 0.0513 223 «0286.5 1.603 16.55 12.91 2.630 311.3 1.724 19.44 13.69 0.0514 224 291.4 1.627 16.76 13.07 2.652 3167 1.751 19.74 13.85 0.0515 225 296.3 1.651 17.02 13.22 2.673 322.1 1.777 20.05 14.02 0.0516 226 «4301.3 1.675 17.27 13.38 2.694 327.7 1.804 20.36 14.19 0.0516 227 «306.4 1.700 17.54 18.54 2.715 333.3 1.831 20.67 14.36 0.0517 132

GROWTH OF PARTS AND ORGANS

TABLE 70—Concluded


MALES

FEMALES


Body length

Body weight

Lungs

Blood

Alimen.

tract

Testes

Body weight

Lungs

Blood

Alimen.

tract

Ovaries



gms.



gms.


gms.


gms.


gms.


gms.


gms.

ams,


gms.


228 229 230

231 232 233 234 235 236 237 238 239 240

241 242 243 244 245 246 247 248 249 250

311.5 316.8 322.1

327.5 333 .0 338 .6 344.3 350.0 355.9 361.9 367.9 374.1 380.3

386 .6 393.1 399.6 406.3 413.1 419.9 426.9 434.0 441.2 448.5

17.80 18.07 18.34

18.62 18.90 TORS 19.47 19.77 20.07 20.37 20.68 20.99 21.30

21.62 21.95 22.27 22.61 22.95 23.28 23.64 23.99 24.35 24.71

13.74 13.86 14.02

14.19 14.35 14.52 14.68 14.87 15.05 15.23 15.41 15.59 15.78

15.97 16.16 16.35 16.55 16.75 16.95 17.15 17 .36 17.57 17.78

2.736 2.757 2.778

2.799 2.820 2.841 2.862

2.904 2.926 2.946 2.967

+ 8

ooo IT ©

Co Oo Oo OO GO GO tO GO OO IaSoS OmnRhWWN Ee SO

wo _ =) a

339.0 344'8 350.7

356.7 362.8 369.0 375.3 381.7 388 .2 394.9 401.6 408 .4 415.4

422.4 429.6 436 .9 444.3 451.9 459.5 467 .3 475.2 483 .3 491.5

1.859 1.887 1.916

1.945 1.975 2.005 2.035 2.067 2.098 2.130 2.163 2.196 2.230

2.264 2.298 2.334 2.369 2.406 2.443 2.480 2.518 2.557 2.597

20.99 21.31 21.64

21.97 22.31 22.65 23.00 23.35 23.71 24.08 24.45 24.82 25.20

25.58 25.98 26.37 26.77 27.18 27 .60 28 .02 28.45 28 .89 29.32

14.54 14.71 14.89

15.07 15.26 15.44 15.63 15.82 16.01 16.21 16.41 16.61 16.82

17.02 17.23 17.45 17.66 17.88 18.10 18.33 18.55 18.79 19.02

0.0518 0.0519 0.0519

0.0520 0.0521 0.0522 0.0522 0.0523 0.0524 0.0524 0.0525 0.0526 0.0526

0.0527 0.0528 0.0529 0.0529 0.0530 0.0531 0.0531 0.0532 0.0532 0.0533 WEIGHTS OF ORGANS ON BODY LENGTH

TABLE 71

133

Giving for each sex the weights of body, hypophysis, suprarenals and thyroid jor each millimeter of body length. See charis 18, 19, and 20.














MALES FEMALES

a

5 Body. | Gere | Supt | Thyroid |] Body weight] ByPo” | Supre | thyroid

A

mm. gms. gms. gma. gms. gms. gms. gms. gms. 50. 5.1 0.0005 0.0017 0.0015 5.0 0.0005 0.0017 0.0014 51 5.2 0.0005 0.0017 0.0015 5.1 0.0005 0.0017 0.0015 52 5.3 0.0005 0.0017 0.0015 5.3 0.0005 0.0018 0.0015 53 5.4 0.0005 0.0018 0.0016 5.5 0.0006 0.0019 0.0016 54 5.6 0.0005 0.0019 0.0016 5.8 0.0006 0.0021 0.0017 55 5.8 0.0006 0.0021 0.0017 6.2 0.0006 0.0024 0.0018 56 6.1 0.0006 0.0023 0.0018 6.5 0.0006 0.0026 0.0019 57 6.4 0.0006 0.0025 0.0018 6.9 0.0007 0.0028 0.0020 58 6.8 0.0007 0.0027 0.0019 7.2 0.0007 0.0030 0.0021 59 7.1 0.0007 0.0029 0.0020 7.6 0.0007 0.0032 0.0022 60 7.5 0.0007 0.0031 0.0021 8.0 0.0008 0.0034 0.0023 61 7.9 0.0008 0.0034 0.0022 8.4 0.0008 0.0036 0.0024 62 8.2 0.0008 0.0035 0.0023 8.7 0.0008 0.0038 0.0025 63 8.6 0.0008 0.0037 0.0024 9.1 0.0009 0.0040 0.002 64 9.0 0.0009 0.0039 0.0025 9.5 0.0009 0.0042 0.0027 65 9.4 0.0009 0.0041 0.0026 9.9 0.0009 0.0044 0.0028 66 9.8 0.0009 0.0043 0.0027 10.3 0.0009 0.0045 0.0029 67 10.1 0.0009 0.0045 0.0028 10.8 0.0010 0.0048 0.0030 68 10.6 0.0010 0.0047 0.0030 11.2 0.0010 0.0049 0.0031 69 11.0 0.0010 0.0049 0.0031 11.6 0.0010 0.0051 0.0032 70 11.4 0.0010 0.0050 0.0032 12.0 0.0011 0.0053 0.0033 71 11.8 0.0011 0.0052 0.0033 12.5 0.0011 0.0055 0.0034 72 12.2 0.0011 0.0054 0.0034 12.9 0.0011 0.0056 0.0035 73 12.7 0.0011 0.0056 0.0035 13.4 0.0012 0.0058 0.0037 74 13.1 0.0011 0.0057 0.0036 13.9 0.0012 0.0060 0.0038 75 13.6 0.0012 0.0059 0.0037 14.3 0.0012 0.0062 0.0039 76 14.0 0.0012 0.0061 0.0038 14.8 0.0012 0.0064 0.0040 77 14.5 0.0012 0.0063 0.0039 15.3 0.00138 0.0065 0.0041 78 15.0 0.0013 0.0064 0.0041 15.8 0.0013 0.0067 0.0042 79 15.4 0.0013 0.0066 0.0042 16.3 0.0013 0.0069 0.0044 80 15.9 0.0013 0.0067 0.0043 16.8 0.0014 0.0070 0.0045 81 16.4 0.0013 0.0069 0.0044 17.3 0.0014 0.0072 0.0046 82 16.9 0.0014 0.0071 0.0045 17.9 0.0014 0.0074 0.0047 83 17.4 0.0014 0.0072 0.0046 18.4 0.0014 0.0076 0.0049 134

GROWTH OF PARTS AND ORGANS

TABLE 71—Continued


MALES

FEMALEB













4

Se Pour Hype: pe Thyroid || Body weight es ——s Thyroid

fea]

mm. gms. gms. gms. gms. gme. gms. gms. gms. 84 18.0 0.0014 0.0074 0.0048 19.0 0.0015 0.0078 0.0050 85 18.5 0.0015 0.0076 0.0049 19.5 0.0015 0.0079 0.0051 86 19.0 0.0015 0.0078 0.0050 20.1 0.0015 0.0081 0.0052 87 19.6 0.0015 0.0079 0.0051 20.7 0.0016 0.0083 0.0054 88 20.1 0.0015 0.0081 0.0052 21.2 0.0016 0.0084 0.0055 89 20.7 0.0016 0.0083 0.0054 21.8 0.0016 0.0086 0.0056 90 21.3 0.0016 0.0084 0.0055 22.4 0.0017 0.0087 0.0058 91 21.9 0.0016 0.0086 0.0056 23.1 0.0017 0.0089 0.0059 92 22.4 0.0017 0.0087 0.0058 23.7 0.0017 0.0091 0.0060 93 23.0 0.0017 0.0089 0.0059 24.3 0.0017 0.0093 0.0062 94 93.7 0.0017 0.0091 0.0060 25.0 0.0018 0.0094 0.0063 95 24.3 0.0017 0.00938 0.0062 25.6 0.0018 0.0096 0.0064 96 24.9 0.0018 0.0094 0.0063 26.3 0.0018 0.0098 0.0066 97 25.6 0.0018 0.0096 0.0064 27.0 0.0019 0.0100 0.0067 98 26.2 0.0018 0.0098 0.0066 27.7 0.0019 0.0101 0.0069 99 26.9 0.0019 0.0099 0.0067 28.4 0.0019 0.0103 0.0070

100 27.5 0.0019 0.0101 0.0068 29.1 0.0020 0.0105 0.0072

101 28.2 0.0019 0.0103 0.0070 29.8 0.0020 0.0106 0.0073

102 28.9 0.0020 0.0104 0.0071 30.5 0.0020 0.0108 0.0075

103 29.6 0.0020 0.0106 0.0073 31.3 0.0021 0.0110 0.0076

104 30.3 0.0020 0.0108 0.0074 32.0 0.0021 0.0112 0.0078

105 31.1 0.0021 0.0109 0.0076 32.8 0.0021 0.0114 0.0079

106 31.8 0.0021 0.0111 0.0077 33.6 0.0022 0.0117 0.0081

107 32.5 0.0021 0.0113 0.0079 34.4 0.0022 0.0119 0.0082

108 33.3 0.0021 0.0114 0.0080 35.2 0.0022 0.0121 0.0084

109 34.1 0.0022 0.0116 0.0082 36.0 0.0023 0.0123 0.0085

110 34.9 0.0022 0.0118 0.0083 36.9 0.0023 0.0126 0.0087

lll 35.7 0.0022 0.0120 0.0085 37.7 0.0023 0.0128 0.0089

112 36.5 0.0023 0.0121 0.0086 38.6 0.0024 0.0130 0.0090

113 37.3 0.0023 0.0123 0.0088 39.5 0.0024 0.0133 0.0092 114 38.2 0.0024 0.0125 0.0090 40.3 0.0024 0.0135 0.0094

115 39.0 0.0024 0.0126 0.0091 41.3 0.0025 0.0138 0.0096

116 39.9 0.0024 0.0128 0.0093 42.2 0.0025 0.0140 0.0097

117 40.8 0.0025 0.0130 0.0095 43.1 0.0025 0.0143 0.0099

118 41.6 0.0025 0.0132 0.0096 44.1 0.0026 0.0145 0.0101

119 42.6 0.0025 0.0184 0.0098 45.0 0.0026 0.0148 0.0102

120 43.5 0.0026 0.0135 0.0100 46.0 0.0027 0.0150 0.0104 WEIGHTS OF ORGANS ON BODY LENGTH 135

TABLE 71—Continued













MALES FEMALES 3

BE | Rot. | pes | Seats | Thyroid |] Bodyweight | TID | Sebis | Thyroid a

mm gms. gms. gms. gms. gms. gms. gms. gms. 121 44.4 0.0026 0.0137 0.0101 47.0 0.0027 0.0153 0.0106 122 45.4 0.0026 0.0139 0.0103 48.0 0.0027 0.0156 0.0108 123 «946.3 0.0027 0.0141 0.0105 49.1 0.0028 0.0159 0.0110 124 47.3 0.0027 0.0142 0.0106 50.1 0.0028 0.0161 0.0111 125 48.3 0.0027 0.0144 0.0108 51.2 0.0029 0.0164 0.0113 126 49.3 0.0028 0.0146 0.0110 52.3 0.0029 0.0167 0.0115 127 50.4 0.0028 0.0148 0.0112 53.4 0.0030 0.0170 0.0117 128 51.4 0.0029 0.0150 0.0114 54.5 0.0031 0.0173 0.0119 129 52.5 0.0029 0.0152 0.0116 55.6 0.0031 0.0176 0.0121 130 §=6538.6 940.0029 0.0154 0.0117 56.8 0.0032 0.0179 0.0123 131 54.7 0.0030 0.0155 0.0119 58.0 0.0033 0.0182 0.0125 132. 55.8 0.0030 0.0157 0.0121 59.2 0.0034 0.0185 0.0127 133 56.9 0.0031 0.0159 0.0123 60.4 0.0035 0.0188 0.0129 134 = 58.1 «0.0031 90.0161 0.0125 61.6 0.0035 0.0191 0.0131 135 59.3 0.0031 0.0163 0.0127 62.9 0.0036 0.0195 0.0133 136 «= 60.50.0082. 0.0165 + 0.0129 64.2 0.0037 0.0198 0.0135 137 61.7 0.0032 0.0167 0.0131 65.5 0.0038 0.0201 0.0137 1388 62.9 0.0033 0.0169 0.0133 66.8 0.0039 0.0204 0.0139 139 = 64.1. 0.0033. 0.0171 =0..0135 68.1 0.0040 0.0208 0.0142 140 =—63.4 0.0084 90.0173 = 0.0137 69.5 0.0041 0.0211 0.0144 141 66.7 0.0034 0.0175 0.0139 70.9 0.0042 0.0215 0.0146 142 «868.0 0.0034 0.0177 0.0141 72.3 0.0043 0.0218 0.0148 143 69.3 0.0085 0.0179 0.0143 73.7 0.0044 0.0222 0.0150 144 70.7 0.0085 0.0181 0.0146 75.2 0.0045 0.0226 0.0153 145 72.1 0.0036 0.0183 0.0148 76.7 0.0046 0.0230 0.0155 146 §=6©73.5 0.0036 0.0185 0.0150 78.2 0.0047 0.0233 0.0158 147 74.9 0.0037 0.0187 0.0152 79.7 0.0048 0.0237 0.0160 1448 476.3 0.0037 0.0189 0.0155 81.3 0.0049 0.0241 0.0162 149 77.8 0.0038 0.0192 0.0157 82.8 0.0050 0.0245 0.0164 150 = 79.3 0.00388 «0.0194 0.0159 84.4 0.0051 0.0249 0.0167 151 80.8 0.0039 0.0196 0.0161 86.1 0.0052 0.0253 0.0169 152, 82.4 0.00389 0.0198 0.0164 87.7 0.0053 0.0257 0.0172 153 83.9 0.0040 0.0200 0.0166 89.4 0.0055 0.0261 0.0175 154 85.5 0.0040 0.0203 0.0169 91.1 0.0056 0.0266 0.0177 155 87.1 (0.0041 0.0205 0.0171 92.9 0.0057 0.0270 0.0180 156 88.7 «90.0041 0.0207 0.0173 94.6 0.0058 0.0274 0.0182 157) 90.4 «0.0042 0.0210 0.0176 96.4 0.0060 0.0279 0.0185 136

GROWTH OF PARTS AND ORGANS

'

TABLE 71—Continued


MALES

FEMALES












a

28 | Body, | Hyer | Sumy | mhyroia || Body woizne| Hype | Supe: |mnyroia faa}

mm. gms. gms. gms. | gms. gms. gms. gms. gms. 158 92.1 0.0042 0,0212 0.0179 98.3 0.0061 0.0283 0.0188 159 93.8 0.0043 0.0214 0.0181 100.1 0.0062 0.0288 0.0190 160 95.6 0.0044 0.0217 0.0184 102.0 0.0064 0.0293 0.0193 161 97.3 0.0044 0.0219 0.0186 103.9 0.0065 0.0297 0.0196 162 99.2 0.0045 0.0222 0.0189 105.9 0.0067 0.0302 0.0199 163 101.0 0.0045 0.0224 0.0191 107.9 0.0068 0.0307 0.0201 164 102.8 0.0046 0.0226 0.0194 109.9 0.0070 0.0312 0.0204 165 104.7 0.0046 0.0229 0.0197 111.9 0.0071 0.0317 0.0207 166 106.7 0.0047 0.0231 0.0200 114.0 0.0073 0.0322 0.0210 167 108.6 0.0048 0.0234 0.0202 116.1 0.0074 0.0327 0.0213 168 110.6 0.0048 0.0286 0.0205 118.3 0.0076 0.0333 0.0216 169 112.6 0.0049 0.0239 0.0208 120.5 0.0077 0.0338 0.0219 170 «114.7 0.0050 0.0242 0.0211 122.7 0.0079 0.0343 0.0222 171 «(116.7 0.0050 0.0244 0.0214 125.0 0.0081 0.0349 0.0225 172) «118.9 0.0051 0.0247 0.0217 127.3 0.0082 0.0355 0.0228 173 «121.0 0.0052 0.0250 0.0220 129.6 0.0084 0.0360 0.0232 174 123.2 0.0052 0.0252 0.0223 132.0 0.0086 0.0366 0.0235 175 «125.4 0.0053 0.0255 0.0226 134.4 0.0088 0.0372 0.0238 176 127.7 0.0054 0.0258 0.0229 136.8 0.0089 0.0378 0.0241 177 180.0 0.0054 0.0261 0.0232 139.3 0.0091 0.0384 0.0245 178 1382.3 0.0955 0.0264 0.0235 141.9 0.0093 0.0390 0.0248 179 «134.6 0.0056 0.0266 0.0238 144.4 0.0095 0.0396 0.0251 180 137.0 0.0056 0.0269 0.0242 147.1 0.0097 0.0402 0.0255 181 139.5 0.0057 0.0272 0.0245 149.7 0.0099 0.0409 0.0258 182 142.0 0.0058 0.0275 0.0248 152.4 0.0101 0.0415 0.0262 183 144.5 0.0059 0.0278 0.0252 155.2 0.0103 0.0422 0.0266 184 147.0 0.0059 0.0281 0.0255 158.0 0.0105 0.0429 0.0269 185 149.6 0.0060 0.0284 0.0258 160.8 0.0108 0.0435 0.0273 186 152.3 0.0061 0.0287 0.0262 163.7 0.0110 0.0442 0.0277 187 155.0 0.0062 0.0291 0.0265 166.6 0.0112 0.0449 0.0280 188 157.7 0.0063 0.0294 0.0269 169.6 0.0114 0.0457 0.0284 189 160.5 0.0063 0.0297 0.0272 172.6 0.0117 0.0464 0.0288 190 163.3 0.0064 0.0300 0.0276 175.7. 0.0119 0.0471 0.0292 ‘191 166.2 0.0065 0.0304 0.0280 178.8 0.0121. 0.0479 0.0296 . 192 169.1 0.0066 0.0307 0.0284 182.0 0.0124 0.0486 0.0300 193 172.0 0.0067 0.0310 185.2 0.0126 0.0494 0.0304

0.0287 WEIGHTS OF ORGANS ON BODY LENGTH 137

TABLE 71—Continued














MALES FEMALES

3t eee, os a Thyroid || Body weight —— ee Thyroid foo

mm. | gms. gms. gms. gms. gms. oms. gms. gms. 194. 175.0 0.0068 0.0314 0.0291 188.5 0.0129 0.0502 0.0308 195 178.1 0.0068 0.0317 0.0295 191.9 0.0131 0.0510 0.0312 196 181.2 0.0069 0.0321 0.0299 195.3 0.0134 0.0518 0.0317 197 184.3 0.0070 0.0324 0.0303 198.7 0.0136 0.0526 0.0321 198 187.5 0.0071 6.0828 0.0307 202.2 0.0139 0.0535 0.0325 199 190.8 0.0072 0.0831 0.0311 205.8 0.0142 0.0543 0.0330 200 194.1 0.0073 0.0835 0.0315 209.4 0.0145 0.0552 0.0334 201 197.4 0.0074 0.0338 0.0319 213.1 0.0148 0.0560 0.0339 202 200.8 0.0075 0.0342 0.0323 216.8 0.0150 0.0569 0.0343 203 204.3 0.0076 0.0346 0.0328 220.7 0.0153 0.0579 0.0348 204 207.8 0.0077 0.0350 0.0332 224.5 0.0155 0.0588 0.0352 205 211.4 0.0078 0.0354 0.0336 228.4 0.0159 0.0597 0.0357 206 «215.0 0.0079 0.0358 0.0341 232.4 0.0162 0.C606 0.0362 207 218.7 0.0080 0.0862 0.0345 236.5 0.0166 0.0616 0.0367 208 222.5 0.0081 0.0366 0.0350 240.6 0.0169 0.0626 0.0372 209 226.3 0.0082 0.0370 0.0355 3844.8 0.0172 0.06386 0.0377 210 230.2 0.0083 0.0874 0.0359 249.1 0.0175 0.0646 0.0382 211 234.1 0.0084 0.0378 0.0864 253.4 0.0179 0.0636 0.0887 212 238.1 0.0086 0.0382 0.0369 257.8 0.0182 0.0667 0.0392 213 «242.2 0.0087 0.0387 0.0374 262.3 0.0186 0.0677 0.0398 214 246.3 0.0088 0.0391 0.0379 266.9 0.0189 0.0688 0.0403 215 250.5 0.0089 0.0395 0.0384 271.5 0.0193 0.0699 0.0408 216 254.7 0.0090 0.0400 0.0389 276.2 0.0196 0.0710 0.0414 217) =. 259.1 +=0.0092 0.0404 0.0394 281.0 0.0200 0.0721 0.0420 218 263.5 0.0093 0.0409 0.0399 285.8 0.0204 0.0733 0.0425 219 267.9 0.0094 0.0414 0.0404 290.8 0.0208 0.0744 0.0431 220 272.5 0.0095 0.0418 0.0410 295.8 0.0212 0.0756 0.0437 221 277.1 0.0097 0.0423 0.0415 300.9 0.0216 0.0765 0.0443 222 281.8 0.0098 0.0428 0.0421 306.1 0.0220 0.0781 0.0449 223 «286.5 0.0099 0.0433 0.0426 311.3 0.0224 0.0793 0.0455 224 291.4 0.0101 0.0488 0.0432 316.7 0.0228 0.0805 0.0161 225 296.3 0.0102 0.0443 0.04137 322.1 0.0282 0.0818 0.0467 226 301.3 0.0108 0.0448 0.0443 327.7 0.0237 0.0831 0.0474 227. 306.4 0.0105 0.0453 0.0449 333.3 0.0242 0.0845 0.0480 228 «6311.5 0.0106 0.0458 0.0455 339.0 0.0246 0.0858 0.0486 229 «6316.8 0.0108 0.0464 0.0461 344.8 0.0250 0.0872 0.0493 230 4 =322.1 0.0109 0.0469 0.0467 330.7 0.0255 0.0885 0.0500 138

GROWTH OF PARTS AND ORGANS

TABLE 71—Concluded


MALES

FEMALES













a

Be | Body, | Hypo. | Supe | thyroid | Body weight | Hype | Supri |-rnyroid m

mm. gms. gms. ams. gms. gms. gms. gms. gms. 231 327.5 0.0111 0.0474 0.0473 356.7 0.0259 0.0899 0.0507 232 333.0 0.0112 0.0480 0.0480 362.8 0.0264 0.0914 0.0513 233 338.6 0.0114 0.0485 0.0486 369.0 0.0269 0.0928 0.0520 234 344.3 0.0115 0.0491 0.0493 875.8 -0.0274 0.0943 0.0527 235 350.0 0.0117 0.0497 0.0499 381.7 0.0279 0.0958 0.0535 236 355.9 0.0118 0.0503 0.0506 388.2 0.0284 0.0973 0.0542 237 361.9 0.0120 0.0509 0.0512 394.9 0.0290 0.0989 0.0549 238 367.9 0.0122 0.0514 0.0519 401.6 0.0295 0.1005 0.0557 239 374.1 0.0123 0.0521 0.0526 © 408.4 0.0300 0.1021 0.0564 240 380.3 0.0125 0.0527 0.0533 = 415.4 0.0306 0.1037 0.0572 241 386.6 0.0127 0.0533 0.0540 422.4 0.0311 0.1053 0.0580 242 303.1 0.0129 0.0539 0.0548 429.6 0.0317 0.1070 0.0588 243 399.6 0.0130 0.0546 0.0555 436.9 0.0323 0.1087 0.0596 244 406.3 0.0182 0.0552 0.0562 444.3 0.0329 0.1105 0.0604 245 413.1 .0.0134 0.0559 0.0570 451.9 0.0335 0.1122 0.0618 246 419.9 0.0186 0.0565 0.0577 459.5 0.0341 0.1140 0.0621 247 426.9 0.0138 0.0572 0.0585 467.3 0.0347 0.1158 0.0630 248 434.0 0.0140 0.0579 0.0503 475.2 0.0353 0.1177 0.0638 249 441.2 0.0142 0.0586 0.0601 483.3 0.0359 0.1196 0.0647 250 448.5 0.0144 0.0503 0.0609 491.5 0.0366 0.1251 0.0656 WEIGHT OF THYMUS ON AGE 139

TABLE 72

Giving the weight of the thymus in grams —sexes combined—for the first 400 days of life. See Chart 23











AGE IN WEIGHT OF AGE IN WEIGHT OF AGE IN WEIGHT OF AGE IN WEIGHT OF DAYS THYMUS DAYS THYMUS DAYS THYMUS DAYS THYMUS B. | 0.008 38 0.114 75 0.283 113 0.250 1 0.008 39 0.118 76 0.285 114 0.249 2 0.010 40 0.123 7 0.286 115 0.247 3 0.012 78 0.288 116 0.246 4 0.015 41 0.128 79 0.289 117 0.245 “5 0.017 42 0.133 80 0.290 118 0.244 6 0.018 43 0.139 119 0.243 a 0.020 44 0.144 81 0.290 120 0.242 8 0.021 45 0.149 82 0.291 9 0.022 46 0.154 83 0.291 121 0.241 10 0.024 47 0.160 84 0.290 122 0.240 48 0.165 85 0.290 123 0.239 1 0.026 49 0.171 86 0.289 124 0.238 12 0.028 50 0.176 87 0.288 125 0.237 13 0.029 88 0.287 126 0.236 14 0.031 51 0.181 89 0.285 127 0.234 15 0.034 52 0.187 90 0.283 128 0.233 16 0.036 53 0.192 129 0.232 17 | 0.038 54 | 0.198 91 | 0.281 130 | 0.231 1s | 0.040 55 «| 0.208 92 | 0.278 19 | 0.043 56 | 0.208 S oa 131 | 0.230 20 0.046 57 0.213 2 wae 132 0.229 58 | 0.218 9 | 0:270 133 | 0.298 21 | 0.048 59 «| 0.224 96 | 0.269 134 | 0.297 92 | 0.051 60 | 0.229 97 | (0.268 135 | 0.296 23 | 0.054 98 | 0.266 136 | 0.295 24 | 0.057 61 | 0.233 99 | (0.265 137 | 0.294 25 | 0.061 62 | 0.238 100 | 0.264 138 | 0.293 26 0.064 63 0.243 101 0.263 139 0.222 27 0.067 64 0.247 102 0.262 140 0.221 28 0.071 65 0.251 103 0.261 30 0.079 67 0.259 105 0.259 142 0.219 31 0.083 69 0.267 107' | 0.256 144 0.217 32 0.087 70 0.270 108 0.255 145 0.216 33 0.091 109 0.254 146 0.215 34 0.095 al 0.273 110 0.253 147 0.214 35 0.100 72 0.276 148 0.213 36 0.104 73 0.278 111 0.252 149 0.212 37 0.109 74 0.281 112 0.251 150 0.211 140 GROWTH OF PARTS AND ORGANS

TABLE 72—Continued



AGE IN WEIGHT OF AGE IN WEIGHT OF AGE IN WEIGHT OF }| . AGE IN WEIGHT IN DAYS THYMUS DAYS THYMUS DAYS THYMUS DAYS THYMUS 151 0.210 191 0.172 231 0.138 271 0.108 152 0.209 192 0.171 232 0.137 272 0.107 153 0.208 193 0.170 233 0.136 273 0.106 154 0.207 194 0.169 234 0.135 274 0.106 155 0.206 195 0.168 235 0.134 275 0.105 156 0.205 196 0.167 236 0.134 276 0.104 157 0.204 197 0.166 237 0.133 277 0.104 158 0.203 198 0.165 238 0.132 278 0.103 159 0.202 199 0.164 239 0.131 279 0.102 160 0.201 200 0.164 240 0.130 280 0.102 161 0.200 201 0.163 241 0.130 281 0.101 162 0.199 202 0.162 242 0.129 282 0.100 163 0.198 203 0.161 243 0.128 283 0.099 164 0.197 204 0.160 244 0.127 284 0.099 165 0.196 205 0.159 245 0.127 285 0.098 166 0.195 206 0.158 246 0.126 286 0.098 167 0.194 207 0.157 247 0.125 287 0.097 168 0.193 208 0.157 248 0.124 288 0.096 169 0.192 209 0.156 249 0.124 289 0.096 170 0.191 210 0.155 250 0.123 290 0.095 171 0.190 211 0.154 251 0.122 291 0.094 172 0.189 212 0.153 252 0.121 292 0.094 173 0.188 213 0.152 253 0.121 293 0.093 174 0.187 214 0.152 254 0.120 294 0.092 175 0.186 215 0.151 255 0.119 295 0.092 176 0.185 216 0.150 256 0.118 296 0.091 177 0.184 217 0.149 257 0.118 297 0.090 178 0.183 218 0.148 258 0.117 298 0.090 179 0.183 219 0.147 259 0.116 299 0.089 180 0.182 220 0.147 260 0.115 300 0.089 181 0.181 221 0.146 261 0.115 301 0.088 182 0.180 222 0.145 262 0.114 302 0.087 183 0.179 223 0.144 263 . 0.118 303 0.087 184 0.178 224 0.143 264 0.113 304 0.086 185 0.177 225 0.142 265 0.112 305 0.085 186 0.176 226 0.142 266 0.111 306 0.085 187 0.175 227 0.141 267 0.110 307 0.084 188 0.174 228 0.140 268 0.110 308 0.084 189 0.173 229 0.139 269 0.109 309 0.083 190 0.172 230 0.138 270 0.108 310 0.082 WEIGHT OF THYMUS ON AGE 141

TABLE 72—Concluded



AGE IN WEIGHT OF AGE IN WEIGHT OP AGE IN WEIGHT OP AGEIN WEIGHT OF DAYS THYMUS DAYS THYMUS DAYS THYMUS DAYS THYMUS 311 0.082 334 0.069 3357 0.057 379 0.047 312 0.081 335 0.068 358 0.057 380 0.047 313 0.081 336 0.068 359 0.056 314 0.080 337 0.067 360 0.056 381 0.047 315 0.080 338 0.067 382 0.046 316 0.079 339 0.066 361 0.035 383 0.046 317 0.078 340 0.066 362 0.055 384 0.045 318 0.078 363 0.054 385 0.045 319 0.077 341 0.065 364 0.054 386 0.045 320 0.077 342 0.065 365 0.054 387 0.044 343 0.064 366 0.053 388 0.044 321 0.076 344 0.064 367 0.053 389 0.043 322 0.075 345 0.063 368 0.052 390 0.043 323 0.075 346 0.063 369 0.052 324 0.074 347 0.062 370 0.051 391 0.043 325 0.074 348 0.062 392 0.042 326 0.073 349 0.061 371 0.051 393 0.042 327 0.073 350 0.061 372 0.050 394 0.041 328 0.072 373 0.050 395 0.041 329 0.072 351 0.060 374 0.050 396 0.041 330 0.071 352 0.060 375 0.049 397 0.040 353 0.059 376 0.049 398 0.040 331 0.071 354 0.059 377 0.048 399 0.040 332 0.070 355 0.058 378 0.048 400 0.089 333 0.069 356 0.058 142 GROWTH OF PARTS AND ORGANS

TABLE 73

Weights of viscera combined plus that of thymus for ech sex and at each millimeter of body length. Not charted. The percentage of the body weight represented by the weight of the viscera is however given under ‘viscera’ in table 60, and chart 6.












MALES FEMALES

Body Body Weight Weight Body Weight Weight

length weight of viscera of thymus weight of viscera of thymus

mm. gms. gms. gms. gms. gms gms. 47 4.9 0.806 0.007 4.7 0.775 0.007 48 4.9 0.808 0.007 4.7 0.779 0.007 49 5.0 0.839 0.007 4.9 0.810 0.007 50 5.1 0.853 0.007 5.0 0.834 0.008 51 5.2 0.873 0.008 5.1 0.854 0.008 52 5.3 0.916 0.008 5.3 0.901 0.008 53 5.4 0.938 0.008 5.5 0.955 0.008 54 5.6 0.991 0.008 5.8 1.046 0.010 55 5.8 1.047 0.010 6.2 1,141 0.012 56 6.1 1.130 0.011 6.5 1.218 0.015 57 6.4 1.218 0.012 6.9 1.318 0.015 58 6.8 1.301 0.015 7.2 1.401 0.016 59 ial 1.387 0.015 7.6 1.487 0.017 60 7.5 1.486 0.016 8.0 1.573 0.017 61 7.9 1.573 0.016 8.4 1.665 0.018 62 8.2 1.656 0.017 8.7 1.735 0.020 63 8.6 1.751 0.017 9.1 1.825 0.020 64 9.0 1.837 0.018 9.5 1.914 0.020 65 9.4 1.931 0.020 9.9 1.998 0.021 66 9.8 2.026 0.020 10.3 2.114 0.021 67 10.1 2.091 0.021 10.8 2.300 0.021 68 10.6 2.272 0.021 11.2 2.467 0.022 69 11.0 2.441 0.022 11.6 2.622 0.023 70 11.4 , 2.614 0.022 12.0 2.787 0.024 71 11.8 2.770 0.023 12.5 2.958 0.025 72 12,2 2.911 0.024 12.9 3.093 0.026 73 12.7 3.093 0.025 13.4 3.270 0.026 74 13.1 3.226 0.026 13.9 3.424 0.027 75 13.6 3.396 0.027 14.3 3.554 0.027 76 14.0 3.524 0.028 14.8 3.704 0.028 77 14.5 3.679 0.028 15.3 3.864 0.028 78 15.0 3.842 0.029 15.8 4.001 0.031 79 15.4 3.967 0.031 - 16.3 4.147 0.032

80 15.9 4.107 0.032 16.8 4.294 0.033 WEIGHT OF VISCERA 143

TABLE 73—Continued












MALES FEMALES

Body Body Weight Weight Body Weight Weight

length weight of viscera of thymus weight of viscera of thymus mm gms gms. gms. gms. gms. | gms 81 16.4 4.255 0.034 17.3 4.419 0.034 82 16.9 4.393 0.036 17.9 4.584 0.034 83 17.4 4.529 0.038 18.4 4.717 0.035 84 18.0 4.698 0.037 19.0 4.864 0.037 85 18.5 4.834 0.040 19.5 4.996 0.038 86 19.0 4.958 0.041 20.1 5.138 0.040 87 19.6 5.115 0.043 20.7 5.283 0.043 88 20.1 5.239 0.044 2ie2 5.413 0.044 89 20.7 5.385 0.046 21.8 5.555 0.046 90 21.3 5.531 0.048 22.4 5.697 0.048 91 21.9 5.679 0.050 23.1 5.840 0.050 92 22.4 5.809 0.052 23.7 5.983 0.052 93 23.0 5.943 0.054 24.3 6.112 0.054 94 23.7 6.102 0.056 25.0 6.266 0.055 95 24.3 6.236 0.057 25.6 6.396 0.057 96 24.9 6.381 0.059 26.3 6.547 0.059 97 25.6 6.528 0.061 27.0 6.687 0.060 98 26). 6.672 0.063 2a Mii 6.831 0.061 99 26.9 6.810 0.065 28 .4 6.972 0.063 100 27.5 6.942 0.067 29.1 7.112 0.065 101 28 .2 7.088 0.070 29.8 7.254 0.067 102 28.9 7.237 0.073 30.5 7.384 0.067 103 29.6 7.372 0.075 31.3 7.537 0.075 104 30.3 7.517 0.078 32.0 7.666 0.079 105 31.1 7.678 0.081 32.8 7.820 0.083 106 31.8 7.824 0.083 33.6 7.960 0.087 107 32.5 7.959 0.086 34.4 8.112 0.091 108 33.3 8.110 0.089 35.2 8.254 0.095 109 34.1 8.268 0.092 36.0 8.395 0.097 110 34.9 8.418 0.095 36.9 8.546 0.099 lil 35.7 8.566 0.099 37.7 8.690 0.101 112 36.5 8.727 0.104 38.6 8.841 0.105 113 37.3 8.866 0.109 39.5 9.005 0.109 114 38.2 9.037 0.111 40.3 9.134 0.113 115 39.0 9.177 0.113 41.3 9.300 0.117 116 39.9 9.330 0.116 4222 9.451 0.120 117 40.8 9.493 0.118 43.1 9.595 0.123 144

GROWTH OF PARTS AND ORGANS

TABLE 73—Continued


MALES

FEMALES










Body Body Weight Weight Bod, Weight Weight length weight of viscera of thymus weight of viscera of thymus mm. gms. gms. | gms. gms. gms. gms. 118 41.6 9.644 0.120 44.1 9.746 0.126 119 42.6 9.810 0.123 45.0 9.888 0.130 120 43.5 9.964 0.127 46.0 10.048 0.1388 121 44.4 10.127 0.131 47.0 10.207 0.136 122 45.4 10.294 0.135 48.0 10.360 0.139 123 46.3 10.448 0.139 "49.1 10.525 0.144 124 47.3 10.616 0.140 50.1 10.679 0.147 125 48.3 10.794 0.141 51.2 10.832 0.151 126 49.3 10.950 0.142 52.3 10.999 0.154 127 50.4 11.134 0.144 53.4 11.156 0.159 128 51.4 11.290 0.149 54.5 11.320 0.164 129 52.5 11.474 0.154 55.6 11.474 0.167 130 53.6 11.644 0.159 56.8 11.640 0.171 131 54.7 11.827 0.164 58.0 11.808 0.174 132 55.8 12.002 0.167 59.2 11.984 0.178 133 56.9 12.174 0.171 60.4 12.150 0.181 134 58.1 12.373 0.175 61.6 12.306 0.184 135 59.3 12.560 0.178 62.9 12.485 0.187 136 60.5 12.740 0.181 64.2 12.663 0.190 137 61.7 12.936 0.184 65.5 12.829 0.193 138 62.9 13.116 0.187 66.8 13 .007 0.196 139 64.1 13.305 0.192 68.1 13.176 0.199 140 65.4 13.509 0.196 69.5 13.356 0.203 141 66.7 13.703 0.200 70.9 13.536 0.206 142 68.0 13.898 0.203 72.3 13.715 0.210 143 69.3 14.093 0.208 73.7 13.898 0.214 144 70.7 14.303 0.211 75.2 14.089 0.218 145 72.1 14.513 0.214 76.7 14.281 0.225 146 73.5 14.723 0.218 78.2 14.464 0.233 147 74.9 14.934 0.220 Med 14.654 0.236 148 76.3 15.147 0.223 81.3 14.848 0.239 149 77.8 15.374 0.226 82.8 15.038 0.243 150 79.3 15.600 0.229 84.4 15.222 0.247 151 80.8 15.811 0.231 86.1 15.427 0.249 152 82.4 16.039 0.233 87.7 15.612 0.251 153 83.9 16.241 0.236 - 89.4 15.819 0.252 WEIGHT OF VISCERA 145

TABLE 73—Continued










MALES FEMALE?

Body Body Weight Weight Body | Weight Weight

leagth weight of viscera of thymus weight of viscera of thymus mm. gms. gms. gms. gms. | gms. | gms. 154 85.5 16.456 0.239 91.1 16.023 0.253 155 87.1 16.672 0.241 92.9 16.230 0.254 156 | §8.7 16.877 0.244 94.6 16.435 0.256 157 90.4 17.104 0.247 96.4 16 .645 0.262 158 92.1 17.321 0.249 98.3 16.854 0.269 159 93.8 17.537 0.251 100.1 17 .062 0.270 160 95.6 17.77 0.253 102.0 17.270 0.273 161 97.3 17.995 0.256 103.9 17.489 0.276 162 99.2 18 .227 0.259 105.9 17.710 0.278 163 101.0 18 .456 0.262 107.9 17.943 0.280 164 102.8 18.682 0.264 109.9 18.165 0.283 165 104.7 18.912 0.267 111.9 18 .376 0.285 166 106.7 19.155 0.270 114.0 18.607 0.286 167 108.6 19.391 0.272 116.1 18.840 0.288 168 110.6 19.638 0.274 118.3 19.073 0.289 169 112.6 19.868 0.276 120.5 19.318 0.290 170 114.7 20.121 0.278 122.7 19.549 0.291 171 116.7 20.363 0.280 125.0 19.784 0.290 172 118.9 20.620 0.282 127.3 20.030 0.289 173 121.0 20.870 0.285 129.6 20.266 0.288 174 123.2 21.127 0.286 132.0 20.522 0.288 175 125.4 21.368 0.288 134.4 20.767 0.287 176 127.7 21.647 0.289 136.8 21.015 0.284 1i7 130.0 21.905 0.290 139.3 21.273 0.278 178 132.3 22.160 0.291 141.9 21.532 0.273 179 134.6 22.425 0.291 144.4 21.781 0.268 180 137.0 22.693 0.291 147.1 22 .062 0.266 181 139.5 22.972 0.290 149.7 22.322 0.264 182 142.0 23.244 0.290 152.4 22.594 0.262 183 144.5 23.521 0.290 155.2 22.867 0.256 184 147.0 - 23.791 0.287 158.0 23.142 0.251 185 149.6 24.073 0.285 160.8 23 .424 0.248 186 152.3 24.367 0.278 163.7 23.7 0.247 187 155.0 24.648 0.274 166.6 23.995 0.245 188 157.7 24.943 0.271 169.6 24.282 0.238 189 160.5 25.246 0.268 172.6 24.579 0.235 190 163.3 25 541 0.266 175.7 24.876 0.232 146

GROWTH OF PARTS AND ORGANS

TABLE 73—Continued


MALES

FEMALES











Body Body Weight Weight Body Weight Weight length weight of viscera of thymus weight of viscera of thymus mm, gms. gins. gms. gms. gms. gms. 191 166.2 25 838 0.264 178.8 25.166 0.230 192 169.1 26.144 0.262 182.0 25.475 0.223 193 172.0 26 .450 0.259 185.2 25.778 0.211 194 175.0 26.756 0.256 188.5 26 .089 0.190 195 178.1 27.077 0.253 191.9 26.414 0.183 196 181.2 27 .396 0.251 195.3 26.736 0.171 197 184.3 27.716 0.249 198.7 27.051

198 187.5 28 .036 0.247 202 .2 27.378

199 190.8 28 .370 0.245 205.8 27.716

200 194.1 28 .692 0.241 209 .4 28 .051

201 197.4 29 .035 0.238 213.1 28 .380

202 200.8 29 .379 0.230 216.8 28.731

203 204.3 29.726 0.226 220.7 29 .083

204 207.8 30.071 0.224 224.5 29 .433

205 211.4 30.418 0.222 228.4 29.795

206 215.0 30.767 0.220 232.4 30.150

207 218.7 31.127 0.218 236.5 30.526

208 222.5 31.499 0.210 240.6 30.893

209 226.3 31.871 0.205 244.8 31.272

210 230.2 32.244 0.197 249.1 31.661

211 234.1 32.616 0.190 253 .4 32.042

212 238.1 33.002 0.183 257.8 32.432

213 242.2 33.389 0.177 262.3 32.825

214 246.3 33.784 0.169 266.9 33 ,230

215 250.5 34.172 0.150 PAA 5) 33.645

216 254.7 34.570 0.140 276.2 34.053

217 259.1 34.982 0.130 281.0 34.470

218 263.5 35.3884 0.124 285.8 34.888

219 267 .9 35.785 0.118 290.8 35.331

220 272.5 36.219 295.8 35.774

221 277.1 36.654 300.9 36.198

222 281.8 37 .082 306.1 36.670

223 286.5 37.507 311.3 37.109

224 291.4 37.958 316.7 37 .568

225 296.3 38.339 322.1 38 .028

226 301.3 38.861 327.7 38.510

227 306.4 39.325 333.3 38 .982 WEIGHT OF VISCERA 147

°

TABLE 73—Concluded











MALES FEMALES

Body Body Weight Weight Body Weight Weight length weight of viscera of thymus weight of viscera of thymus mm, gms. gms. gms. gms. gms. | gms. 228 311.5 39 .828 339.0 39.476

229 316.8 40.255 F 344.8 39.963

230 322.1 40.723 350.7 40.462

231 327.5 41.210 356.7 40.972

232 333.0 41.692 362.8 41.492

233 338 .6 42.194 369.0 42.006

234 344.3 42.678 375.3 42.531

235 350.0 43.201 381.7 43 .068

236 355.9 43.718 388 .2 43 .605

237 361.9 44.250 394.9 44.168

238 367 .9 44.769 401.6 44.731

239 374.1 45 .301 408 .4 45 .295

240 380.3 45 .854 415.4 45 .882

241 386 .6 46 .398 422.4 46.451

242 393.1 46 .957 429.6 47.041

243 399.6 47.514 436.9 47.655

244 406 .3 48 .097 444.3 48 .258

245 413.1 48.678 451.9 48 .876

246 419.9 49 .262 459.5 49.506

247 426.9 49 .838 467 .3 50.147

248 434.0 50.456 475.2 50.780

249 441.2 51.066 483.3 51.446

250 448.5 51.689 491.5 52.105 148

GROWTH OF PARTS AND ORGANS

.

TABLE 74

Giving the percentage of water inthe brain and in the spinal cord for eachsex, on age. See Chart 26.


AQE

MALES

FEMALES













a ; |Per cent Per cent « |Per cent ey DAYS Body Brain Or Body Brain Cord |cent'of weight | weight |°LRin"| Weight Ponds |) meught | woight |°Lyein™| weight | wate B 4.7 0.217 88.00 0.033 86.75 4.6 0.213 88.00 0.033 86.75 1 5.5 0.290 87.95 0.038 86.42 5.4 0.269 87.95 0.037 86.42 2 5.9 0.333 87.90 0.041 86.08 5.8 0.323 87.90 0.041 86.08 3 6.4 0.395 87.85 0.046 85.74 6.3 0.373 87.85 0.045 85.74 4 6.9 0.442 87.83 0.050 85.41 6.8 0.421 87.83 0.050 85.41 5 7.6 0.509 87.79 0.056 85.07 7.5 0.492 87.79 0.056 85.07 6 8.5 0.581 87.70 0.064 84.73 8.4 0.564 87.70 0.064 84.73 7 9.5 0.657 87.50 0.072 84.40 9.4 0.645 87.50 0.073 84.40 8 10.5 0.708 87.30 0.081 84.06 10.4 0.697 87.30 0.082 84.06 iS 11.8 0.840 87.05 0.091 83.73 11.6 0.811 87.05 0.091 83.73 10 13.5 0.947 86.72 0.104 83.40 13.0 0.909 86.72 0.102 83.40 11 13.9 0.969 86.26 0.106 82.98 13.7 0.940 86.26 0.107 82.96 12 14.4 0.991 85.82 0.110 82.57 14.4 0.979 85.82 0.112 82.52 13 14.9 1.011 85.39 0.114 82.17 15.1 1.003 85.40 0.117 82.10 14 15.5 1.037 84.97 0.118 81.77 15.8 1.031 84.98 0.122 81.68 15 16.1 1.057 84.58 0.122 81.39 16.5 1.048 84.59 0.127 81.28 16 16.7 1.077 84.19 0.126 81.00 17.3 1.079 84.20 0.133 80.88 17 17.3 1.095 83.82 0.131 80.63 18.1 1.099 83.82 0.1388 80.49 18 18.0 1.112 83.46 0.135 80.26 18.9 1.118 83.47 0.142 80.11 19 18.7 1.131 83.12 0.1389 79.90 19.8 1.140 83.13 0.148 79.73 20 19.5 1.150 82.80 0.144 79.55 20.7 1.159 82.82 0.154 79.47 21 20.3 1.169 82.49 0.149 79.21 21.6 1.177 82.51 0.160 79.02 22 21.1 1.184 82.19 0.154 78.87 22.5 1.195 82.21 0.165 78.67 23 22.0 1.202 81.91 0.159 78.54 23.4 1.208 81.93 0.170 78.33 24 22.9 1.219 81.64 0.165 78.22 24.4 1.226 81.66 0.176 78.00 25 23.9 1.237 81.39 0.169 77.90 25.4 1.241 81.41 0.182 77.67 26 24.9 1.252 81.15 0.175 77.59 26.5 1.251 81.17 0.187 77.36 27 25.9 1.266 80.938 0.179 77.29 27.5 1.269 80.95 0.193 77.06 28 27.0 1.282 80.72 0.186 77.00 28.6 1.282 80.74 0.198 76.76 29 28.1 1.297 80.53 0.193 76.71 29.7 1.297 80.55 0.204 76.47 30 29.2 1.311 80.35 0.198 76.43 30.9 1.310 80.37 0.210 76.19 31 30.4 1.324 80.19 0.204 76.16 32.0 1.322 80.21 0.216 75.92 32 31.6 1.338 80.04 0.210 75.90 33.2 1.334 80.07 0.221 75.66 33 32.8 1.351 79.91 0.215 75.64 34.4 1.346 79.94 0.227 75.40 34 34.1 1.363 79.79 0.221 75.39 35.7 1.358 79.82 0.2383 75.16 35 35.4 1.875 79.69 0.227 75.15 37.0 1.369 79.72 0.2389 74.92 36 36.8 1.389 79.60 0.233 74.91 38.3 1.380 79.63 0.245 74.69 PERCENTAGE OF WATER IN BRAIN AND CORD

TABLE 74—Continued

149















MALES FEMALES ix PB t Per cent Per cent Per . er cen er cel . e “|, | (tS) ak | Sa PS Pa 37 38.1 1.399 79.52 0.239 74.68 39.6 1.391 79.55 0.250 74.47 38 39.6. 1.411 79.46 0.245 74.46 40.9 1.400 79.49 0.255 74.26 39 41.0 1.423 79.42 0.251 74.25 42.3 1.411 79.45 0.261 74.06 40 42.5 1.434 79.39 0.257 74.04 43.7 1.422 79.42 0.267 73.86 41 44.1 1.446 79.36 0.264 73.95 45.1 1.432 79.39 0.272 73.78 42 45.7 1.457 79.34 0.269 73.87 46.6 1.441 79.37 0.278 73.72 43 47.3 1.468 79.32 0.276 73.74 48.1 1.451 79.35 0.284 73.60 tt 48.9 1.478 79.30 0.281 73.62 49.6 1.460 79.33 0.289 73.50 45 50.6 1.488 79.28 0.288 73.50 51.1 1.468 79.31 0.294 73.39 46 52.3 1.498 79.26 0.293 73.39 52.7 1.478 79.29 0.300 73.30 47 54.1 1.507 79.24 0.299 73.28 54.3 1.487 79.27 0.306 73.21 48 55.9 1.518 79.22 0.305 73.17 55.9 1.495 79.25 0.311 73.12 49 57.7 1.527 79.21 0.311 73.07 57.5 1.503 79.24 0.316 72.05 50 59.6 1.537 79.19 0.317 72.97 59.2 1.512 79.23 0.322 72.97 51 61.5 1.546 79.17 0.323 72.88 60.9 1.520 79.21 0.327 72.88 52 63.4 1.555 79.15 0.329 72.79 62.6 1.528 79.19 0.332 72.79 53 65.4 1.563 79.14 0.334 72.69 64.3 1.535 79.18 0.338 72.69 54 67.4 1.572 79.12 0.340 72.60 66.1 1.5 79.16 0.343 72.60 53 69.5 1.581 79.10 0.346 72.51 67.9 1.551 79.14 0.348 72.51 56 71.6 1.589 79.08 0.352 72.43 69.7 1.558 79.12 0.353 72.43 57 73.7 1.597 79.07 0.358 72.35 71.6 1.565 79.11 0.359 72.35 58 75.9 1.606 79.05 0.363 72.27 73.4 1.573 79.09 0.364 72.27 59 78.1 1.614 79.04 0.369 72.19 75.3 1.580 79.08 0.370 72.19 60 80.3 1.622 79.02 0.375 72.11 77.3 1.587 79.06 0.375 72.11 61 82.5 1.629 79.00 0.380 72.04 79.2 1.594 79.04 0.380 72.04 62 84.9 1.637 78.99 0.386 71.97 81.2 1.601 79.02 0.385 71.97 63 87.2 1.644 78.97 0.391 71.91 83.2 1.607 79.01 0.389 71.91 64 89.6 1.652 78.96 0.397 71.84 85.2 1.614 78.99 0.394 71.84 63 92.0 1.659 78.94 0.402 71.77 87.3 1.621 78.98 0.399 71.77 66 94.5 1.666 78.93 0.407 71.71 89.4 1.627 78.97 0.404 71.72 67 97.0 1.673 78.92 0.413 71.65 91.5 1.633 78.96 0.409 71.66 68 99.5 1.681 78.90 0.418 71.60 93.6 1.639 78.94 0.414 71.61 69 102.1 1.688 78.89 0.424 71.54 95.8 1.645 78.93 0.419 71.54 70 «=104.7 1.695 78.88 0.429 71.48 98.0 1.651 78.92 0.424 71.50 71 =107.3 1.702 78.87 0.434 71.43 100.2 1.657 78.91 0.429 71.45 72 110.0 1.709 78.85 0.439 71.38 102.4 1.663 78.89 0.433 71.41 73 «112.7 1.715 78.84 0.445 71.32 104.7 1.669 78.88 0.4388 71.36 74 115.5 1.722 0.450 71.297 107.0 1.675 78.86 0.442 71.32

78.82 150

GROWTH OF PARTS AND ORGANS

TABLE 74—Continued














MALES FEMALES AGE

oie Body Brain |F' Fn cent Cord Peas Body Brain ae cent Cord age "of wae) | Vere) Vorain | SRE* | cord oll Waa) eet | Brain | Wolenel aay

75 «118.3 1.729 78.81 0.455 71.22 109.3 1.681 78.85 0.447 71.27 76 «121.1 1.735 78.80 0.460 71.18 111.6 1.687 78.84: 0.451 71.23 77 «124.0 1.741 78.79 0.465 71.13 114.0 1.692 78.83 0.456 71.19 78 126.8 1.746 78.77 0.470 71.09 116.4 1.698 78.82 0.460 71.15 79 129.8 1.752 78.76 0.475 71.04 118.8 1.703 78.81 0.465 71.11 80 132.8 1.758 78.75 0.480 71.00 121.3 1.709 78.80 0.469 71.07 81 134.7 1.762 78.74 0.483 70.96 122.6 1.712 78.79 0.471 71.03 82 1386.5 1.765 78.73 0.486 70.92 124.0 1.715 78.78 0.474 71.00 83 1388.4 1.769 78.72 0.488 70.89 125.4 1.717 78.77 0.476 70.96 84 140.2 1.772 78.71 0.491 70.85 126.8 1.720 78.76 0.479 70.93 85 142.0 1.776 78.70 0.494 70.81 128.1 1.723 78.75 0.481 70.89 86 148.7 1.779 78.69 0.497 70.78 129.5 1.726 78.74 0.483 70.86 87 145.5 1.782 78.68 0.499 70.74 130.8 1.728 78.73 0.485 70.83 88 147.2 1.785 78.67 0.502 70.71 132.1 1.731 78.72 0.488 70.80 89 148.9 1.788 78.66 0.504 70.67 133.4 1.733 78.71 0.490 70.77 90 150.5 1.791 78.65 0.507 70.64 134.6 1.736 78.70 0.492 70.74 91 152.1 1.794 78.64 0.509 70.61 135.8 1.738 78.69 0.494 70.72 92 153.7 1.797 78.63 0.511 70.58 137.1 1.740 78.68 0.496 70.69 93 155.3 1.799 78.62 0.514 70.56 138.3 1.743 78.67 0.497 70.67 94 156.9 1.802 78.61 0.516 70.53 139.4 1.745 78.66 0.499 70.64 95 158.4 1.805 78.60 0.518 70.50 140.6 1.747 78.65 0.501 70.62 96 160.0 1.807 78.59 0.520 70.48 141.8 1.749 78.64 0.503 70.60 97 161.4 1.810 78.58 0.522 70.45 142.9 1.751 78.63 0.505 70.58 98 162.9 1.812 78.57 0.525 70.43 144.0 1.752 78.62 0.506 70.55 99 164.3 1.815 78.56 0.527 70.40 145.1 1.754 78.61 0.508 70.53 100 165.8 1.817 78.55 0.529 70.38 146.2 1.756 78.60 0.510 70.51 101 167.2 1.819 78.54 0.531 70.36 147.3 1.758 78.59 0.512 70.49 102. 168.6 1.821 78.53 0.533 70.34 148.3 1.760 78.58 0.514 70.47 103 170.0 1.824 78.53 0.534 70.32 149.4 1.762 78.58 0.515 70.46 104 171.38 1.826 78.52 0.536 70.30 150.4 1.764 78.57 0.517 70.44 105 172.7 1.828 78.51 0.538 70.28 151.4 1.766 78.56 0.519 70.42 106 174.0 1.830 78.50 0.540 70.26 152.4.1.768 78.55 0.520 60.41 107 175.3 1.882 78.49 0.541 70.25 153.4 1.770 78.54 0.522 70.40 108 176.6 1.833 78.48 0.543 70.23 154.4 1.772 78.53 0.523 70.38 109. «177.9 1.835 78.47 0.544 70.22 155.3 1.774 78.52 0.525 70.37 110 «179.1 1.837 78.46 0.546 70.20 156.3 1.775 78.51 0.526 70.36 111 180.4 1.839 78.45 0.547 70.19 157.2 1.776 78.50 0.527 70.35 112 «181.6 1.841 78.44 0.549 70.17 158.2 78.49 0.528 70.34

1.778 PERCENTAGE OF WATER IN BRAIN AND CORD

TABLE 74—Continued

151















MALES FEMALES

AGE — = + {Per cent Per cent +, |Per cent

pars | Body Brain Body Brain Cord {cent of

wot | et [be] paste [ese ae | poset [Bite soe | ae

113 182.8 1.842 78.44 0.550 70.15 159.1 1.779 78.49 0.530 70.32 114 184.0 1.844 78.43 0.552 70.14 160.0 1.781 78.48 0.531 70.31 115 185.2 1.846 78.42 0.553 70.13 160.9 1.782 78.47 0.532 70.30 116 «6186.4 1.848 78.41 0.555 70.12 161.8 1.783 78.46 0.533 70.29 117 «6187.5 1.849 78.40 0.556 70.11 162.6 1.785 78.46 0.535 70.28 118 188.7 1.851 78.40 0.558 70.09 163.5 1.786 78.45 0.536 70.27 119 189.7 1.852 78.39 0.559 70.08 164.3 1.788 78.45 0.538 70.26 120. 190.9 1.854 78.38 0.561 70.07 165.2 1.789 78.44 0.539 70.25 121 192.0 1.855 78.37 0.562 70.06 166.0 1.790 75.43 0.540 70.25 122 1938.1 1.857 78.37 0.563 70.06 166.S 1.791 78.48 0.541 70.24 123 194.1 1.858 78.36 0.564 70.05 167.6 1.793 78.42 0.542 70.24 124 195.2 1.860 78.36 0.565 70.05 168.4 1.794 78.42 0.543 70.23 125 196.2 1.861 78.35 0.566 70.04 169.2 1.795 78.41 0.544 70.23 126 197.3 1.862 78.34 0.567 70.03 170.0 1.796 78.40 0.545 70.23 127 «6198.3 1.863 78.33 0.569 70.03 170.7 1.798 78.39 0.546 70.23 128 199.3 1.865 78.33 0.570 70.02 171.5 1.799 75.39 0.546 70.22 129 200.3 1.866 78.32 0.572 70.02 172.3 1.801 78.38 0.547 70.22 1380 4201.2 1.867 78.31 0.573 70.01 173.0 1.802 78.37 0.548 70.22 131 202.2 1.868 78.30 0.574 70.01 173.7 1.803 78.36 0.549 70.22 132 203.2 1.870 78.30 0.575 70.01 174.5 1.804 78.36 0.550 70.22 133 «204.1 1.871 78.29 0.576 70.00 175.2 1.804 78.35 0.551 70.22 134 205.1 1.873 78.29 0.577 70.00 175.9 1.805 78.35 0.552 70.22 135 206.0 1.874 78.28 0.578 70.00 176.2 1.806 78.34 0.553 70.22 136 206.9 1.875 78.27 0.579 70.00 176.5 1.807 78.33 0.554 70.22 137 0. 207.8 1.876 78.26 0.580 70.00 176.9 1.808 78.32 0.555 70.22 138 208.7 1.877 78.26 0.580 70.00 177.6 1.809 78.32 0.555 70.22 139 209.6 1.878 78.25 0.581 70.00 178.3 1.810 78.31 0.536 70.22 140 «4210.5 1.879 78.24 0.582 70.00 179.9 1.811 78.30 0.557 70.22 141 211.3 1.880 78.24 0.583 70.00 180.6 1.812 78.30 0.558 70.22 142 212.2 1.881 78.23 0.584 70.00 181.2 1.813 78.29 0.559 70.22 143 «4213.0 1.882 78.23 0.584 70.00 181.8 1.813 78.29 0.559 70.22 144 213.9 1.883 78.22 0.585 70.00 182.5 1.814 78.28 0.560 70.22 145 214.7 1.884 78.22 0.586 70.00 183.1 1.815 78.28 0.561 70.22 1446 215.5 1.885 78.21 0.587 70.00 183.7 1.816 78.27 0.562 70.22 147 216.3 1.886 78.21 0.588 70.00 184.3 1.817 78.27 0.562 70.22 148 217.1 1.887 78.20 0.588 70.00 184.9 1.817 78.26 0.563 70.22 149 217.9 1.887 78.20 0.589 70.00 185.5 1.818 78.26 0.564 70.22 150 218.7 1.888 78.19 0.590 70.00 186.1 1.819 78.25 0.565 70.22 152

GROWTH OF PARTS AND ORGANS

TABLE 74—Continued















MALES FEMALES

AGE P ae Body | Brain {Per cent Per cent!| poay | Brain [Pet cet] Cord feont "ot

rsa | att [bran] og [eond"]] mpett | watt [seen | Soe | aa 151 219.5 1.889 78.19 0.591 70.00 186.7 1.820 78.25 0.565 70.22 152 220.2 1.890 78.18 0.592 70.00 187.2 1.821 78.24 0.566 70.22 153 221.0 1.891 78.18 0.592 70.00 187.8 1.821 78.24 0.567 70.22 154 221.7 1.892 78.17 0.593 70.00 188.4 1.822 78.23 0.568 70.22 155 222.5 1.893 78.17 0.594 70.00 188.9 1.828 78.23 0.568 70.22 156 223.2 1.894 78.16 0.595 70.70 189.5 1.824 78.22 0.569 70.22 157 223.9 1.895 78.16 0.586 70.00 190.0 1.825 78.22 0.570 70.22 158 224.7 1.896 78.15 0.596 70.00 190.6 1.825 78.21 0.571 70.22 159 225.3 1.897 78.15 0.597 70.00 191.1 1.826 78.21 0.571 70.22 160 226.0 1.898 78.14 0.598 70.00 191.6 1.827 78.20 0.572 70.22 161 226.7 1.899 78.14 0.599 70.00 192.1 1.828 78.20 0.573 70.22 162 227.4 1.900 78.13 0.600 70.00 192.6 1.829 78.19 0.574 70.22 163 228.1 1.901 78.13 0.600 70.00 193.2 1.829 78.19 0.574 70.22 164 228.8 1.902 78.12 0.601 70.00 193.6 1.830 78.18 0.575 70.22 165 229.4 1.902 78.12 0.602 70.00 194.2 1.831 78.18 0.576 70.22 166 =. 230.1 1.903 78.12 0.603 70.00 194.6 1.832 78.18 0.576 70.22 167 =. 230.7 1.903 78.12 0.608 70.00 195.1 1.832 78.18 0.577 70.22 168 231.4 1.904 78.12 0.604 70.00 195.6 1.833 78.18 0.577 70.22 169 232.0 1.904 78.12 0.604 70.00 196.1 1.833 78.18 0.578 70.22 170 §=232.6 1.905 78.12 0.605 70.00 196.5 1.834 78.18 0.578 70.22 171 233.3 1.906 78.12 0.605 70.00 197.0 1.834 78.18 0.579 70.22 172 233.9 1.906 78.12 0.606 70.00 197.5 1.835 78.18 0.579 70.22 173 234.5 1.907 78.12 0.606 70.00 197.9 1.835 78.18 0.580 70.22 174 235.1 1.907 78.12 0.607 70.00 198.4 1.8386 78.18 0.580 70.22 175 235.7 1.908 78.12 0.608 70.00 198.8 1.837 78.18 0.581 70.22 176 286.38 1.909 78.12 0.608 70.00 199.3 1.837 78.18 0.581 70.22 177 286.9 1.909 78.12 0.609 70.00 199.7 1.8388 78.18 0.582 70.22 178 287.4 1.910 78.11 0.609 69.99 200.1 1.838 78.17 0.582 70.22 179 =238.0 1.910 78.11 0.610 69.99 200.6 1.839 78.17 0.583 70.22 180 238.6 1.911 78.11 0.610 69.99 201.0 1.839 78.17 0.583 70.22 181 239.1 1.912 78.11 0.611 69.99 201.4 1.840 78.17 0.584 70.22 182 239.7 1.912 78.11 0.612 69.99 201.8 1.841 78.17 0.584 70.22 183 240.2 1.913 78.11 0.612 69.99 202.2 1.841 78.17 0.585 70.22 184 240.8 1.918 78.11 0.613 69.99 202.6 1.842 78.17 0.585 70.22 185 241.8 1.914 78.11 0.613 69.99 203.0 1.842 78.17 0.586 70.22 186 241.8 1.915 78.11 0.814 69.99 203.4 1.843 78.17 0.586 70.22 187 242.38 1.915 78.11 0.614 69.99 203.8 1.843 78.17 0.587 70.22 188 242.9 1.916 78.11 0.615 69.99 204.2 1.844 78.17 0.587 70.22 PERCENTAGE OF WATER IN BRAIN AND CORD 153

TABLE 74—Continued














MALES FEMALES is P t P t Per cent oe = . . er cen er cen’ in er cen rd nt oO! r | opt | See [em] Se [al aE | SE me a 189 243.4 1.916 78.11 0.615 69.99 204.6 1.844 78.17 0.588 70.22 190 243.9 1.917 78.11 0.616 69.99 204.9 1.845 78.17 0.588 70.22 191 244.4 1.917 78.11 0.616 69.99 205.3 1.845 78.17 0.588 70.22 192 244.9 1.918 78.11 0.617 69.99 205.7 1.846 78.17 0.589 70.22 193 245.4 1.918 78.11 0.617 69.98 206.0 1.846 78.17 0.589 70.22 194 245.9 1.919 78.11 0.618 69.98 206.4 1.847 78.17 0.589 70.22 195 246.3 1.919 78.11 0.618 69.98 206.7 1.847 78.17 0.590 70.21 196 246.8 1.920 78.11 0.618 69.98 207.1 1.847 78.17 0.590 70.21 197 247.3 1.920 78.10 0.619 69.97 207.4 1.848 78.17 0.591 70.21 198 247.8 1.921 78.10 0.619 69.97 207.8 1.848 78.17 0.591 70.21 199 248.2 1.921 78.10 0.620 69.97 208.1 1.849 78.17 0.591 70.21 200 248.6 1.922 78.10 0.620 69.97 208.4 1.849 78.17 0.592 70.20 201 249.1 1.922 78.10 0.620 69.96 208.8 1.849 78.17 0.592 70.20 202 «4249.6 1.923 78.10 0.621 69.96 209.1 1.850 78.17 0.592 70.20 203 «250.0 1.923 78.10 0.621 69.96 209.4 1.850 78.16 0.593 70.20 204 «250.4 1.924 78.10 0.622 69.96 209.8 1.851 78.16 0.593 70.20 205 250.9 1.924 78.10 0.622 69.95 210.1 1.851 78.16 0.593 70.20 206 «251.3 1.925 78.10 0.622 69.95 210.4 1.851 78.16 0.594 70.19 207 «251.7 1.925 78.10 0.623 69.95 210.7 1.852 78.16 0.594 70.19 208 252.1 1.926 78.10 0.623 69.95 211.0 1.852 78.16 0.594 70.19 209 252.5 1.926 78.09 0.624 69.94 211.3 1.853 78.16 0.595 70.19 210 «4252.9 1.927 78.09 0.624 69.94 211.6 1.853 78.16 0.595 70.19 211 4253.4 1.927 78.09 0.624 69.94 211.9 1.853 78.16 0.596 70.19 212 «253.7 1.928 78.09 0.625 69.94 212.2 1.854 78.16 0.596 70.18 213 (254.2 1.928 78.09 0.625 69.93 212.5 1.854 78.16 0.596 70.18 214 254.5 1.929 78.09 0.626 69.93 212.8 1.855 78.16 0.597 70.18 215 «0254.9 1.929 78.09 0.626 69.93 213.1 1.855 78.16 0.597 70.18 216 §=.255.3 1.929 78.09 0.626 69.93 213.4 1.855 78.16 0.597 70.18 217 «=. 235.7 1.930 78.09 0.627 69.92 213.7 1.856 78.16 0.597 70.17 218 256.1 1.930 78.08 0.627 69.92 213.9 1.856 78.15 0.598 70.17 219 256.4 1.930 78.08 0.627 69.92 214.2 1.856 78.15 0.598 70.17 220 4256.8 1.931 78.0S 0.628 69.91 214.4 1.857 78.15 0.598 70.16 221 «257.2 1.931 78.08 0.628 69.91 214.7 1.857 78.15 0.598 70.16 222 257.5 1.931 78.08 0.628 69.90 215.0 1.857 78.15 0.599 70.16 223 «257.9 1.932 78.07 0.629 69.90 215.2 1.858 78.14 0.599 70.15 224 258.2 1.9382 78.07 0.629 69.90 215.5 1.858 78.14 0.599 70.15 225 «258.6 1.932 78.07 0.629 69.89 215.8 1.858 78.14 0.599 70.15 226 «258.9 1.933 78.07 0.630 69.89 216.0 1.859 78.14 0.600 70.14 154

GROWTH OF PARTS AND ORGANS

TABLE 74—Continued


AGE

MALES

FEMALES





Per cent



Per cent




Per cent




Per


pays | Body Brain P Body Brain Cord |cent of wanes |S [Porta gee [oor] paces | gt [Ben | a | ae

227 «=-259.2 1.9383 78.07 0.630 69.89 216.2 1.859 78.14 0.600 70.14 228 259.6 1.983 78.06 0.6380 69.88 216.5 1.859 78.13 0.600 70.14 229 259.9 1.983 78.06 0.630 69.88 216.7 1.859 78.13 0.600 70.14 230 260.2 1.9384 78.06 0.631 69.88 217.0 1.860 78.13 0.601 70.13 231 260.6 1.934 78.06 0.631 69.87 217.2 1.860 78.13 0.601 70.13 232 «=260.9 1.9384 78.06 0.631 69.87 217.5 1.860 78.13 0.601 70.13 233 «261.2 1.9385 78.05 0.632 69.87 217.7 1.861 78.12 0.601 70.12 234 261.5 1.985 78.05 0.632 69.86 217.9 1.861 78.12 0.602 70.12 235 «=-261.9 1.9385 78.05 0.6382 69.86 218.1 1.861 78.12 0.602 70.12 236 «6. 262..1. «1.986 78.05 0.633 69.85 218.3 1.862 78.12 0.602 70.11 237 262.4 1.9386 78.05 0.633 69.85 218.6 1.862 78.12 0.602 70.11 238 262.8 1.9386 78.04 0.633 69.85 218.8 1.862 78.11 0.603 70.11 239 263.0 1.9387 78.04 0.634 69.84 219.0 1.863 78.11 0.603 70.10 240 263.3 1.987 78.04 0.634 69.84 219.2 1.865 78.11 0.603 70.10 241 263.6 1.937 78.04 0.634 69.84 219.4 1.863 78.11 0.603 70.10 242 263.9 1.9388 78.03 0.634 69.83 219.6 1.863 78.10 0.603 70.09 243 264.2 1.988 78.03 0.635 69.83 219.8 1.863 78.10 0.604 70.09 244 264.5 1.9388 78.03 0.685 69.82 220.0 1.864 78.10 0.604 70.08 245 264.8 1.9388 78.03 0.635 69.82 220.3 1.864 78.10 0.604 70.08 246 265.0 1.939 78.02 0.635 69.81 220.4 1.864 78.09 0.604 70.07 247 +=265.3 1.9389 78.02 0.636 69.81 220.6 1.864 78.09 0.604 70.07 248 265.6 1.939 78.C2 0.636 69.80 220.8 1.864 78.09 0.605 70.06 249 265.8 1.940 78.01 0.636 69.80 221.0 1.864 78.08 0.605 70.0€ 250 266.1 1.940 78.01 0.636 69.79 221.2 1.865 78.08 0.605 70.05 251 266.3 1.940 78.01 0.637 69.79 221.4 1.865 78.08 0.605 70.05 252 266.6 1.940 78.01 0.637 69.78 221.6 1.865 78.08 0.605 70.04 253 266.8 1.941 78.00 0.637 69.78 221.7 1.865 78.07 0.606 70.04 254 267.1 1.941 78.00 0.637 69.77 221.9 1.865 78.07 0.606 70.03 255 267.3 1.941 78.00 0.638 69.77 222.1 1.865 78.07 0.606 70.03 256 267.6 1.941 78.00 0.6388 69.76 222.3 1.866 78.07 0.606 70.02 257 «267.8 1.942 77.99 0.638 69.76 222.4 1.866 78.06 0.606 70.02 258 268.0 1.942 77.99 0.638 69.75 222.6 1.866 78.06 0.607 70.01 259 268.3 1.942 77.99 0.639 69.75 222.8 1.866 78.06 0.607 70.01 260 268.5 1.948 77.98 0.639 69.74 223.0 1.866 78.05 0.607 70.00 261 268.7 1.943 77.98 0.639 69.74 223.1 1.866 78.05 0.607 70.00 262 269.0 1.943 77.98 0.639 69.73 223.3 1.867 78.05 0.607 69.99 263 269.2 1.943 77.98 0.640 69.73 223.4 1.867 78.05 0.608 69.99 264 269.4 1.944 77.97 0.640 69.72 223.6 1.867 78.04 0.608 69.98 PERCENTAGE OF WATER IN BRAIN AND CORD 155 TABLE 74—Continued MALES FEMALES a Per = - |Per cent Per cent « |Per cent pars | Body | Brain [of water| Cond, [of water|| oy | weeks [oLmater| weight | cater gms. gms. gms. gms. gms. gms. co

265 269.6 1.944 77.97 0.640 69.72 223.7 1.867 78.04 0.60S 69.98 266 269.8 1.944 77.97 0.640 69.72 223.9 1.867 78.04 0.608 69.9S 267 270.0 1.944 77.96 0.640 69.71 224.0 1.867 78.03 0.60S 69.97 268 270.2 1.944 77.96 0.640 69.71 224.2 1.867 78.03 0.608 69.97 269 270.5 1.945 77.96 0.640 69.70 224.3 1.867 78.03 0.608 69.96 270 «270.7 1.945 77.95 0.641 69.70 224.5 1.868 78.02 0.609 69.96 271 270.9 1.945 77.95 0.641 69.69 224.6 1.868 78.02 0.609 69.95 272 271.1 1.945 77.94 0.641 69.69 224.8 1.868 78.02 0.609 69.95 273 «271.3 1.945 77.94 0.641 69.68 224.9 1.868 78.01 0.609 69.94 274 271.5 1.945 77.94 0.641 69.68 225.0 1.868 78.01 0.609 69.94 275 271.6 1.946 77.93 0.641 69.67 225.1 1.868 78.01 0.609 69.94 276 271.8 1.946 77.93 0.641 69.67 225.3 1.868 78.00 0.609 69.93 277 «272.0 1.946 77.93 0.641 69.66 225.4 1.868 78.00 0.609 69.93 978 272.2 1.946 77.92 0.642 69.66 225.5 1.869 78.00 0.610 69.92 279 272.3 1.946 77.92 0.642 69.65 225.7 1.869 78.00 0.610 69.92 280 272.5 1.946 77.92 0.642 69.65 225.8 1.869 77.99 0.610 69.91 981 272.7 1.947 77.91 0.642 69.64 225.9 1.869 77.99 0.610 69.91 282 272.8 1.947 77.91 0.642 69.64 226.0 1.869 77.99 0.610 69.91 283 273.0 1.947 77.91 0.642 69.63 226.1 1.869 77.98 0.610 69.90 2984 273.2 1.947 77.90 0.642 69.63 226.2 1.869 77.98 0.610 69.90 285 273.4 1.947 77.90 0.642 69.62 226.4 1.869 77.98 0.610 69.89 286 273.5 1.947 77.89 0.643 69.62 226.5 1.870 77.97 0.611 69.89 287 273.7 1.948 77.89 0.643 69.61 226.6 1.870 77.97 0.611 69.88 288 273.9 1.948 77.89 0.643 69.61 226.7 1.870 77.97 0.611 69.88 289 274.0 1.948 77.88 0.643 69.60 226.8 1.870 77.96 0.611 69.87 200 274.2 1.948 77.88 0.643 69.60 226.9 1.870 77.96 0.611 69.87 291 274.3 1.948 77.88 0.643 69.59 227.0 1.870 77.96 0.611 69.86 292 274.5 1.948 77.87 0.643 69.59 227.1 1.870 77.95 0.611 69.86 293 274.6 1.948 77.87 0.643 69.58 227.2 1.870 77.95 0.611 69.85 294 274.7 1.948 77.86 0.643 69.58 227.3 1.870 77.94 0.611 69.85 295 274.9 1.948 77.86 0.644 69.57 227.4 1.870 77.94 0.611 69.84 296 275.0 1.948 77.86 0.644 69.56 227.5 1.870 77.94 0.611 69.84 297 275.2 1.949 77.85 0.644 69.56 227.6 1.871 77.93 0.612 69.83 298 275.3 1.949 77.85 0.644 .69.55 227.7 1.871 77.93 0.612 69.83 299 275.4 1.949 77.84 0.644 69.55 227.8 1.871 77.92 0.612 69.82 300 275.5 1.949 77.84 0.644 69.54 227.9 1.871 77.92 0.612 69.82 301 275.7 1.949 77.84 0.644 69.53 228.0 1.871 77.92 0.612 69.81 302 275.8 1.949 77.83 0.644 69.53 228.0 1.871 77.91 0.612 68.S1 156

GROWTH OF PARTS AND ORGANS

TABLE 74—Continued


AGE IN

MALES

FEMALES












Per


DAYS Body Brain Per cent] Corg |Per cent Body Brain [Per cent] Oorg cent of

weight | woight |main| Weight [cord || weight | weight [°prain'| weight | water 303 275.9 1.949 77.83 0.645 69.52 228.1 1.871 77.91 0.612 69.80 304 276.1 1.949 77.82 0.645 69.52 228.2 1.871 77.90 0.612 69.80 305 276.2 1.949 77.82 0.645 69.51 228.3 1.871 77.90 0.612 69.79 306 276.3 1.949 77.82 0.645 69.50 228.3 1.871 77.90 0.612 69.79 307 276.4 1.949 77.81 0.645 69.50 228.4 1.871 77.89 0.612 69.78 308 276.5 1.949 77.81 0.645 69.49 228.5 1.871 77.89 0.612 69.78 309 276.6 1.950 77.80 0.645 69.49 228.6 1.872 77.88 0.613 69.77 310 276.7 1.950 77.80 0.645 69.48 228.7 1.872 77.88 0.613 69.77 311 276.9 1.950 77.80 0.646 69.47 228.7 1.872 77.88 0.613 6.76 312 277.0 1.950 77.79 0.646 69.47 228.8 1.872 77.87 0.613 69.76 313 277.0 1.950 77.79 0.646 69.46 228.8 1.872 77.87 0.613 69.75 314 277.1 1.950 77.78 0.646 69.46 228.9 1.872 77.86 0.613 69.75 315 277.2 1.950 77.78 0.646 69.45 229.0 1.872 77.86 0.613 69.74 316 277.3 1.950 77.77 0.646 69.44 229.0 1.872 77.85 0.613 69.73 317 277.5 1.950 77.77 0.646 69.44 229.1 1.872 77.85 0.613 69.73 318 277.5 1.950 77.76 0.646 69.43 229.1 1.872 77.84 0.613 69.72 319 277.6 1.950 77.76 0.646 69.43 229.2 1.872 77.84 0.613 69.72 320 277.7 1.950 77.75 0.646 69.42 229.3 1.872 77.83 0.613 69.71 321 277.8 1.950 77.75 0.646 69.41 229.3 1.872 77.83 0.613 69.71 322 277.9 1.951 77.74 0.647 69.41 229.4 1.873 77.82 0.614 69.70 323 278.0 1.951 77.74 0.647 69.40 229.4 1.873 77.82 0.614 69.70 324 278.0 1.951 77.73 0.647 69.40 229.5 1.873 77.81 0.614 69.69 325 278.1 1.951 77.73 0.647 69.39 229.5 1.873 77.81 0.614 69.68 326 278.2 1.951 77.72 0.647 69.38 229.6 1.873 77.80 0.614 69.68 327 278.3 1.951 77.72 0.647 69.38 229.6 1.873 77.80 0.614 69.67 328 278.4 1.951 77.71 0.647 69.37 229.7 1.873 77.79 0.614 69.67 329 278.4 1.951 77.71 0.647 69.37 229.7 1.873 77.79 0.614 69.66 330 278.5 1.951 77.70 0.647 69.36 229.8 1.873 77.78 0.614 69.66 331 278.6 1.951 77.70 0.647 69.35 229.8 1.873 77.78 0.614 69.65 332 278.6 1.951 77.69 0.647 69.35 229.8 1.873 77.77 0.614 69.64 333 278.7 1.951 77.69 0.647 69.34 229.9 1.873 77.77 0.614 69.64 334 278.7 1.952 77.68 0.648 69.34 229.9 1.874 77.76 0.615 69.63 335 278.8 1.952 77.68 0.648 69.33 229.9 1.874 77.76 0.615 69.63 336 278.9 1.952 77.67 0.648 69.32 230.0 1.874 77.75 0.615 69.62 337 278.9 1.952 77.67 0.648 69.32 230.0 1.874 77.75 0.615 69.62 338 279.0 1.952 77.66 0.648 69.31 230.0 1.874 77.74 0.615 69.61 339 279.0 1.952 77.66 0.648 69.31 230.1 1.874 77.74 0.615 69.61 340 279.1 1.952 77.65 0.648 69.30 230.1 1.874 77.73 0.615 69.60 PERCENTAGE OF WATER IN BRAIN AND CORD

TABLE 74—Concluded














MALES FEMALES

— Per oe :, jPer cent Per cent - |Per cent pays | Body Brain Body Brain ¥ rd jcent of

ee ore | eee | ee pee | | oe ee 341 279.2 1.952 77.64 0.648 69.29 230.1 1.874 77.72 0.615 69.59 342 279.2 1.952 77.64 0.648 69.29 230.1 1.874 77.72 0.615 69.59 343 «279.3 1.952 77.63 0.648 69.28 230.2 1.874 77.71 0.615 69.58 344 «4279.3 1.952 77.63 0.648 69.27 230.2 1.874 77.71 0.615 69.37 345 279.3 1.952 77.62 0.648 69.27 230.2 1.874 77.70 0.615 69.57 346 «0279.4 1.952 77.61 0.648 69.26 230.3 1.874 77.69 0.615 69.56 347 9=-279.4 1.953 77.61 0.648 69.25 230.3 1.874 77.69 0.615 69.56 348 «279.5 1.953 77.60 0.648 69.25 230.3 1.874 77.68 0.615 69.45 349 §=6279.5 1.953 77.60 0.648 69.24 230.3 1.874 77.68 0.615 69.54 350 279.6 1.953 77.59 0.648 69.23 230.3 1.874 77.67 0.615 69.54 351 279.6 1.953 67.58 0.648 69.23 230.3 1.874 77.66 0.615 69.53 352 279.6 1.953 77.58 0.648 69.22 230.3 1.874 77.66 0.615 69.52 353 279.7 1.953 77.57 0.649 69.21 230.4 1.875 77.65 0.616 69.52 354 279.7 1.953 77.57 0.649 69.20 230.4 1.875 77.65 0.616 69.51 355 279.7 1.953 77.56 0.649 69.20 230.4 1.875 77.64 0.616 69.50 356 279.8 1.953 77.55 0.649 69.19 230.4 1.875 77.63 0.616 69.50 357 9=-.279.8 1.953 77.55 0.649 69.18 230.4 1.875 77.63 0.616 69.49 358 279.8 1.953 77.54 0.649 69.18 230.4 1.875 77.62 0.616 69.48 359 «279.8 1.954 77.54 0.649 69.17 230.4 1.875 77.62 0.616 69.48 360 279.8 1.954 77.53 0.649 69.16 230.4 1.875 77.61 0.616 69.47 361 279.8 1.954 77.52 0.649 69.16 230.4 1.875 77.60 0.616 69.47 362 279.9 1.954 77.52 0.649 69.15 230.4 1.875 77.60 0.616 69.46 363 279.9 1.954 77.51 0.649 69.14 230.4 1.875 77.59 0.616 69.45 364 279.9 1.954 77.51 0.649 69.14 230.4 1.875 77.59 0.616 69.45 365 279.9 1.954 77.50 0.649 69.13 230.4 1.875 77.58 0.616 69.44 158 GROWTH OF PARTS AND ORGANS

12. Formulas. Formulas for computing the length or weight of the body and of its several parts, systems or organs, also for expressing the values of other characters.

The formulas for the Albino—Group I— are given first, then those for the Norway—Group II. In Group I there are two divisions. The first division comprises the formulas based on size (body length and body weight). The second division com- prises the formulas based on age. ‘These formulas have been kept simple in order to facilitate their use. This condition has made it sometimes necessary to have different formulas for the different parts of the same series of data, but this was deemed more desirable than a reduction in the number of the formulas at the price of greater complexity.

After the formula there follows in parenthesis the number by which it is designated in the text, and every formula, whether it begeneral or subsidiary, is thus numbered, each subsidiary formula carrying the number of the general formula to which it is related, followed by a distinguishing letter. A catalog of the formulas, given in detail later, is here presented.

CATALOG OF FORMULAS

GROUP I. ALBINOS

First division: Formulas based on size

Body length on body weight (1).

Body weight on body length (2), (2 a), (2b).

Body weight on brain weight (3).

Tail length on body length (4), (5).

Brain weight on body weight (6), (7).

Cranial capacity on body weight (8), (9), (10). Spinal cord weight on body weight (11).

Diameters of ganglion cell and nucleus (12), (12 a). Weight of both eyeballs on body weight (13). Weight of heart on body weight (14).

Weight of both kidneys on body weight (15). Weight of liver on body weight (16).

Weight of spleen on body weight (17).

Weight of both lungs on body weight (18).

Volume of blood on body weight (19), (19 a), (19 b). Weight of blood on body weight (20), (20 a), (20 b). Weight of alimentary tract on body weight (21). BODY WEIGHT ON BODY LENGTH 159

Weight of both testes on body weight (22), (23), (24). Weight of both ovaries on body weight (25), (26), (27). Weight of hypophysis on body weight (28), (29). Weight of both suprarenals on body weight (30), (31). Weight of thyroid on body weight (32).

Weight of nitrogen on body weight (33).

Second division: Formulas based on age in days

Body weight on age (34), (35), (36), (37).

Weight of thymus on age (38), (39).

Percentage of water in brain—on age (40), (41), (42), (42 a).

Percentage of water in spinal cord—on age (43), (44), (45), (45 a), (45 b), (45 ¢), (45 d).

GROUP II. NORWAYS

First division: Formulas based on size

Body length on body weight (46).

Body weight on body length (47), (4S).

Body weight Norway on body weight Albino (49). Tail length on body length (50), (51).

Brain weight on body weight (52).

Cranial capacity on body weight (53).

Spinal cord weight on body weight (54).

Spinal cord weight on brain weight (55).

GROUP I. ALBINOS FIRST DIVISION! FORMULAS BASED ON SIZE

Bovy Leneru on Bopy WeicatT, (Donatpson, ’09) Body length (sexes combined) = 143 log (Bd. wt. +15) —134 (1)

A study of tables 1 and 2 in the investigations by Donaldson ’09 shows that for a given body weight the body length of the male is about 2.2 per cent greater than that of the female. If then the value found by this formula for any body weight is increased by 1.1 per cent of itself the sum obtained represents the body length for the male. If on the contrary, the value found is decreased by 1.1 per cent of itself, the difference obtained represents the body length for the corresponding female. 160 GROWTH OF PARTS AND ORGANS

Bopy Werieut on Bopy Lenetu (DoNALpson, ’0!)

By transposing formula (1) we obtain

Ba. 1.4134

Body weight (sexes combined) =10° #3 —15 (2)

As the body length for a given body weight is for the male 1.1 per cent above the value in (2) and for the female 1.1 per cent below the value in (2), two new formulas have been made for the male and female respectively—thus

(100 Bd. 1.—1.1 Bd. 1.)+-13400

Body weight:—male = 10 14300 —15 (2a) (100 Bd. 2.41.1 Bd. 1.)4+-13400 Body weight:—female =10 14300 — 15 (2b)

By use of formulas (2a) and (2b) the body weights corre- sponding to body lengths from 50-250 mm have been computed for each sex and the values obtained are those entered in the accompanying tables.

To illustrate the procedure with a formula of this sort the following example is given.

To compute the body weight for a body length of 150 mm. (male) by the following formula (2a). |

BODY WEIGHT—TAIL LENGTH 161

(100 Bd. l.—1.1 Bd. 1.)+13400 Body weight (male) = 10 14300 —15

Transpose 15 from right hand side to the left and take the logarithm of both sides. We have will

(100 x 150 ~ 1.1 x 150) + 13400 . log (Bd. wt.-+15) =log 10 9( wt. +15) =log 10x 14300 15000 — 165 + 13400 14300

1X =1.9745

,

Thus 1.9745 is equivalent to the logarithm of body weight’ plus 15. Therefore body weight + 15 = 94.3 (anti-logarithm of 1.9745). Finally, body weight = 94.3 — 15 = 79.3 grams.

The above procedure is that to be followed with other formulas of the same type.

Bopy Weicat on Brasn Weicur (Dona.pson, ’08)

Br. wt.—0.554

Body weight (sexes combined) =8.7+10 0-569 (3)

Tar Lencts on Bopy Leners. (Harat, ms ’14.)

Tail length: male =0.852 Bd. l. +-38.8 (log Bd. 1.) -90.5 . (4) Tail length :—female =0.874 Bd. 1.+43.2 (log Bd.l)—98.1 (5)

Formulas (4) and (5) were used for table 68. 162 GROWTH OF PARTS AND ORGANS Brain Weicut on Bopy Wereut. (Hara, ’09, p. 172)

For the brain weight of sexes combined, the following for- mulas have been obtained :— Brain weight (sexes combined) = 1.56 log (Bd. wt.) — 0.87 (6) [5 < Bd. wt. < 10 gms.]

Brain weight (sexes combined) = 0.569 log (Bd. wt. — 8.7) +.554 (7) [Bd. wt. > 10 gms.]

For a given body weight the average brain weight in the male was found to be 1.5 per cent more than in the female, hence the determinations of brain weight on body weight by formulas (6) and (7) give final values which must be increased by 0.75 per cent to represent the male brain and decreased by 0.75 per cent to represent the female brain weight. By using this procedure the data on brain weight given in table 68 were obtained.

Craniat Capacity on Bopy Weiaut. (Harat, ’07 c) Cranial capacity represented by the weight of the shot con- tained is given by

Cranial capacity (shot wt.) =0.0072 x (Bd. wt. male) +9.349 (8)

To reduce the shot weight to brain weight in the male, the value obtained is to be divided by 5.98. The corresponding formula for the female is

Cranial capacity (shot wt.) =

0.0251 x (Bd. wt. female) + 6.168 (9)

To reduce the shot weight to brain weight in the female, the value obtained is to be divided by 6.009. CRANIAL CAPACITY—DIAMETER OF NUCLEUS 163

For the cranial capacity expressed in cc. Donaldson (12), the formula for sexes combined is

Cranial capacity in ec. =

1.02 log Bd. wt. — 0.00027 Bd. wt. —0.596 (10) [80 < Bd. wt. < 300]

Spinat Corp WEIGHT on Bopy WEIGHT (DonALDSON, 09)

Spinal cord wt. (sexes combined) =

0.585 log (Bd. wt. +21) —0.795 (11)

In the female the spinal cord is about 2 per cent heavier than in the male, therefore when using formula (11) the values ob- tained require to be increased by 1 per cent to represent the weight of the spinal cord in the female and to be diminished by 1 per cent to represent its weight in the male. By using this procedure, the data on the weights of the spinal cord in table 68 have been obtained.

DIAMETER OF SECOND CERVICAL SPINAL GANGLION CELL NUCLEUS ON DiaMETER oF CELL Bopy (Harat, ’07b)

Correlation between diameter of cell body and diameter of nucleus in » — in spinal ganglion cells of second cervical nerve. Diameter of nucleus in p =

x a

12.2939 { 1.0252 + 0.3564(+) — 0.0758 (=) \ (12)

where x is the diameterof the cell in » and | is a half range of the variates. 164 GROWTH OF PARTS AND ORGANS

As the value of | is 10, the formula (12) may be transformed by a series of steps here omitted, to read

Dn = 12.6 $4.3 (PC) —0.9 pee

2 12 20 20 } oo

Where D n = Diameter of nucleus in » and Dc b = Diameter of cell body in xz. See table 31.

Weicut or Boru EvEBALLs on Bopy Weicut. (Harar, 13, p. 112)

Weight of both eyeballs (sexes combined) = 0.000428 Bd. wt. +0.098 log Bd. wt. — 0.041 (138)

Formula (13) was used for table 68.

Weicut or Heart on Bopy Wsicur (Hatai, 713)

Weight of heart (sexes combined) = 0.0026 (Bd. wt. + 14) + 0.249 log (Bd. wt. + 14) — 0.336 (14)

Formula (14) was used for table 69.

Weicut or Boru Kipneys on Bopy Wercut (Hartatr, 713)

Weight of both kidneys (sexes combined) = 0.00718 (Bd. wt. — 3) + 0.132 log (Bd. wt. — 3) —0.009 (15)

Formula (15) was used for table 69. LIVER WEIGHT—BLOOD VOLUME 165

Weicut or Liver on Bopy Weicut (Hartal, 713)

Weight of liver (sexes combined) = 0.0303 (Bd. wt. + 5) + 3.340 log (Bd. wt. + 5) — 3.896 (16) [Bd. wt. > 10]

Formula (16) was used for obtaining the values given in table 69 for body weights of 10 grams or above. For body weights below 10 grams the weights have been determined by graphic inter- polation—using the crude records as a basis.

WEIGHT OF SFLEEN ON Bopy WeicuT (Hartat, ’13)

Weight of spleen (sexes combined) = 0.00245 Bd. wt. + 0.0301 log (Bd. wt.) — 0.025 (17)

Formula (17) was used for table 69.

Weicut or Bora Lunes on Bopy WeicnT (Harat, ’13)

Weight of both lungs (sexes combined) = 0.00471 (Bd. wi. + 2) +0.122 log (Bd. wt. + 2) - 0.056 (18)

Formula (18) was used for table 70.

VoLUME OF THE BLoop on Bopy Weieur (CuIsoum, ’11) anp Harat (ms 714)

. Bad. wt.°9 Blood volume (sexes combined) = 01° ~ 0.099 Bd. wt.°-? (19)

[5< Bd. wt. < 150]

Blood volume (males) = .

0.099 Bd. wt.9 — .03 (.099 Bd. wt.) (19a) = 0.09603 Bd. wt.°-*

[150 < Bd. wt. < 350] 166 GROWTH OF PARTS AND ORGANS Blood volumes (females) = 0.099 Bd. wt.°-? + .06 (.099 Bd. wt.) (19b) = 0.10494 Bd. wt.%°

[150 < Bd. wt. < 350]

By using the factor 1.056 for the specific gravity of the blood corresponding formulas for the blood weight on body weight have been obtained as follows: Hatai (MS 714).

Blood weight (sexes combined) = 0.099 Bd. wt.°® x 1.056 or = 0.1045 Bd. wt.%* (20)

[5 < Bd. wt. < 150]

Blood weight (males) = 0.1045 Bd. wi.? — .03 (0.1045 Bd. wi.)°9 (20a) = 0.101365 Bd. wt. {150 < Bd. wt. < 350]

Blood weight (females) = 0.1045 Bd. wt. +0.06 (0.1045 Bd. wi.°-*) (20b) = 0.11077 Bd. wt.

(150 < Bd. wt. < 350)

These formulas (20), (20a) and (20b) for blood weight have been used for table 70. ALIMENTARY TRACT—OVARIES 167

Weicut or ALiENTARY Tract on Bopy WEIGHT (Hatat, 713)

Weight of alimentary tract (sexes combined) = 0.0245 Bd. wt. + 4.720 log (Bd. wt. + 7) — 5.753 (21)

Formula (21) was used for table 70.

WeE1GcHT oF Boru TesTes on Bopy Weicut (Hartat, ’13)

Wt. of testes = 0.022 — 0.00992 Bd. wt. + 0.00127 Bad. wt. (22) [4 < Bd. wt. < 10]

= 0.043 — 0.000966 Bd. wt.+ 0.000163 Bd. wt.2 (23) [10 < Bd. wt. < 80]

= 2.910 log Bd. wt. — 4.520 (24) [Bd. wt. > 80]

For the weight of the testes for body weights of 4-10 grams, the values were obtained by formula (22), while formulas (23) and (24) were used for obtaining the values for body weights of 10 grams or over. Formulas (22) (23) and (24) were used for table 70.

Weicut oF Bota Ovaries on Bopy Weicut (Hatat, ’13)

Weight of both ovaries =

= 0.00781 log. Bd. wt. — 0.0047 (25) (Phase 1) [Bd. wt. < 63]

= 0.0425 — 0.00121 Bd. wt.+0.0000108 Bd. wi.2 (26) (Phase 2) [65 < Bd. wt. < 110]

= 0.007 log. (Bd. wt. — 105) + 0.0352 (27) (Phase 3) [Bd. wt. > 110]

Formulas (25) (26) (27) were used for table 70. 168 GROWTH OF PARTS AND ORGANS Weianr or Hyporuysis on Bopy Weieut (Hara, ’13) In the case of the hypophysis a separate formula for each sex is required.

Weight of hypophysis (male) = 0 .0000257 (Bd. wt. + 3) +0.0014 log (Bd. wt. + 3) — 0.00097 (28)

Formula (28) is also used for the female up to 50 gms. in body weight then

Weight of hypophysis (female) = 0.00205 + 0.000081 Bd. wt. — 0.00196 log (Bd. wt.) (29) [Bd. wt. > 50]

Formulas (28) and (29) were used for table 71 in accordance with the restrictions indicated.

Weicut or Boru SupRARENALS on Bopy Weiaut (Haral, 713)

In the case of the suprarenals a separate formula for each sex is required. Weight of both suprarenals (male) =

0 .0000855 (Bd. wt. +3) +0.0113 log (Bd. wt. +3) — 0.0093 (30)

Formula (30) is also used for the female up to 30 gms. in body weight, then

Weight of both suprarenals (female) = 0.00023 Bd. wt. +0.00388 log (Bd. wt.) — 0.002 (31) [Bd. wt. > 30]

a —<—<$— ana, ai ai ee eereeiie THYROID—BODY WEIGHT ON AGE 169

Formulas (30) and (81) were used for table 7 Vin accordance with the restrictions indicated. ;

Weicut or THyrrom on Bopy WeicutT (Harat, ’13)

Weight of thyroid (sexes combined) = 0.0000973 (Bd. wt. +27) +.0.0139 log (Bd. wt. + 27) — 0.0226 (32)

Formula (32) was used for table 71.

Weicut or NrrroceN on Bopy Weicutr (Hatat, ’05)

To determine the amount of nitrogen eliminated by the rat during twenty-four hours at different body weights. Ration: Uneeda biscuit and water only—Chicago colony.

283 + (3 X log Ba. wt) 233 + (3 x log Bd. wt.)

N=10 4 or log N = 7 (33)

where N = total nitrogen in milligrams and Bd. wt. = body weight in grams.

Formula 33 is based on the data in table 42.

GROUP I. ALBINOS SECOND DIVISION: FORMULAS BASED ON AGE

Bopy WEIGHT ON AGE FROM 10-365 Days, Harai (ats 714)

The formulas (34) (35) (36) (37) apply only to the series of data published by Donaldson, Dunn and Watson, (’06.)

Body weight on age in days—males =

11.199 + 0.0475 Age +0.0184 Age? (34) [10 < Age < 80] = 448 log Age — 0.52 Age — 678.2 (35)

[80 < Age < 365] 170 GROWTH OF PARTS AND ORGANS

Body weight on age in days—mated females =

8,071 +0.367 age +0.0131 Age? (36) [10 < Age < 80]

= 343 log Age — 0.41 Age — 498.8 (37) [80 < Age < 365]

Formulas (34) (35) (36) (87) were used for table 62.

Weiaat or Tuymus on Ace (Harat, 714)

Weight of thymus—sexes combined = 1.1 {1.1884-+0.5865 E- 1)—0.5651 (= ~1)2} (38)

0.01 x 10 [Age < 95] Weight of thymus = 0.3903 — 0.00139 (age) + 0.00000128 (age)? (39) [Age > 95]

Formulas (38) (39) were used for table 72.

PERCENTAGE OF WaTER IN Brain. Harar (ms 714)

The formulas do not apply to rats under ten days of age.

Percentage of water in brain—(male) = 92.122 —0.614 Age+0.00739 Age? (Phase 1) (40) [10 <Age <40]

=82.756 —2.108 log Age (Phase 2) (41) [40 < Age <160]

=77.671 +0.00537 Age —0.000016 Age? (Phase 3) (42) [160 < Age < 365] CORRECTIONS 171

To transform any determination for the male into that for the female, the value for the male at a given age (see formulas (40) (41), (42) ) is modified by a plus correction (Hatai).

Correction (plus) = 0.0555 log (age +3) —0.0606 (42a) [10 < Age < 365]

The foregoing (40)-(42a) replace the formulas given in the paper by Donaldson (’10). Formulas (40) (41) (42) (42a) were used for table 74.

PERCENTAGE OF WATER IN SprnaL Corp—(Hartali MS 714)

The formulas do not apply under 10 days of age. The data for the first ten days are from direct observations.

Percentage of water in spinal cord—male = 87.976 —0.494 Age +0.00364 Age? (Phase 1) (48) [10 < Age < 40]

=100.3+0.0548 Age—17.7log Age (Phase 2) (44) [40 < Age< 150]

= 62.186 —0.0121 Age +4.434 log Age (Phase 3) (45) [150 < Age < 365]

To obtain from the values for the male at different ages the corresponding value for the female, several corrections are re- quired and these differ according to age.

From ten to fifty days the following correction formula (45a) is used:

Correction (minus) =0.0006 Age? —0.036 Age +0.3 (45a) 172 GROWTH OF PARTS AND ORGANS

The values thus obtained are subtracted from the computed values for the male at the corresponding ages.

From fifty to sixty-five days no correction is made.

From sixty-five days to one hundred and thirty-five days, cor- rection is made according to the formula (45b)

Correction (plus) =0.823 log (Age +1) —0.000542 (Age +1) —1.4616 (45b)

From one hundred and thirty-five to one hundred and sixty- five days the correction is uniform thus:

Correction (plus) =0.22 (45c)

From one hundred and sixty-five to three hundred and sixty- five days correction is made by the following formula:

Correction (plus) =0.22+0.0005 (Age —165) (45d)

The foregoing (43)-(45d) replace the formulas given in the

paper by Donaldson, 710. Formulas (43)-(45d) were used for table 74.

GROUP II. NORWAYS FIRST DIVISION! FORMULAS BASED ON SIZE

Bopy Lenetu on Bopy Wreigut—Norway (DoNnALDSoN anD Hatat, ’11)

Body length (sexes combined) = 159 log (Bd. wt. + 18) —165 (46)

The body length for the male is 0.4 per cent above the value given by formula (46) and that for the female 0.4 per cent below. Formula (46) with above corrections was used for graphs in chart 28. BODY WEIGHT—TAIL LENGTH—NORWAY 173

Bopy WeiGcut oN Bopy LenetH (DonaLpson anp Harat, (11)

By transforming formula (46) and introducing the correction for sex we obtain

(1) For the male Body weight = 10°00 (84. 1.x 100-1(Bd. 1.100) X0.0041+16500 _13 (47)

= 1 ()9-0000829 (Be. 2. x 99.6-+16500) _ =10 18

(2) For the female

Body weight = 1.Q9-0000629 (Bd. 1. X 100-+[(Bd. 1. X 100) 0.004] +16500) __ 18 (48)

— 1()0-0000629 (Bd. 1. X 100.4 + 16500) _ =10 18

Formulas (47) (48) were used for table 85.

Bopy Wricut or Norway on Bony WeiIcHT oF ALBINO (MaAuLEs) (DoNALD- son anp Haraz, ’11, p. 442)

Body weight (Norway) = 137.1—0.636 Bd. wl. Albino +0.00643'Bd. wt. Albino? (49) [160 < Bd. wt. Albino < 300]

Tart Lenota on Bopy Lenctu Norway (Harai, ms ’14)

(1) For the male

Tail length =0.824 Bd. 1.+39.1 (log. Bd. 1.) —92.6 (50) 174 GROWTH OF PARTS AND ORGANS. (2) For the female Tail length =0.824 Bd. l. +43.1 log (Bd. l.) —98.4 (51)

Formulas (50) (51) were used for table 85.

Brain Weieut on Bopy Weieut, Norway (DonaLpson and Harat, ’11) Brain weight (sexes combined) =0.825 log (Bd. wt. — 4) +0.233 (52)

This formula applies only to rats 5 grams or more in body weight. To obtain the weights for the male the values given by the formula are increased by 1 per cent, and to obtain the weights for the female, they are decreased by 1 per cent.

Formula (52) with corrections mentioned above used for table 85.

Craniau Capaciry on Bopy Wsieut, Norway (Dona.pson, ’12)

Cranial capacity in cc. (sexes combined) = 0.00105 Bd. wt.+0.548 log Bd. wt.+-0.476 (58) [80 < Bd. wt. < 380]

Spina Corp WEIGHT on Bopy Weiaut, Norway (Donaupson anv Hatat, 711)

Spinal cord weight (sexes combined) = 0.724 log (Bd. wt. +30) 1.082 (54)

To obtain the weights for the male the values given by the formula are increased by 0.15 per cent, and to obtain the weights for the female they are decreased by 0.15 per cent.

Formula (54) with corrections mentioned above was used for table 85. SPINAL CORD WEIGHT—NORWAY lve

Sprvat Corp Weicuat on Brain Weicut (Sexes ComBinep) Norway (Don- ALDSON AND Haray, 711)

Br. wt. — 0.233 Spinal cord wt. =0.724 log (107 085 +34) —1.082 (55)

For the Norway we have no extensive data based on age— hence there are no formulas based on age.

GROWTH OF PARTS AND ORGANS: REFERENCES

Chisolm, ’11. Donaldson, 706, 708, ’09, 711, 711 ¢, 712. Donaldson and Hatai, 11. Ferry,’13. Hatai,’03 a, 04a, 07 a, 08,713,713 a, 714, 714 a. Jackson and Lowrey, 712. Jackson, 713. Jolly and Stini, 05. Watson, ’05.

12. Formulas. Chisolm,’11. Donaldson, ’0S, ’09,’12. Donaldson and Hatai, 11. Hatai, 05, 07 b, ’07 c, 09 a, 10, 10 a, ’11, 714. CHAPTER 8 GROWTH IN TERMS OF WATER AND SOLIDS

1. In the body as a whole. 2. In the larger divisions of the body and the organs. 8. In the brain and spinal cord.

Water and solids 1) in the body as a whole and 2) in the larger divisions and the organs. Data on this head have been pub- lished by Lowrey (’18) and are here presented.

With the exception of one of the old rats the animals used for the following table 75 were reared at the University of Missouri. They were fed on chopped corn with a daily ration of bread soaked in whole milk and once a week a small quantity of fresh beef was given them. All were sound except some of the older ani- mals which suffered from infected lungs—but not to such a de- gree as to affect their general nutrition or vigor. Table 75 is based on table 1, Lowrey (’13). The data for the two sexes are combined. In the original the range of the observations is given and also the number of animals used in each instance. In the present table the ranges are omitted and the number of animals is given for the body weight (net) only. The other determina- tions for the systems and organs were based on about the same number of animals as were used for the body weight, except in the case of the testes where the numbers are about half as large. The oldest animals were somewhat under one year of age. 3) Percentage of water in the brain and spinal cord. Using stock rats from the colony at The Wistar Institute, the percentage of water has been determined for the brain and spinal cord by Don- aldson (MS 714). The values obtained by this study replace those previously published. (Donaldson ’10.) The methods of removal are given on page 90. The rats were reared on a scrap diet. The fresh brain or cord was weighed in a closed bottle, then dried at 90°-95°C. until the dried weight was con- stant—and the difference taken as the amount of water.

176 PERCENTAGE OF DRY SUBSTANCE

TABLE 75

177

Percentages of dry substance in the entire body—in several of the systems and in

some organs.

Observations at seven ages.

See chart 24
















BopY (NET) INTEGUMENTS ee MUSCULATURE AGE IN ’ DAYS - No.of | Av.fresh| Av. % of | Av. fresh | Av. % of | Av. fresh | Av. % of | Av.fresh | Av. % of animals | weight |drysubs.} weight | dry subs.| weight |drysubs.) weight | dry subs. gms. gms. gms. gms. 0..... 15 4.200 11.7 0.880 12.3 0.660 18.1 1.100 10.7 ,. + 10 9.100 20.1 2.180 23.4 1.710 22.1 2.020 16.2 20...:. 9 24.500 29.9 5.020 41.1 4.090 33.3 6.400 22.6 cn 10 61.300 29.5 11.040 37.1 8.610 39.2 18.730 23.5 mON.. 7 126.700 33.0 20.020 43.0 14.840 45.9 51.500 25.2 150..... 10 182.400 32.2 32.200 44.2 20.020 50.4 76.920 24.3 365 (?) 2 267.500 31.5 37.780 45.5 23.180 52.6 125.000 23.8 ALL VISCERA EYEBALLS HEART LUNGS OF... 0.780 15.2 0.023 7.4 0.025 13.8 0.077 15.9 Teer. | 1.760 14.2 0.066 10.4 0.061 14.4 0.169 15.8 20..... 5.090 19.1 0.110 14.4 0.135 18.0 0.236 18.9 42..... 12.170 20.7 0.162 15.3 0.412 21.0 0.404 19.1. ee 20.900 24.4 0.207 17.0 0.625 21.6 0.791 19.2 150..... 26.570 25.6 0.279 19.0 0.714 21.2 1.354 19.0 365 (?) 31.750 25.1 0.340 20.2 0.934 22.4 2.806 18.4 LIVER SPLEEN KIDNEYS TESTES 0..... 0.234 19.4 0.038 13.3 =... 0.307 20.6 0.041 14.3 0.123 14.5 20..... 1.200 24.3 0.076 17).2) 0.322 iz. 2 0.106 12.9 42.0... 3.541 24.2 0.273 19.8 0.832 20.3 0.568 13.3 WO rye.» - 6.617 25.5 0.588 20.1 1.320 20.8 1.653 12.4 150..... 9.236 25.7 0.666 20.6 1.728 21.0 2.425 12.22 365 (2) 9.959 26.0 0.722 22.6 2.294 22.9 2.044 13.0



By the use of formulas (40)-(42a) for the brain and formu- las (43)-(45d) for the spinal cord, the values for table 74 after

10 days of age were obtained and also those for the respective graphs in chart 26. The data for the first 10 days are from di-

rect observations.

The percentage of water in the brain and

spinal cord is linked with age and is not readily modified. 178 GROWTH IN WATER AND SOLIDS

QUS SKELETON

INTEGUMENT

ENTIRE BODY

VISCERA

MUSCULATURE.

DAYS


Chart 24 Giving the percentage of dry substance in the body as a whole and in the several systems at different ages. Table 75, Lowrey (’18).

REMAINDER

INTEGUMENT

LIGAMENTOUS SKELETON

MUSCULATURE

DAYS


Chart 25 Giving in terms of the dry substance of the entire body the pereent- age values of the several systems, sexes eombined. Plotted on age in days. Table 76, Lowrey (13). PERCENTAGE OF DRY SUBSTANCE 179

AGE in DAYS


Chart 26 Giving percentage of water in the brain at different ages. Males only. Formulas (40)-(42a), table 74, and percentage of water in the spinal cord. Males only. Formulas (48)-(45d), table 74.

TABLE 76

Giving the percentage weight of the dry substance in the integument, skeleton (liga- mentous), musculature, viscera and remainder in terms of the dry substance of the entire body, Lowrey ’18. See chart 26





PERCENTAGE WEIGHT OF DRY SUBSTANCE OF ENTIRE BODY ee. oars sermons 3 pare ei aoance burret Skeleton M 1 Remein= BODY Skin : Met omn re a | Viscera er OM... 7... 0.494 21.2 24.3 23.8 22.5 8.1 epee 10! 1.830 27.9 20.1 18.2 13.9 19.9 20...... 9 7.320 28.3 18.7 19.6 13.0 20.4 MO... 10 17 .300 24.0 19.8 26.0 14.6 15.6 70...... @ 42.400 23.3 16.3 30.0 12.1 18.3 150...... 10 60.600 23.4 17.1 31.7 11.8 16.0 365 (ce 2 84.300 22.9 17.5 35.3 9.4 14.9








1 Skeleton and musculature not separately determined in one instance.

GROWTH IN TERMS OF WATER AND SOLIDS: REFERENCES

Cavazzani and Muzzioli,’12. Donaldson. ’10,’11a,’11b. King, ’11. Low- rey, 13. Weisbach, 1868. CHAPTER 9

GROWTH OF CHEMICAL CONSTITUENTS

1. In the body asa whole. 2. In the nervous system.

1. In the body as a whole. For the body as a whole Hatai (MS 715) has made a determination of its composition in terms of proteins, fat, organic extract and salts, at eight ages. The results are given in table 77.

TABLE 77. Giving the chemical composition of albino rat. Hatat (MS ’16)


Age, days................5 Birth] 7 15 22 28 35 42 294 Body gms.........-....00 4.3 | 10.2 | 18.5 | 24.9 | 47.3 | 52.5 | 65.8 | 277.5 Water, per cent........... 87.2 | 79.8 | 72.9 | 70.6 | 69.6 | 70.6 | 69.4} 65.3 Solids, gms................ 0.6} 2.1] 3.7] 7.3] 14.4] 15.5] 20.1] 96.4 Percentages of Residue............... 56.9 | 42.0 | 39.9 | 88.8 | 38.6 | 44.9 | 44.4] 44.5 ates Eee eee ree 14.2 | 35.4 | 39.2 | 36.6 | 37.7 | 25.9 | 27.1] 16.5 Organic extr........... 16.4 | 12.8 | 12.8 | 14.8 | 13.8 | 18.6 | 16.9 | 28.2 Soluble salts.......... 6.6} 4.6) 3.0} 3.2] 3.38] 1.5] 2.7 2.5 Fixed salts............] 5.9] 5.2] 5.2] 6.7] 6.5] 9.2] 8.9 8.3




The following paragraphs define the terms used in table 77.

Residue. The residue is represented by the solids from which all the organic substances soluble in both boiling alcohol and in water, as well as the salts have been removed. Thus the residue as here defined represents practically all the protein substances.

Fat. Fat is represented by the substances soluble in boiling alcohol from which the water soluble organic extractives and salts have been removed.

Organic extractives. All water soluble substances from which the salts were removed are called the organic extractives.

Soluble salts. The salts here designated were obtained from all the extrac- tives with both water and alcohol.

Fized salts. The solids from which fat, organic extractives and soluble salts had been removed were incinerated and the ash thus obtained is here called the fixed salts. Thus these fixed salts present practically all salts present in the osseous system.

180 CONSTITUENTS OF BODY 181

Using a different plan of analysis McCollum (’09) has given data on the composition of the rat. The results appear in table 78. To obtain the skeleton he boiled the entire animal and then sepa- rated the skeleton from the boiled tissues.

TABLE 78.

“- Giving the composition of rats used in experiments with various rations. (McCollum '09)



PAT AND SKELE- WATER- L NUMBER OnE TES AsH oF | TON PER |FREE Tis- — sr | wetemr| “rox |'sxeue- [exrmucr| SMELE | CEST OF [sun8 PER - WEIGHT] LIVE WEIGHT grams grams grams grams grams Normal........... 1 147 6.67 | 38.0| 8.89} 3.79] 4.54 | 19.80 Normal........... 2 157 6.50 | 45.0] 10.80 | 3.85 | 4.14 | 21.79 Normal........... 10 34 1.33 9.5 3.25 0.68 3.91 | 18.39










In connection with a study of the phosphorus compounds in the Albino after ovariotomy Heymann (’04) has recorded the P, O; distribution in the normal rat (see Keith and Forbes, ’14). His data for the normal appear in table 79.






TABLE 79. Giving the phosphorus compounds of rats as affected by ovariotomy (Heymann, ’04) TISSUES, PER CENT OF DEY SUBSTANCE Om, NTssta amas - : Per cent of Nucl hosph: Total Fresh D: Oe s P:0s > | ee "al POs nietce wuatee SE -Normal.....| 0.4760 | 0.0559 | 2.4479 | 2.9798 | 21.2690 | 24.0556 | 1.9819 Normal..... 18.1665 | 22.8105 | 1.2980 Normal.....| 0.3242 | 0.0649 | 1.6490 | 1.9830! | 17.0315 | 19.2083 i Normal.....} 0.3608 | 0.0979 | 1.5430 | 2.0018 | 17.5724 | 19.9277 | 1.3795








1 Apparently erroneous since the sum of the figures for nuclein, lecithin and phos- phate phosphorus is 2.0381 per cent.

_ 2. In the nervous system. With the purpose of following the changes in the chemical constituents of the brain with advancing age, Koch, W. and M. L. (’13 a) have made a series of observa- tions and to these have been added also observations on one spinal cord at 120 days. The results are given in tables 80 and 81. Cord of the

TABLE 80 albino rat. Chemical composition of the brain of the albino rat at different ages ee


182

Age in days...........004. EERE EEE eerir 1 10 20 40 120 210 120


Body weight in grams........... 5 ORO) 12 20 43 112.3 182 112.3


Moist weight of one brain in grams} 0.250) 0.250) 0.860 0.860} 1.228} 1.329) 1.397] 1.368] 1.659 1.551] 1.667 0.365 Solids in per cent................/10.420/10.420/14.700 12.500]17 .500|17 . 500/20. 100/20 .580/21.600 |21.700|21.900} 27.100 Dry weight of one brain in grams} 0.026) 0.026) 0.127 0.107} 0.215} 0.233) 0.281} 0.282) 0.358 0.336} 0.365 0.099 Number of brains in sample......|_ 100 | 100 40 40 48 59 37 34 30 31 31 90


.

GROWTH OF CHEMICAL CONSTITUENTS


. Constituents in per cent of solids

58 .200/58.300/56.400 |56.500)53 900/52. 700/48 .700:48 .100/47.200 |48.000/48. 500) 32.800 .{14.800]15 .600]10 .600 (?)!12.300/21 . 100]21 .700|20.000}23.200/21.900 — |21.300/22.000; 25.300 rT * * i * | 3.100} 2.900} 6.300} 5.500} 6.600 (?)| 8.400) 8.40; 12.500 Sulphatides.............. eee 1.500} 1.400) 0.730 (?)| 2.600} 2.400) 2.600} 2.700) 2.400} 3.500 3.600} 4.500 7.000

Organic extractives..........- \ |1g sool19.300119.300 _ {15.100113.80015.300113.800115.900] 9.700 | 9.800| 9.80t| 7.600

Inorganic constituents........ I Cholesterol (undetermined)f.. 9.000} 5.400|13.000 13.500] 5.700) 4.800} 8.000} 4.900)11.100 8.900} 6.800} 14.800 Total sulphur........... ey. 0.960] 1.040} 0.720 0.830} 0.690] 0.700] 0.580} 0.520) 0.550 0.570} 0.580) 0.450

Total phosphorus......... el 1.820} 1.920} 1.280 1.480} 1.660] 1.670} 1.550} 1.500) 1.400 1.440) 1.390 1.440





Distribution of sulphur in per cent of total §

Protein 8.......... veeceeeeesees «[31,100/30.000/48.600 /44.200/57.500/55 .300/65. 100/62 .400/61.200 /62.400/63.800) 53.600 IGipexerel fSo00000000000000000 seaeeee{ 3.200] 2.800) 2.200 6.100} 6.700} 7.500} 9.200)10.100)12.800 12.500}15.600} 30.900 Neutral §........ 0... cee eee ene 49 100/47 .300/45.100 |45.400/29.700|27 .500|17 .000/19.300)19.200 |18.300 14.500} 10.300 Inorganic §................ . +++ -{16.600/19.900] 4.100 4.300] 6.100) 9.700} 8.700} 8.200} 6.800 6.800 6.100; 5.100



Distribution of phosphorus in per cent of total P

Protein P................+-02+++ + [L3.300 13.000 18.900) 6.000] 5.800) 9.900} 7.500) 7.400 7.300] 6.800 5.600 Lipoid P..................0+++++-{83.200/33 .000/33.800 — |36.100}52.200]53 500/56. 100]58.500/65.800 |62.300/67.600) 77.400 Water Sol. Poon vcecccseceseeeesss}53.500)53.600/53.200 50.000/41 .800)40 . 700/34 .000|34.000/26.800 |380.400!25 .600















  • Cerebrosides not determined in brains at birth and 10 days. Probably none present at this age.

+ By difference. ? Indicates doubtful result. t Taken from W. 8.

I CONSTITUENTS OF BRAIN

TABLE 81.

183

Absolute weights, in milligrams, of the constituents of a single brain of the albino rat at different ages (prepared from Table 80)


AGE IN DAYS















1 10 20 40 120 210

Moist weight of one

brain in grams..... £0250 0.860 1.280 1.380 1.600 1.670 Solids in per cent....} 10.420) 12.500) 17.500-| 20.340 | 21.650 | 21.900 Dry weight of one

brain in grams..... 0.026 0.107 0.224 0.281 0.347 0.365

Absolute weights in milligrams

Proteins (1){.........) 15.140*| 60.4507} 119.400*) 136.000*; 165.200* 177 .000t Phosphatides (2) ....) 3.950 | 13.160] 47.900) 61.300] 74.950 | 80.300 Cerebrosides (3)..... 6.700 | 16.600 | 29.150} 30.660 Sulphatides (4)....... 0.380 2.780 5.600 7.200 | 12.300] 16.400 Organic extrac-

tives............. - x

a 4.650 | 16.160 | 32.600] 41.700 | 33.800} 35.800

Inorganic consti-

tuents........... Cholesterol unde- \) 1 gry | (14.45) | 11.700] 18.200] 31.600] 24.800

termined (5)..... f Total sulphur........ 0.260 0.900 1.5700} 1.540 1.940 2.120 Total phosphorus....| 0.480 1.600 3.7200} 4.300 4.930 5.070

In absolute weight in milligrams of sulphur Protein § (18)§...... 0.079 0.398 0.885 0.982 1.199 1.352 Lipoid S (4).......... 0.008 0.054 0.111 0.149 0.246 0.330 Neutral S (6)........ 0.125 0.409 0.449 0.279 0.363 0.307 Inorganic S (7)....... 0.047 0.039 0.122 0.130 0.132 0.129 In absolute weight in milligrams of phosphorus

Protein P (1P)....... 0.064 0.215%; 0.220 0.374 0.360 0.345 Lipoid P (2)......... 0.161 0.558 1.964 2.464 3.160 3.427 Water sol. P (8)...... 0.260 0.826 1.532 1.462 1.410 1.298




  • Record from average duplicate analyses.

t Record from one analysis.

t Figures in parentheses in this section refer to Chart ITI.

See original.

See original. § Figures in parentheses in this and the following sections refer to Chart IV. 184 GROWTH OF CHEMICAL CONSTITUENTS

AGE IN DAYS


Chart 27, Giving in milligrams the absolute weight of the more important chemical constituents of the brain. Plotted on age. Table 81.

In chart 27 are given the graphs for the absolute weights of the more important chemical constituents of the brain plotted on age (see table 81).

GROWTH IN CHEMICAL CONSTITUENTS: REFERENCES

“1, Entire body. Mendel and Daniels, ’12. Pembrey and Spriggs, 704. "2. Nervous system. Bibra, 1854. Hatai, ’09, 710. Koch, M., 713. Koch and Mann, ’09. Koch and Koch, ’13, 713 a. CHAPTER 10 PATHOLOGY

1. Tumors. 2. Parasites and infections (except leprosy and plague). 3. Leprosy. 4. Plague. 5. Public hygiene. 6. Descriptive and experimental pathology. 7. Economic relations.

In the various studies on the pathology of the rat there are, of course, some data, which might be tabulated or charted. It has been thought best however to adhere to our general plan of treating in detail the data for the normal animal only and the presentation in this chapter is limited: therefore to a series of references classified according to the subheads given above.

PATHOLOGY: REFERENCES

1. Tumors. Bashford and Murray, 1900. Bennett, ’14. Bullock, W. E., 713. Cramer and Pringle, 710. Eiselsberg, 1890. Flexner and Jobling, ’07. Freund, ’11. Gay,’09. Gaylord, ’06. Jensen, ’08. Joannovics,’12. Lambert, "11. Levin, 08, 710, ’10a, ’11. Loeb, ’01, ’02, ’02a, ’03, ’03a, 04,07. McCoy, 710a. Moreschi, ’09. Ordway and Morris, 713. Robertson and Burnett, ’13. Rous, 711, ’14 Sweet, Corson-White and Saxon, 713. Taylor, ’15. Uhlenhuth and Weidanz, ’09. Van Alstyne, 713. Weil, 713.

2. Parasites and infections (except plague and leprosy). Bacot, ’14. Bahr, 706. Bancroft, 1893-1894. Bayon, 12a. Bullock and Rohdenburg, ’13. Cam- pana, ’11. Chick and Martin, ’11. Currie, ’10. Dean, ’03. Fantham, ’06. Giglio-Tos, 1900. Hurler,’12. Jungano, ’09. Jurgens, ’03. Laveran and Mes- nil, 1900, 1900 a, 1900 b. Loghem, ’08. Mallory and Ordway, ’09. Mitchell, 712. Morpurgo, ’01, 02. Ori, ’12. Poppe, ’13. Pound, ’05. Rabinowitsch and Kempner, 1899. Robinson, 713. Rosenau, ’01. Sabrazés and Muratet, ’05. Shipley, ’08. Stilesand Crane, ’10. Stilesand Hassall,’10. Terry,’05. Traut- mann, A., 712. Trautmann, H., 712. Wasielewski and Senn, 1900. Webel, 713-14. Wiener, ’02, ’03. ;

3. Leprosy. Bayon, 711, 712, 712 b, ’12c, Chapin, 12. Dean, ’05. Duval, 10, 711. Duval and Gurd, ’11, ‘11a. Duval and Wellman, ’12. Duval and Harris, 13. Hollmann, 712. Jadassohn, 713. Leboeuf, 712. Marchoux, 710, "11, 71112, 712. Marchoux and Sorel, 712, 12 a,’12 b,’12 ec. McCoy, ’08. Tids- well and Cleland, ’12. Wherry, ’08. Wolbach and Honeij, ’14. Zinsser and Carey, ’12.

4, Plague. Advisory Committee, ’712b. Bacot and Martin, ’14. Banner- man, ’06. Blue, ’08,’10. Brinckerhoff,’10. Chick and Martin,’11. Edington,’01.

185 186 PATHOLOGY

701. Galli-Valerio, ’02. Gauthier and Raybaud, 708. Herzog, ’05. Hossack, 707 a. India Plague Commission, ’08. Liston, ’05,’05 a. Loghem and Swellen- grebel, 14. Martini, 01. McCoy, ’10. Petrie, ’10. Reports on Plague Inves- tigations in India, ’06. Thompson, ’06. Tiraboschi, ’02, ’04, ’04 a.

5. Public hygiene. Advisory Committee, ’12a. Bahr, ’09,’09a,’10. Berg- mann, ’08. Boelter, ’09. Buchanan, 710. Calmette, 710, ’*11. Converse, ’10. Cook, 1885-1886. Creel, 710. DuPuy, and Brewster, ’10. Foster, ’09. Fox, 12. Foy, 713. Grubbs and Holsendorf, 713. Heiser, ’10, °13. Hobdy, ’10. Kerr, ’10. Konstansoff, ’10. Kunhardt and Taylor, ’15. Lagarrique, 711. Lantz, ’07, ’710a. Lavrinovich, 710. Mandoul, ’08’09. Munson, 710. Neu- mark, ’13: Pottevin, ’10. Ramachandrier, ’08. Reaney and Malcolmson, ’08. Ringeling, ’12. Rosenau, 710. Rucker, ’10, 712, 7138. Schern, 712. Simpson, 13. Suffolk, ’10. Symposium, ’11. Tailby,’11. Zuschlag, ’03.

6. Descriptive and experimental pathology. Ascher, 710. Aumann, 712. Au- nett, ’08. Bainbridge, ’0809. Bircher, ’11, ’1la. Boinet, 1897, 1897 a. Bullock and Rohdenburg, ’15. Cramer, 08. Czerny, 1890. Fibiger, 713, ’13 a, 13 b, ’14. Flexner and Noguchi, ’06. Graham and Hutchison, ’14. Horton, 705. Kolmer and Yui and Tyau, 713. Lewin, 712, ’12a. Loeb, 713. Mallory and Ordway, ’09. Martin, 1895. Mavrojannis, 03. Mereshkowsky and Sarin, 709. Mereshkowsky, ’12, ’12a. Metschnikoff and Roux, 1891. Murphy, 714. Nerking, 709. Olds, 710. Ophiils, ’11. Plimmer and Thomson, ’08. Remlin- ger, 04. Rowland, ’11. Schern, ’09. Schiirmann, ’08. Sittenfield, ’12. Stef- fenhagen, 710.

7. Economic relations. Bruneau, 1886. Galli-Valerio, 08. Klunzinger, ’08. Landois, 1886. Lantz, 710 b. Lersch, 1871. Loir, 703. PART I

NORWAY RAT

CHAPTER 11

LIFE HISTORY AND DISTINGUISHING CHARACTERS

1. Introduction. 2. Life history. a. Span of life. b. Gestation period. c. Number of litters. d. Number in litter. e. Proportion of sexes. f. Open- ing of eyes. g. Age of sexual maturity. 3. Comparison of Norway with Albino. 4, Similarities of Norways and Albinos in western Europe to those of the United States.

1. Introduction. To obtain more complete information con- cerning the rat it is important to note differences which may ap- pear between the domesticated Albino and the wild Norway. Since the wild Norway represents the parent stock it might seem proper to use that form as the standard and to record the devia- tions of the Albino from it. As a matter of fact however our in- formation with regard to the Albino is so much the more complete that the best results will follow from using it as the standard, despite the fact that zodlogically it is but a variety of the Norway.

2. Life history of the Norway rat. As regards behavior, the Norway rat is very responsive to sounds, gnaws its cage, bur- rows when opportunity offers, is hard to handle and appears fierce because usually in a state of terror, yet after some days in a cage, it often becomes quite docile.

Mus norvegicus when mature weighs 300-500 grams. (550 grams = 1} pounds avd., has been reported but is very unusual). We have recorded one male with a body weight of 523 gms. The color above ranges from light gray or orange to brown and dark gray, usually with more or less white or light gray on the ventral surfaces. Melanic sports occasionally occur (see p. 14, note 5). Mus norvegicus is distinguished from Mus rattus, the house rat, by the following superficial characters: larger size; blunter head; smaller ears which are thicker and more covered with hair; tail shorter than body; claws usually relatively dull. Its movements are less rapid. Commonly the female Norway has twelve, some- times fourteen nipples, while the house rat has very constantly

ten. 189 190 LIFE HISTORY

a.) Span of life. The span of life of the Norway rat is not

known. It seems probable that it is between three and four’

years, though here and there individuals may live somewhat longer.

b.) Period of gestation: 21 days Lantz (’09); 23.5-25.5 days Miller (11). The latter periods are possibly due to the effect of nursing on gestation. See p. 22.

c.) Number of litters. Miller (’11) reports seven litters in seven months from a single pair, and estimates that, in general, five to six litters may be easily reared by a single pair in a year.

d.) Number of young in a litter. Climate and station appear as general modifying influences. Larger litters are reported from northern Europe than from India (Lantz, ’09).

Crampe (’84) obtained an average of 10.4 in fourteen litters.

Zuschlag (’03) states that among the rats examined at Copen- hagen in 1899, fetuses to the number of 14 were found four times and he himself in 1902 examined one female bearing 16. Donaldson (MS, ’09) also noted in a rat taken in Paris, 16 fetuses.

The India Plague Commission reports (’08) that the average number of fetuses found in females was 8.1 from a total of 12,000 Norway rats.

According to Lantz (’09) the maximum size of litters recorded in England (Field) are 17, 19, 22 and 23; in India however 14.

The maximum numbers just given as recorded in England are not trustworthy as they represent merely the number of young found in a single nest. Since two different litters are sometimes reared in the same nest the inference from the number in the nest to the number in the litter is not convincing. Lantz (’09) as- sumes the average litter (in north temperate latitude) to be about 10. This is what Miller (’11) (vide infra) and Crampe (’84) (vide supra) found.

Miller (’11) observed in a group of eight litters 7-12 young ina litter, with an average of 10.5.

e.) Proportion of the sexes. Lantz (’09) and others state that the males are in excess. Donaldson (’12) found the same in trapped series taken in Paris and London. In a small series COMPARISON WITH ALBINO 191

trapped in Vienna however, the females were in excess. There are no observations on the proportions of the sexes at birth in general population, but in a special study of “extracted” Nor- ways made by King (MS., 715) 56 litters from females—them- selves taken from litters in which the two sexes were equally or nearly equally represented—gave 212 males and 213 females.

f.) Opening of eyes. Miller (’11) found the eyes to open at 16 or 17 days and also states that the young are weaned during the sixth week.

g.) Age of sexual maturity. Miller (’11) gives one instance of a female conceiving at the age of 120 days.

Owing to the difficulty of keeping M. norvegicus happy and contented in captivity, it has not yet been possible to get a trust- worthy record for increase in body weight with age in the case of this form. Neither our own data (Donaldson and Hatai, 711) nor those of Miller (’11) show what must be the normal rate of increase in body weight.

3. Comparison of the Norway with the Albino. To determine whether the wild Norway form, as trapped in Philadelphia, dif- fers in any way from the albino rats in the colony at The Wistar Institute, a comparison has been made between the two forms in respect to body length, body weight, brain weight, spinal cord weight and the percentage of water in both the brain andthe spinal cord (Donaldson and Hatai, ’11) as well as the weights of several of the parts and viscera. (Jackson and Lowrey, 712; Hatai, ’14 a.)

In addition to the familiar facts that the Norway rat is more wild and difficult to handle, more successful in escaping from cages and much more given to gnawing than is the Albino, that it grows bigger, breeds later, has larger litters and a longer sexual life (Crampe, ’84) it is now possible to make several further statements.

At birth the Norway is somewhat heavier than the stock Albino (King, ’15, table 1) but in their relative body length and the rela- tive weights of the brain and spinal cord, as well as in the per- centage of water in these two divisions of the central nervous system, they are approximately alike. 192 LIFE HISTORY

The marked differences between the two forms appear later, during the period of rapid growth. Grouping together the gen- eral differences subsequently found, we may say that the Norway rat is absolutely much heavier, relatively slightly longer, has a relatively heavier brain and a heavier spinal cord, and since for the same body weight as a given Albino it is younger, it has when so compared a higher percentage of water in the central nervous system.

For the same age however, the percentages of water are nearly alike; the percentage in the Norway rat being a trifle higher (Donaldson and Hatai, ’11). The relative weights of the ovaries, testes and suprarenals are also greater (C. Watson, ’07; Hatai, 14). These plus characters of the Norway tend to disappear when the Norway is subjected to domestication.

The deviations of the Norway may be expressed in another way. When the body weights of Norway and Albino are the same:

The Norway rat has a greater body length; a greater brain weight; a greater spinal cord weight; a higher percentage of water in the central nervous system; heavier ovaries, testes and suprarenals.

When body lengths are the same:

The Norway rat has a smaller body weight; a greater brain weight; a greater spinal cord weight; a higher percentage of water in the central nervous system; heavier ovaries, testes and suprarenals.

When brain weights are the same:

The Norway rat has a smaller body weight; a smaller body length; a smaller spinal cord weight; a higher percentage of water in the central nervous system.

When the spinal cord weights are the same:

The Norway rat has a smaller body weight; a smaller body length; a greater brain weight; a higher percentage of water in the central nervous system.

Speaking generally therefore we may say that when compared with the domesticated Albino, the wild Norway rat weighs more, is longer and possesses a nervous system in which both the brain and spinal cord are relatively larger. ————

COMPARISON WITH ALBINO 193

These differences taken together indicate that the albino rat has grown less well, and it seems most natural to attribute the lack of growth to the whole set of conditions summed up in the word ‘domestication.’

The most marked difference in structure thus far described between the two forms is in the relative weight of the central nervous system. That this is due to the effects of domestication seems highly probable, in view of the observations of Darwin (’83) and Lapicque and Girard (’07).

There are still other observations which belong here. Ina study on the weight of some of the ductless glands of the Norway and of the albino rat according to sex and variety Hatai, (’14 a) an examination was made of the suprarenals, hypophysis, thy- roid and gonads in both forms. The conclusions reached are here given.

In both the Norway and albino rats the suprarenal glands of the males are considerably smaller than those of the females. When, however, these two forms of rats are compared, both sexes of the Norway rats have suprarenals considerably heavier than those of the like sexes of the Albino.

A sex difference is noted in the weight of the hypophysis in both the Norway and albino rats. The male hypophysis is lighter than that of the female. However, when these two forms of rats are compared, the hypophysis of the Norway is found to be smaller than that of the albino rat; the greater difference being in the case of the female.

Neither in the Norway nor the albino rat is a sex difference found in the weight of the thyroid. Moreover, there is no weight difference in the thyroid according to variety in the case of these two forms of rats.

The sex glands (testes and ovaries) of the Norway rats are heavier than those of the albino rats.

Hatai is also of the opinion that the differences noted are again

' the result of a response to domestication.

4. Similarity of the Norways and Albinos of western Europe to those of the United States. It is to be noted in this connection that so far astests have been made, the albino rats found in Europe 194 LIFE HISTORY

are similar to those found in America. For the Albinos from Vienna, Paris and London, the determinations were made by Donaldson (’12) and Chisolm (’11) has reported on the relation of body length to body weight in albino and pied rats in London. Chisolm compares his determinations of length with those by Donaldson (’09) and when correction is made for the slight dif- ference in the methods of measurements, the two sets of results agree nicely.

It is also true that the wild Norways of Europe seem to be similar to those of the United States (Donaldson, 12) so that the differences above noted probably will be found at whatever stations the two forms are =

LIFE HISTORY—NORWAY RAT: REFERENCES

Chisolm,’11. Crampe, 1884. Darwin, 1883. Donaldson, ’09, ’11,’12. Don- aldson and Hatai, ’11. Hatai,’14a. India Plague Commission, 08. Jackson and Lowrey, 12. Lantz,’09. Lapicque and Girard, ’07. Miller, 11. Watson, C.,’07. Zuschlag, ’03. CHAPTER 12

GROWTH IN WEIGHT OF PARTS AND SYSTEMS OF THE BODY

1. Growth of parts. 2. Growth of systems. 3. Weight of cranium.

1. Growth of parts of the body. For the general conditions under which these observations were made by Jackson and Lowrey (’12), see pp. 73-74.

Five Norways only were examined, these having been trapped in barns at the University of Missouri. They were probably living on grain. As will be seen by reference to table 82 the smallest of these, a male, weighed 65 grams and was therefore probably from three to five weeks old. The percentage rela- tions of the several parts of the body are given in table 82.

TABLE 82

Norway rat—Percentage weights of head, trunk and extremities. Sexes combined (Jackson and Lowrey, ’12)



SEX pa HEAD FORE LIMBS HIND LIMBS TRUNE

grams per cent per cent per cent per cent

rr 65.0 14.66 5.95 13.88 65.51 PM eee eee 95.4 12.17 5.83 15.34 66.66 WAR icsis sec e seer 107.5 10.18 5.58 15.81 68 .43 WNIBEE we ee 164.0 9.27 5.24 14.94 70.55 APPT... - eee 254.0! 7.85 5.02 13.68 73.45






! Including gravid uterus, which weighed 13.76 grams.

On comparing the relative values here given with those for the albino rat (see p. 74) it appears that for corresponding body weights the average values for the fore limbs and hind limbs are low, while those for the trunk are high—a relation which might be expected in view of the greater body length of the Norway— see tables 49 and 82.

, 195 196 GROWTH OF PARTS AND SYSTEMS

TABLE 83

Norway rat—Percentage of total body weight represented by the weight of integument, ligamentous skeleton, musculature, viscera and remainder. (Jackson and Lowrey, 12)



SEX eee INTEGUMENT agamenrous MUSCULATURE VISCERA REMAINDER grams per cent per cent per cent per cent per cent M....... 65.0 18.42 13.15 35 .39 23.40 9.64 M....... 95.4 19.29 13.85 38 .57 23.21 5.08 Bee e eee 107.5 20.37 13.86 42.14 17.51 6.12 M....... 164.0 17.35 13.29 41.66 20.95 6.75 BPE 254.0% 19.41 10.16 44.21 16.22 10.00







1 Including gravid uterus, which weighed 13.76 grams.

2.) Growth of systems. When the values for the five entries in table 83 are compared with the last four in table 50 for the albino rat, it is noted that in the Norway the values for the musculature and viscera are high, while that for the ‘remainder’ is low. This last difference is due in part to the smaller amount of fat in the Norway. At the same time there is other evidence to show that for the same body weight as the Albino, both the trunk and the viscera of the Norway are heavier, as here found.

3.) Weight of cranium. (Donaldson, 712.) Determinations of the weight of the cranium dried at room temperature have

TABLE 84

The mean weight in grams of the crania in each body weight group of the four series of wild Norway rats from Paris, London, Philadelphia, Vienna (based on table 1 Donaldson, ’12a.) Each weight group is based on six cases; 8 males and 3 females





WEIGHT OF THE CRANIA IN GRAMS BODY WEIGHT

ET LONDON PARIS PHILADELPHIA VIENNA

grams 125............. 1.17 1.27 1.13 1.10 W2Bcacesoccccc00 1.58 1.58 1.34 1.37 225.........22.. 1.84 1.91 1.71 1.70 P41 (5 rn 2.25 ele 2.14 1.90 825.......00000. 2.69 2.60 2.40 2.27 6 Y (5 3.13 2.98 2.86 2.48




For the corresponding weights of the albino crania see table 55. WEIGHT OF CRANIUM 197

been made. By the cranium is meant the skull with upper teeth, minus the mandible with lower teeth and the ear bones. The mean weights are given in table 84.

GROWTH IN WEIGHT OF PARTS AND SYSTEMS OF THE BODY: REFERENCES

Donaldson, ’12a. Jackson and Lowrey, ’12. CHAPTER 13

GROWTH OF ORGANS IN RELATION TO BODY LENGTH—NORWAY

1. Length of tail and weights of body, brain and spinal cord in relation to body length. 2. Weight—length ratios.

1) Length of tail, body weight, brain weight and spinal cord weight in relation to body length. Before passing to the tables on the Norway rat, it should be pointed out that the observations used for them have been made on the Norway rat as found in Philadelphia. At the same time it has been shown that the Nor- way rat taken in Vienna, Paris and London is similar in its gen- eral form to that found in the United States, so that the determi- nations in the tables may be applied to the Norway rat in Europe also (Donaldson, 712).

Table 85 contains values for the several characters named above, computed by the formulas devised by Hatai; these for- mulas being in turn based on series of observations, the number of which is given in each case.

Body length on body weight. From the study of 282 male and 318 female Norway rats, trapped in Philadelphia, measure- ments have been taken for body weight and body length (Don- aldson and Hatai, 711).

The values for body length—sexes combined—on body weight are given by formula (46). In chart 28 the corresponding graph is given and for comparison the graph for the body length of the Albino is also drawn (see formula (1)).

It has been found that for a given body weight, the body length is in the male Norway 0.4 per cent above the mean, and in the female 0.4 per cent below (Donaldson and Hatai, ’11, p. 425).

Body weight on body length. When the formula (46) is trans- formed so as to give the body weight for a given body length and the correction for sex is included, we have for the males formula (47) and for the females formula (48). In chart (29) are given the graphs for both sexes.

198 BODY LENGTH—BODY WEIGHT 199

BODY LENGTH

mm.


BODY

/

Chart 28 Norway rat—Giving body length on the body weight. Males only. Formula (46), table 85. Inserted for comparison is the corresponding graph for

the male Albino (see formula (1).


DOOY LENGTH mm.

Chart 29 Norway rat—Giving the body weight on the body length. Males,

females. Formulas (47), (48), table 85. 200 . GROWTH OF ORGANS

Body weight of the Norway on the body weight of the Albino. Formula (49) gives the body weight of the Norway on the body weight of the Albino for a limited range of Albino body weights.

Tail length on body length. The tail length on the body length has been determined by Hatai (MS ’14) and is repre- sented by formulas (50) and (51) for the male and female re-


eopy 1 ENGTH

Chart 30 Norway rat—giving the tail length on the body length. Males, females. Formulas (50), (51), table 85.

spectively. As can be seen by consulting table 85 the males have the shorter tails—a relation which agrees with that found for the Albino. In chart 30 are given the corresponding graphs.

Brain weight on body weight. The direct determinations of the weight of the brain have been made on 232 males and 278 females. The general formula (52) expresses: the relation of brain weight on body weight for the sexes combined.

It applies however only to rats with a body weight above five grams. WEIGHTS OF BRAIN AND CORD 201

Using this formula the brain weights have been computed for each of the series of body weights as determined by formulas (47) and (48).

It has been found however (Donaldson and Hatai, 11, p. 428) that the weight of the male brain is one per cent above the mean for the two sexes, and that of the female, one per cent below.

BOOY WEIGHT


Chart 31 Norway rat, giving brain weight on the body weight. Males only. With the corresponding graph for the Albino inserted for comparison. Formula 52, table 85. Also the spinal cord weight on the body weight. Malesonly. With the corresponding graph for the Albino inserted for comparison. Formula 54, table 85.

As a consequence, each value gotten by the foregoing compu- tations has been corrected by adding one per cent to the value found to give the weight for the male brain and by subtracting one per cent to obtain the weight for the female brain.

Chart 31 gives the graph for the male brain weight on the body weight and the corresponding graph (male) for the Albino (see chart 9) is also drawn for comparison. The marked differ- ence in the brain weight of the two forms is clearly shown. 202 . GROWTH OF ORGANS

Formula (53) gives the cranial capacity for the body weight— a useful datum in many instances. .

Spinal cord weight on body weight. In the case of the spinal cord, the computation was made for the sexes combined by the aid of formula (54). Here again there is a difference according to sex, the male spinal cord exceeding the female by 0.2 per cent, and the value for both sexes combined, by 0.1 per cent. Cor- rections similar to those applied to the brain have been made in this case also. Chart (31) gives the graph for the male spinal cord on body weight and the corresponding graph (male) for the Albino (see chart 9) is also drawn for comparison.

Formula (55) gives the spinal cord weight (sexes combined) on the brain weight—sexes combined, table 85.

2. Weight-length ratios. In table 86 are given the values for the Norway obtained by dividing the body weight by the body length, as these appear in table 85.

The explanation of the use of this table has been given on p. 72 in connection with the corresponding table 48 for the Albino.

GROWTH OF ORGANS IN RELATION TO BODY LENGTH: REFERENCES

Donaldson, 712, ’12.a. Donaldson and Hatai, ’11. GROWTH OF ORGANS ON BODY LENGTH

TABLE 85

203

Gives the tail length, body weight, brain weight and spinal cord weight for each milli-

meter of body length of the male and female Norway rat respectively.

See Charis 28, 29, 30, 31.















MALES PEMALES Ha a ae Weight of ai Weight of ‘al! y ; ¥

deni length weight “< Spinal Tail length weight = Spinal mm. mm gms. gms. gms. mm gms. gma. gms. 50 15.0 4.4 0.031 16.0 4.6 0.032 51 16.2 4.8 0.034 17.2 4.9 0.035 52 17.3 5.1 0.270 0.037 18.4 5.2 0.307 0.038 53 18.5 5.4 0.367 0.040 19.6 5.6 0.393 0.041 54 19.6 5.8 0.443 0.043 20.8 5.9 0.462 0.044 55 20.8 6.1 0.508 0.046 21.9 6.3 0.522 0.047 56 21.9 6.5 0.563 0.049 23.1 6.6 0.574 0.050 57 23.0 6.8 0.611 0.052 24.3 7.0 0.620 0.053 58 24.1 7.2 0.655 0.055 25.4 7.4 0.661 0.056 59 25.3 7.6 0.694 0.058 26.5 7.7 0.698 0.059 60 26.4 7.9 0.730 0.061 27.7 8.1 0.732 0.063 61 27.5 8.3 0.763 0.064 28.8 8.5 0.763 0.066 62 28:6 8.7 0.794 0.067 29.9 8.9 0.793 0.069 63 29.7 9.1 0.823 0.070 31.1 9.3 0.820 0.072 64 30.8 9.5 0.850 0.074 32.2 9.7 0.846 0.075 65 31.9 9.9 0.875 0.077 33.3 10.1 0.871 0.078 66 32.9 10.3 0:7900 0.080 34.4 10.5 0.894 0.082 67 34.0 10.7 0.923 0.083 35.5 10.9 0.916 0.085 . 68 35.1 11.1 0.944 0.086 36.6 11.3 0.937 0.088 69 36.2 1&5 0.965 0.090 37.7 11.8 0.957 0.091 AO) 37 52 11.9 0.985 0.093 38.8 12.2 0.977 0.095 71 38.3 12.4 1.005 0.096 39.9 12.6 0.995 0.098 72 39.4 12.8 1.023 0.099 41.0 13.1 1.013 0.101 73 40.4 13.3 1.041 0.103 42.1 13.5 1.031 0.104 74 41.5 13.7 1.059 0.106 43.1 14.0 1.048 0.108 75 42.5 14.2 1.075 0.109 44.2 14.5 1.064 0.111 76 43.6 14.7 1.092 0.113 45.3 14.9 1.080 0.114 V7 44.6 15.1 1.107 0.116 46.4 15.4 1.095 0.118 78 45.7 15.6 1.128 0.119 47.4 15.9 1.110 0.121 79 46.7 16.1 1.138 0.123 48.5 16.4 1.124 0.125 80 47.7 16.6 1.152 0.126 49.5 16.9 1.138 0.128 81 48.8 17.1 1.166 0.129 50.6 17.4 1.152 0.131 82 49.8 17.6 1.180 0.133 51.7 17.9 1.166 0.135 204

GROWTH OF ORGANS

TABLE 85—Continued


MALES

FEMALES













. Weight of Weight of

jemi loreth | see _ Spina || Tait teneth aa. =a rain al Brain ConA

mm. mm gms. gms. gms. mm. gms. gms. gms. 83 50.8 18.1 1.194 0.136 52.7 18.5 1.179 0.138 84 51.9 18.7 1.207 0.140 53.8 19.0 1.192 0.142 85 52.9 19.2 1.220 0.143 54.8 19.6 1.204 0.145 86 53.9 19.7 1.232 0.146 55.8 20.1 1.216 0.149 87 54.9 20.3 1.245 0.150 56.9 20.7 1.229 0.152 88 55.9 20.8 1.257 0.153 57.9 21.2 1.240 0.156 89 57.0 21.4 1.269 0.157 59.0 21.8 1.252 0.159 90 58.0 22.0 1.281 0.160 60.0 22.4 1.264 0.163 91 59.0 22.5 1.292 0.164 61.0 23.0 1.275 0.166 92 60.0 23.1 1.303 0.167 62.1 23.6 1.286 0.170 93 61.0 23.7 1.315 0.171 63.1 24.2 1.297 0.173 94 62.0 24.3 1.325 0.174 64.1 24.8 1.307 0.177 95 63.0 25.0 1.336 0.178 65.1 25.4 1.318 0.180 96 64.0 25.6 1.347 0.181 66.1 26.1 1.328 0.184 97 65.0 26.2 1.357 0.185 67.2 26.7 1.338 0.188 98 66.0 26.9 1.368 0.189 68.2 27.4 1.348 0.191 99 67.0 27.5 1.378 0.192 69.2 28.0 1.358 0.195 100 68.0 28 .2 1.388 0.196 70.2 28.7 1.368 0.198 101 69.0 28.8 1.398 0.199 71.2 29.4 1.378 0.202 102 70.0 29.5 1.408 0.203 12).2 30.1 1.388 0.206 103 71.0 30.2 1.417 0.207 73.2 30.8 1.397 0.209 104 72.0 30.9 1.427 0.210 74.2 31.5 1.406 0.213 105 73.0 31.6 1.436 0.214 75.2 32.2 1.416 0.217 106 73.9 32.3 1.446 0.218 76.2 33.0 1.425 0.220 107 74.9 Soe 1.455 0.221 17.2 33.7 1.434 0.224 108 75.9 33.8 1.464 0.225 78.2 84.5 1.443 0.228 109 76.9 34.6 1.473 0.229 79.2 35.2 1.452 0.232 110 77.9 35.3 1.482 0.232 80.2 36.0 1.460 0.235 111 78.8 36.1 1.491 0.236 81.2 36.8 1.469 0.239 112 79.8 36.9 1.499 0.240 82.2 37.6 1.477 0.243 113 80.8 37.7 1.508 0.244 83.2 38.4 1.486 0.247 114 81.8 38.5 1.517 0.247 84.2 39.3 1.494 0.250 115 82.7 39.3 1.525 0.251 85.2 40.1 1.503 0.254 116 83.7 40.2 1.534 0.255 86.2 40.9 1.511 0.258 117 84.7 41.0 1.542 0.259 87.2 41.8 1.519 0.262 118 85.6 41.9 1.550 0.262 88.1 42.7 1.527 0.266 GROWTH OF ORGANS ON BODY LENGTH

TABLE 85—Continued

Gy















MALES FEMALES a. Weight of a Weight of Bod: Tail sf : v4 length length weight = Spinal Taillength | J eight al Spinal mm. mm. gms. gms. gms, mm gms. gms. gms. 119 86.6 42.7 1.558 0.266 89.1 43.6 1.535 0.269 120 87.6 43.6 1.567 0.270 90.1 44.5 1.543 0.273 121 88.5 44.5 1.575 0.274 91.1 45.4 1.551 0. 122 89.5 45.4 1.583 0.278 92.1 46.3 1.559 0.281 123 90.5 46.3 1.591 0.281 93.0 47.3 1.567 0.285 124 91.4 47.3 1.599 0.285 94.0 48.2 1.575 0.289 125 92.4 48.2 1.606 0.289 95.0 49.2 1.582 0.292 126 93.4 49.2 1.614 0.293 96.0 50.2 1.590 0.296 127 94.3 50.2 1.622 0.297 96.9 ole? 1.598 0.300 128 95.3 61.1 1.630 0.301 97.9 52.2 1.605 0.304 129 96.2 52.1 1.637 0.305 98.9 53.2 1.613 0.308 130 97.2 53.2 1.645 0.308 99.8 54.2 1.620 0.312 131 98.1 54.2 1.652 0.312 100.8 So to 1.627 0.316 132 99.1 55.3 1.660 0.316 101.8 56.4 1.635 0.320 133 100.0 56.3 1.667 0.320 102.7 jTeS 1.642 0.324 134 101.0 57.4 1.675 0.324 103.7 58.6 1.649 0.328 135 101.9 58.5 1.682 0.328 104.7 59.7 1.657 0.332 136 =: 102.9 59.6 1.689 0.332 105.6 60.9 1.664 0.336 137 103.8 60.7 1.697 0.336 106.6 62.0 1.671 0.339 138 104.8 61.9 1.704 0.340 107.5 63.2 1.678 0.343 139 105.7 63.0 1.711 0.344 108.5 64.3 1.685 0.347 140 106.7 64.2 1.718 0.348 109.5 65.6 1.692 0.351 141 =+107.6 65.4 1.725 0.352 110.4 66.8 1.699 0.335 142 108.6 66.6 1.732 0.356 111.4 68.0 1.706 0.359 143 «109.5 67.8 1.739 0.360 112.3 69.3 1.713 0.363 144 110.5 69.1 1.746 0.363 113.3 70.6 1.720 0.368 145 111.4 70.4 1.753 0.367 114.2 71.9 1.727 0.372 146) «112.3 71.6 1.760 0.371 115.2 73.2 1.733 0.376 Wie W373 72.9 1.767 0.375 116.1 74.5 1.740 0.380 148 114.2 74.3 1.774 0.379 117.1 75.9 1.747 0.384 149 «115.2 75.6 1.781 0.384 118.0 77.2 1 754 0.388 150 «116.1 77.0 1.788 0.388 119.0 78.6 1.760 0.392 151 117.0 78.3 1.79 0.392 119.9 80.0 1.767 0.396 152 118.0 79.7 1.801 0.396 120.9 81.5 1.774 0.400 153 -118.9 81.2 1.808 0.400 121.8 82.9 1.7 0.404 206

GROWTH OF ORGANS

TABLE 85—Coutinued















MALES FEMALES . Weight of Weight of

ody loath eanke . Spinal Tail length wake ; =e Brain Sorel Brain ea

mm. mm. gms gms. gms. mm. gms. gms. gms. 154 119.8 82.6 1.815 0.404 122.8 84.4 1.787 0.408 155 120.8 84.1 1.821 0.408 123.7 85.9 1.793 0.412 156 «121.7 85.6 1.828 0.412 124.7 87.4 1.800 0.416 157: 122.6 87.1 1.835 0.416 125.6 89.0 1.807 0.420 158 =123.6 88.6 1.841 0.420 126.6 90.6 1.813 0.424 159 124.5 90.1 1.848 0.424 127.5 92.1 1.819 0.429 160 «125.4 91.7 1.854 0.428 128.4 93.8 1.826 0.433 161 126.4 93.3 1.861 0.4382 129.4 95.4 1.832 0.437 162 = 127.3 94.9 1.867 0.436 130.3 97.1 1.839 0.441 163 = 128.2 96.6 1.874 0.441 131.3 98.7 1.845 0.445 164 129.1 98.2 1.880 0.445 132.2 100.5 1.851 0.449 165 130.1 99.9 1.887 0.449 133.1 102.2 1.858 0.453 166 131.0 101.6 1.893 0.453 134.1 104.1 1.864 0.458 167 131.9 103.4 1.899 0.457 135.0 105.7 1 870 0.462 168 132.8 105.1 1.906 0.461 135.9 107.5 1 877 0.466 169 133.8 106.9 1.912 0.465 136.9 109.4 1.883 0.470 170)=—-:134.7 108.7 1.918 0.469 137.8 111.3 1.889 0.474 171 185.6 =110.6 1.925 0.474 138.8 1138.1 °1.895 0.478 172 «186.5 112.4 1.931 0.478 139.7 115.1 1.901 0.483 173 187.5 114.3 1.937 0.482 140.6 117.0 1.908 0.487 174 188.4 116.3 1.944 0.486 141.5 119.0 1.914 0.491 175 «139.3 118.2 1.950 0.490 142.5 121.0 1.920 0.495 176 140.2 120.2 1.956 0.494 143.4 123.0 1.926 0.499 177, —s:141.1 122.2 1.962 0.499 144.3 op 1.932 0.504 178 142.1 124.2 1.968 0.503 145.3 127.2 1.938 0.508 179 «143.0 126.3 1.975 0.507 146.2 129.3 1.954 0.512 180 143.9 128.4 1.981 0.511 147.1 131.5 1.949 0.516 181 144.8 1380.5 1.987 0.515 148.1 133.7 1.955 0.520 182 145.7 132.7 1.993 0.520 149.0 135.9 1.962 0.525 183 146.7 134.9 1.999 0.524 149.9 138.1 1.968 0.529 184 147.6 137.1 2.005 0.528 150.8 140.4 1.974 0.533 185 148.5 139.3 2.011 0.532 151.8 142.8 1.980 0.537 186 149.4 141.6 2.017 0.536 152.7 145.1 1.986 0.542 187 150.3 144.0 2.023 0.541 153 .6 147.5 1.992 0.546 188 151.2 146.3 2.029 0.545 154.5 149.9 1.998 0.550 189 152.2 148.7 2.035 0.549 155.5 152.4 2.004 0.554 190 153.1 151.1 2.042 0.553 156.4 154.9 2.010 0.559 GROWTH OF ORGANS ON BODY LENGTH 207

TABLE 85—Continued
















MALEB FEMALES - Weight of tha Weight of

Body Tail Body : ody length} length weight ee Spinal Tail length weight a Spi nal mm, mm. gms. gms. gms. mm. gms. gms gms. 191 154.0 153.6 2.047 0.557 157.3 157.4 2.016 0.563 192 154.9 156.1 2.053 0.562 158 .2 160.0 2.022 0.567 193 155.8 158.6 2.059 0.566 159.1 162.6 2.028 0.572 194 156.7 161.2 2.065 0.570 160.1 165.2 2.034 0.576 195 157.6 163.8 2.071 0.575 161.0 167 .9 2.039 0.580 196 158.5 166.4 2.077 0.579 161.9 170.6 2.045 0.584 197 159.4 169.1 2.083 0.583 162.8 173.4 2.051 0.589 198 160.4 171.8 2.089 0.587 163.7 176.2 2.057 0.593 199 161.3 174.6 2.095 0.592 164.7 179.1 2.063 0.597 200 162.2 177.4 2.101 0.596 165.6 181.9 2.069 0.602 201 163.1 180.2 2.107 0.600 166.5 184.9 2.074 0.606 202 «164.0 183.1 2.112 0.604 167.4 187.8 2.080 0.610 203 «(164.9 186.0 2.118 0.609 168.3 190.9 2.086 0.615 204 165.8 189.0 2.124 0.613 169.2 193.9 2.092 0.619 205 166.7 192.0 2.130 0.617 170.2 197.0 2.098 0.623 206 167.6 195.0 2.136 0.622 171.1 200.2 2.103 0.628 207 «168.5 198.1 2.142 0.626 172.0 203 .4 2.109 0.632 208 169.4 201.3 2.148 0.630 172.9 206.6 2.115 0.636 209 170.3 204.4 2.153 0.635 173.8 209 .9 2.120 0.641 AlOh 171.2 207.7 2.159 0.639 174.7 213.2 2.126 0.645 211. 172.1 210.9 2.165 0.643 175.6 216.6 2.132 0.649 wae 1730 214.3 2.171 0.647 176.6 220.1 2.138 0.654 213 «174.0 217.7 2.177 0.652 177.5 223.5 2.143 0.658 214 «174.9 221.1 2.182 0.656 178 .4 227 1 2.149 0.662 215 175.8 224.5 2.188 0.660 179.3 230.7 2.155 0.667 2t6y 17697 «=6228.1 2.194 0.665 180.2 234.3 2.160 0.671 217) «177.6 =231.6 2.199 0.669 181.1 238 .0 2.166 0.675 218 178.5 235.3 2.205 0.673 182.0 241.8 2.171 0.680 219 179.4 239.0 2.211 0.678 182.9 245.6 2.177 0.684 220 180.3 242.7 2.217 0.682 183.8 249.4 2.183 0.689 221 181.2 246.5 2.222 0.686 184.8 253 .3 2.188 0.693 222 182.1 250.3 2.228 0.691 185.7 257 .3 2.194 0.697 223 «183.0 254.2 2.234 0.695 186 .6 261.3 2.199 0.702 224 183.9 258.2 2.239 - 0.699 187.5 265.4 2.205 0.706 225 184.8 262.2 2.245 0.704 188.4 269.6 2.211 0.710 226 185.7 266.3 2.251 0.708 189.3 273.8 2.216 0.715 227 «186.6 270.4 2.256 0.713 190.2 278.1 2m222) 0.719 208

GROWTH OF ORGANS

TABLE 85—Concluded


MALES

FEMALES














. Weight of Weight of

pod lates ae " = Tail length ook : aa Brain ora Brain coral

mm. mm. gms. gms. gms. mm. gms. gms. gms. 228 187.5 274.6 2.262 0.717 191.1 282.4 2.227 0.724 229 «188.4 278.8 2.268 0.721 192.0 286 .8 2.233 0.728 230 8©189.3 283.1 2.273 0.726 192.9 291.3 2.238 0.732 231) WEOR2ZE 9287 fb 2.279 0.730 193.8 295.8 2.244 0.737 232 191.1 292.0 2.285 0.734 194.7 300.4 2.250 0.741 2383 192.0 296.5 2.290 0.739 195.6 305.1 2.255 0.746 234 192.9 301.0 2.296 0.743 196.5 309.8 2.261 0.750 235 193.8 305.7 2.301 0.748 197.4 314.6 2.266 0.754 236 4194.7 310.4 2.307 0.752 198.3 319.5 Ph? 0.759 237° «195.5 3315.1 2.312 0.756 199.2 324.4 2.277 0.763 2388 196.4 320.0 2.318 0.761 200.1 329.4 2.283 0.768 239 4197.3 324.9 2.324 0.765 201.1 334.5 2.288 0.772 240 198.2 329.9 2.329 0.769 202.0 339.7 2.294 0.776 241 199.1 334.9 2.335 0.774 202.9 344.9 2.299 0.781 242 200.0 340.1 2.340 0.778 203.8 350.2 2.305 0.785 243 200.9 345.3 2.346 0.783 204.7 255.6 2.310 0.790 244 201.8 350.5 2.351 0.787 205.6 361.1 2.316 0.794 ° 245 202.7 355.9 2.357 0.791 206.5 366.7 2.321 0.799 246 203.6 361.3 2.363 0.796 207 .4 372.3 2.327 0.803 247 «4204.5 366.8 2.368 0.800 208 .3 378.0 2.332 0.807 248 205.4 372.4 2.374 0.805 209 .2 383.8 2.337 0.812 249 206.3 378.1 2.379 0.809 210.1 389.7 2.343 0.816 250 207.2 383.9 2.385 0.813 211.0 395.7 2.349 0.821 251 389.7 2.390 0.818 401.7 2.354 0.825 252 395.6 2.896 0.822 407.9 2.359 0.830 253 401.6 2.401 0.827 414.1 2.365 0.834 254 407.7 2.407 0.831 420.4 2.370 0.838 255 413.9 2.412 0.835 426.9 2.376 0.843 256 420 .2 2.418 0.840 433 .4 2.381 0.847 257 426.5 2.423 0.844 440.0 2.386 0.852 258 433.0 2.429 0.849 446.7 2.392 0.856 259 439.6 2.434 0.853 453.5 2.397 0.861 260 446.2 2.440 0.858 460.4 2.403 0.865 WEIGHT—LENGTH RATIO

TABLE 86

209

Giving in grams the values obtained by dividing the body weight by the body length Based on data in table 85

in millimeters.













RATIO RATIO RATIO

  • " BoDY BODY BODY

LENGTH LENGTH LENGTH Male Female Male Female Male Female 50 | 0.09 | 0.09 87 | 0.23 | 0.24 124 | 0.38 | 0.39 51 | 0.09 | 0.10 ss | 0.24 | 0.24 125 | 0.39 | 0.39 52 | 0.10 | 0.10 89 | 0.24 | 0.24 126 | 0.39 | 0.40 53 | 0.10 | 0.11 90 | 0.24 | 0.25 127 | 0.40 | 0.40 54] 0.11 | 0.11 128 | 0.40 | 0.41 55 | 0.11 | 0.11 91 | 0.25 | 0.25 129 | 0.40 | 0.41 56 | 0.12 | 0.12 92 | 0.25 | 0.26 130 | 0.41 | 0.42 57 0.12 0.12 93 0.25 0.26 58 | 0.12 | 0.13 94 | 0.26 | 0.26 131 | 0.41 | 0.42 59 | 0.13 | 0.13 95 | 0.26 | 0.27 132 | 0.42 | 0.48 60 | 0.13 | 0.14 96 | 0.27 | 0.27 133 | 0.42 | 0.43 97 0.27 0.28 134 0.43 0.44 61 | 0.14 | 0.14 98 | 0.27 | 0.28 135 | 0.43 | 0.44 62 | 0.14 | 0.14 99 | 0.28 | 0.28 136 | 0.44 | 0.45 63 | 0.14 | 0.15 100 | 0.28 | 0.29 137 | 0.44 | 0.45 64 | 0.15 | 0.15 k , me | ais | oe bre oa pe 4 ee: nee 66 | 0.16 | 0.16 - ao an 140 | 0.46 | 0.47 ov | 0.1 0.1 : ; 68 ns OG 104 | 0.30 | 0.30 141 | 0.46 | 0.47 69 | 0.17 | 0.17 105 | 0.30 | 0.31 142 | 0.47 | 0.48 70 | 0.17 | 0.17 106 | 0.30 | 0.31 143 | 0.47 | 0.48 107 | 0.31 | 0.31 te i Gen) |Macee 71 | 0.17 | 0.18 108 | 0.31 | 0.32 145 | 0.49 | 0.50 72 | 0.18 | 0.18 = 0.32 | 0.32 146 | 0.49 | 0.50 73 | 0.18 | 0.18 HO | 0.32 | 0.33 147 | 0.50 | 0.81 74 | 0.19 | 0.19 u1 | 0.33 | 0.33 148 | 0.50 | 0.51 75 | 0.19 | 0.19 2 | 0.33 | 0.34 149 | 0.51 | 0.52 76 | 0.19 | 0.20 113 | 0.33 | 0.34 150 | 0.51 | 0.52 i } 0.20 | 0.20 114 | 0.34 | 0.34 78 | 0.20 | 0.20 us | 034 | 0.35 151 | 0.52 | 0.83 79 | 0.20 | 0.21 us | 0.35 | 0.35 152 | 0.52 | 0.54 80 | 0.21 | 0.21 117 | 0.35 | 0.36 153 | 0.58 | 0.54 is | O25 | og | 2S | Ot ee - 0.21 0.21 119 0G 0.37 155) 0.54 0.55 g2 | 0.21 | 0.22 1200 | 0.36 | 0.37 156 | 0.55 | 0.56 83 | 0.22 | 0.22 157 | 0.55 | 0.57 84 | 0.22 | 0.23 121 | 0.37 | 0.38 158 | 0.56 | 0.57 85 | 0.23 | 0.23 122 | 0.387 | 0.38 159 | 0.57 | 0.58 86 | 0.23 | 0.28 123 | 0.38 | 0.38 160 | 0.57 | 0.59 210 ; GROWTH OF ORGANS

TABLE 86—Concluded









BODY pad) BODY bees BODY Sa LENGTH [OOOO O?— |" LENGTH OOOO I LENGTH Male Female Male Female Male Female 161 | 0.58 | 0.59 195 | 0.84 | 0.86 228 | 1.20 | 1.24 162 | 0.59 | 0.60 196 | 0.85 | 0.87 229 | 1.22 | 1.95 163 | 0.59 | 0.61 197 | 0.86 | 0.88 230 | 1.28 | 1.27 164 | 0.60 | 0.61 198 | 0.87 | 0.89 165 | 0.61 | 0.62 199 | 0.88 | 0.90 231 | 1.24 | 1.28 166 | 0.61 | 0.63 200 | 0.89 | 0.91 232 | 1.26 | 1.29 167 | 0.62 | 0.63 233 | 1.27 | 1.81 168 | 0.63 | 0.64 201 | 0.90 | 0.92 234 | 1.29 | 1.32 169 | 0.63 | 0.65 202 | 0.91 | 0.93 235 | 1.30 | 1.34 170 | 0.64 | 0.65 203 | 0.92 | 0.94 236 | 1.32 | 1.35 204 | 0.93 | 0.95 937 | 1e33)e| eee 171 | 0.65 | 0.66 205 | 0.94 | 0.96 238 | 1.34 | 1.38 172 | 0.65 | 0.67 206 | 0.95 | 0.97 239 | 1.36 | 1.40 173 | 0.66 | 0.68 207 | 0.96 | 0.98 240 | 1.87 | 1.41 174 0.67 0.68 208 0.97 0.99 175 | 0.68 | 0.69 209 | 0.98 | 1.00 241 | 1.39 | 1.48 176 | 0.68 | 0.70 210 | 0.99 | 1.02 242 | 1.41 | 1.45 177 0.69 0.71 243 1.42 1.46 178 | 0.70 | 0.71 211 | 1.00 | 1.03 244 | 1.44 | 1.48 179 | 0.71 | 0.72 212 | 1.01 | 1.04 245 | 1.45 | 1.50 180 | 0.71 | 0.78 218 | 1.02 | 1.05 246 | 1.47 | 1.51 7s 214 | 1.03 | 1.06 247 | 1.49 | 1.58 = nee Ce 215 | 1.04 | 1.07 248 | 1.50 | 1.55 ia) eee 216 | 1.06 | 1.08 249 | 1.52 | 1.57 134 | OMe Ole 217 | 1.07 | 1.10 250 | 1.54 | 1.58 135 | 0.75 | 0.77 218 | 1.08 | 1.11 ia6) | eal ols 219 | 1.09 | 1.12 251 | 1.55 | 1.60 137 | or | 8 79 220 | 1.10 | 1.13 252 | 1.57 | 1.62 188 | 0.78 | 0.80 253 | 1 is00 OOM One 221 | 1.12 | 1.15 254 | 1.61 | 1.66 00 | OR Oe 202 | 1.13 | 1.16 255 | 1.62 | 1.67 223 | 1.14 | 1.17 256 | 1.64 | 1.69 191 | 0.80 | 0.82 224 | 1.15 | 1.18 257 | 1.66 } 1.71 192 | 0.81 | 0.83 225 | 1.17 | 1.20 258 | 1.68 | 1.73 193 | 0.82 | 0.84 226 | 1.18 | 1.21 259 | 1.70 | 1.75 194 | 0.83 | 0.85 207 | 1.19 | 1.23 260 | 1.72 | 1.77 CHAPTER 14 GROWTH IN TERMS OF WATER AND SOLIDS

1. Percentage of water in blood. 2. Percentage of water in brain and spinal cord,

(1) Percentage of water in the blood. Hatai (MS 715) has de- termined the percentage of water in the blood of a small series of Norways.

The Norways were recently caught and examined before the day’s feeding. The rat was chloroformed, but before the heart ceased beating it was exposed in situ, the tip clipped away and the blood from it caught in a small glass weighing bottle. The fresh weight was immediately taken and after drying at 95°C. for a week the weight of the residue was obtained. The results are given in table 87.

TABLE 8&7

Giving the percentage of water in the blood of the Norway rat, Hatai (MS., 715)




BODY WEIGHT, GRAMS PERCENTAGE OF WATER IN BLOOD ea NUMBER OF CASES Range Mean Range Mean Mw ........ 5 114-169 144 79 .02-82 .05 80.34 We... 6 173-440 243 79 92-81 .53 80.52 eee... eee 4 103-190 148 79 82-80 .35 80.05 meee. ...... 5 199-304 271 79 52-81 77 80.82






(2) Percentage of water in the brain and spinal cord. Since the percentage of water in the nervous system is most closely linked with age, a precise determination in the case of the Norway rat is wanting, by reason of the difficulty of rearing the Norway in captivity. A few data are however at hand.

From Norways born in captivity from trapped females we obtain the percentages according to age, given in table 88. It

211 212 “GROWTH IN WATER AND SOLIDS

TABLE 88.

Showing the percentage of water in the brain and spinal cord of the Norway rat at different ages (sexes combined), (Donaldson and Hata, ’11)







PERCENTAGE OF WATER NUMBER OF CABES AGE IN DAYB BODY WEIGHT Brain Spinal cord grams

OSE 1 5.1 88.2 87.0

See eee eee 10 12.2 86.9 83.3

Sa.) eee 13 18.1 85.3 82.5

Bo cb60 Eee 15 17.7 84.5 81.0 eee eee 16 26.1 82.8 79.4 1 OEE eee eer 19 25.5 81.5 77.8

Tike on ptt Teel 25 32.6 80.9 76.7

Aa Peer 40 35.8 79.2 74.3

Dee eee rier 47 38.5 79.3 74.0



is to be noted that for the most part the rats grew poorly, as shown by the body weights. (Donaldson and Hatai, ’11.)

For Norways trapped in Philadelphia and killed shortly after capture, we obtain, according to body weight, sexes combined, the percentage values of water in brain and spinal cord which are given in table 89.

A comparison of the values for the Norways and Albinos shows that the percentage of water in the Norways tends to run above that in the Albinos—being + 0.37 per cent for the brain and + 0.73 per cent for the spinal cord. PERCENTAGE OF WATER IN NERVOUS SYSTEM 213

TABLE 89

Giving the percentage of water in the brain and spinal cord of the Norway rat accord- ing to body weight (sexes conbined). Based on Donaldson and Hatat, ’11, tables 11 and 14




PERCENTAGE OF WATER (SEXES COMBINED) BODY WEIGHT IN GRAMS fodeas tenes) Brain Spinal cord

1) 3), 7 78.4 71.3 OD. eee eee eee eee 8 78.4 71.7 SUE eee ee eee 14 78.6 71.7 Wee....--- MOET «= te ~ 13 78.6 70.8 BSE. ee eee eee 16 78.5 71.4 RUPE eee ee cee ete eee 14 78.7 71.5 ODE oe eee eee eee 12 78.5 71.5 DGB)... cee eee ee 14 78.3 70.1 PY oe ee ee eee ee 11 78.3 70.3 PSOE eee een ee 15 78.3 70.4 BOS. -.-. 02.2 ee eee 9 78.6 71.0 OO: se eee eee ll 78.6 70.1 RMIGIE: . icv eee eee li 78.4 70.0 SAGE oe ee eee 12 78.0 69.3 IOI oe eee eee ene 10 78.2 70.3 3:55 0009000 SSSR BBBEBED 9 78.2 69.7 BION oe eee cece eee 3 78.3 70.7 OI. ee eee 8 78.1 68.0

MORE 2s ~~ eee eee 7 78.3 71.2 BOOM ss -- eee eee 5 78.0 69.6 Cee ee eee 3 78.3 69.8 MD. ww eee 2 78.0 69.0 415.000. 5° 78.4 70.2 BMOPET Ts ------ eee eee 2 78.0 69.0 485... eee eee BOS: 0 =e ee ee eee eee 6 78.5 69.6 BNDD).. 0.003 ee ese ee eee 78.0 69.0 4B5.. 20. ee eee eee eee 1 78.0 67 .0





Growth in terms of Water and Solids: RrErerRENcES Donaldson and Hatai’11. CHAPTER 15 REFERENCES TO THE LITERATURE

Introduction. The list of references which follows does not claim to be complete and in several directions is intentionally selective. For example, many bacteriological investigations in which the rat has been used are omitted, as are also a large num- ber of descriptive papers belonging to the earlier zodlogical liter- ature. To this list of omissions belong about a dozen titles which do not appear to be accessible in any of the larger libraries of the United States; the printing of such titles was therefore regarded as superfluous.

On the other hand, it has been my intention to include the titles of all the papers which record anatomical investiga- tions and physiological studies, so far as these were generally available.

At the outset of such a plan one meets with the difficulty that the rat has been used in many cases where the fact’is not stated in the title of the paper, and moreover in other instances it is only one of several animals which have been examined or tested.

In the selection of the titles of this class the plan has been to include everything which gave information—no matter how re- stricted—that applied to the rat. Of course it is inevitable under these circumstances that some papers should have been over- looked.

In accordance with the general plan of the book we have in- cluded papers not only on the wild Norway and the domesti- cated Albino, but also on both forms of the house rat, Mus rattus rattus and Mus rattus alexandrinus.

The specific names and designations as given by the authors are quoted without comment but can be revised by reference to the foregoing section on nomenclature. Now and then I have permitted myself an annotation when this was pertinent.

214 REFERENCES TO THE LITERATURE * 215

Thus far the statements apply to the literature which follows and which is arranged alphabetically by authors’ names and under authors by date.

It was desirable at the same time to get some sort of a subject classification, and this has been done in the following manner.

At the end of each chapter, references to the literature bearing on the subject of the chapter are given by author’s name and date. The full reference appears in the list of the end of the volume. The chapter lists contain not only the citations in the text, but also other references which have not been cited there. The presentation is not uniform but dictated by the arrangement of the chapter. Where possible the references are given in alpha- betical order without subdivisions, but where it will be of advan- tage to have the references grouped according to the sub-head- ings, this is done, although under this plan the same reference often appears under more than one sub-heading.

REFERENCES TO THE LITERATURE ADDENDA: Pp. 263-266

Acxrorp, H. 1914, 1915 On the purine metabolism of rats. Biochem. J., vol. 8, pp. 434-437.

Apams, Henry F. 1913 A set of blind white rats which could not learn the maze. J. Animal Behavior, vol. 3, pp. 300-302.

Appison, W.H. F. 1911 The development of the Purkinje cells and of the cor- tical layers in the cerebellum of the albino rat. J. Comp. Neurol.,”

vol. 21, pp. 459-481.

Appison, W. H. F. anp Appiteton, J. L. 1915 The structure and growth of the incisor teeth of the albino rat. J. of Morphol., vol. 26, pp. 43-96.

Aptorr, Pavt 1898 Zur Entwickelungsgeschichte des Nagetiergebisses. Inaug.-Diss. Universitat Rostock, Gustav Fischer, Jena. Figs. 77-81 inclusive.

ApvisorY COMMITTEE SEE (REPORTS ON PLAGUE INVESTIGATIONS)

Apvisory ComMITTEE 1912 Observations on the breeding of Mus rattus in captivity. J. Hyg., Plague Suppl. 1, pp. 193-206. 1912a Theimmunity of the wildratin India. J. Hyg., Plague Suppl. II, 7th Report on Plague Investigations in India, pp. 229-263. 1912b Experimental plague epidemics among rats. J. Hyg., Plague Suppl. II, 7th Report on Plague Invest. in India, pp. 292-299.

AHREND 1903 Beitrag zur Geschichte des sog. ‘‘Rattenkénigs.’’ Natur. u.

‘ Haus., vol. 11, pp. 371-373.

AkaMaTst, KuniTaro 1905 On the brown rat. Zool. Mag. (In Japanese) Tokio, vol. 17, no. 203. 216 REFERENCES TO THE LITERATURE

Atzsertus, Macnus 1206-1280 B. Alberti Magni, Opera Omnia, edited by Au- gust Borgnet-—38 vols., 1890-1899, Paris. See vol. 12,1891, p.420. Mus “quod nos ratum vocamus,”’ in Lib. xxii De Animalibus, Tract II, n. 78.

Aupricu, T.B. 1912 On feeding young white rats the posterior and the anterior parts of the pituitary gland. Am. J. Physiol., vol. 31, pp. 94-101.

Auten, Ezra 1912 The cessation of mitosis in the central nervous system of the albino rat. J. Comp. Neurol., vol. 22, pp. 547-568.

Auston, Epwarp R. 1879-1882 Biologia Centrali Americana. Mammals, p. 141.

Avouant, Huco 1896 Ueber die sympathischen Ganglienzellen der Nager. Arch. f. mikr. Anat., vol. 47, pp. 461-471, p. 466, rats mentioned— mostly rabbits.

ARNSTEIN, C. 1877 Zur Kenntnis der quergestreiften Muskulaturin den Lun- genvenen. Med. Centralbl., 15 Jahrg., pp. 692-694. Extended to veins of small caliber in the rat.

Aron, Hans 1912 Weitere Untersuchungen tiber die Beeinflussung des Wach- stums durch die Ernéhrung. Verhandl. der 29th Versamml. der Gesel- Isch. f. Kinderheilk. in der Abt. fiir Kinderheilkunde der 84 Versamml. der Gesellsch. deut. Naturforcher und Aerzte in Minster. Bergmann. Wiesbaden.

Aron, Hans 1913 Biochemie des Wachstums des Menschen und der héheren Tiere. (In OprpENHEIMER, Cart, Handbuch der Biochemie des Menschen und der Tiere—Enginzungsband, pp. 610-674. Fischer, Jena.)

Asal, K. 1908 Die Blutgefiisse des hiutigen Labyrinthes der Ratte. Beitrige zur vergleichenden Anatomie des inneren Ohres. Anat. Hefte, vol. 36, pp. 711-728.

Ascurer, L. 1910 Beitrag zur Kenntnis der Rattenkritze. Arch. f. Dermat. u. Syph., Wien u. Leipz., vol. 101, pp. 211-220. 2 pl.

Asner, Leon anp Erpety, A. 1903 Ueber die Beziehung zwischen Bau und Function des lymphatischen Apparates des Darmes. Centralbl. f. Physiol., vol. 16, pp. 705-709.

Asner, Leon 1908 Des Verhalten des Darmepithels bei verschiedenen funk- tionellen Zustinden. Ztschr. f. Biol., vol. 51, pp. 115-126. Asxanazy, M. 1908 Die Teratome nach ihrem Bau, ihrem Verlauf, ihrer Genese und im Vergleich zum experimentellen Teratoid. Verh. deutsch.

path. Ges., vol. 11, pp. 39-82.

Asp, Geora A. 1873 Bidrag till spottkértlarnes mikroskopiska anatomi. pp. 128, lpl. J.C. Frenckell & Son, Helsingfors.

1873 a Om nervernas Andingsitt i spottkértlana. (Ueber die Endi- gungsweise der Nerven in den Speicheldriisen.) Nord. med. Ark., vol. 5, no. 5, pp.1-9.

AsTascHEWSKY, P. 1877 Ueber die diastatische Wirkung des Speichels bei ver- schiedenen Tieren. Centralbl. f. d. med. Wiss., pp. 531-534. p. 533, saliva of rat remarkably active.

AumMaNN 1912 Vergleichende Untersuchungen iiber die Wirksamkeit bakteri- eller und chemischer Rattenvertilgungsmittel. Centralbl. f. Bak- teriol., 1 Abt., vol. 63, pp. 212-221. REFERENCES TO THE LITERATURE m7,

AuneTT, H. E. 1908 Virus for the destruction of rats and mice. Brit. M. J., Lond., vol. 2, p. 1524.

Bacot, A. 1914 A study of the bionomics of the common rat fleas and other species associated with human habitations, with special reference to the influence of temperature and humidity at various periods of the life history of the insect. J. Hyg., Plague Suppl. III, pp. 447-654.

Bacot, A. W. anp Martin, C. J. 1914 Observations on the mechanism of the transmission of plagueby fleas. J. Hyg., Plague Suppl. II], 8th Report on Plague Invest. in India, pp. 423-440.

Baur, L. 1906 Ueber das Vorkommen von Trichinen bei der Ratte. Zeitschr. Infektionskr. parasit. Krankh. Hyg. Haustiere, vol. 2, pp. 62-65. 1909 Die Resultate der Versuche zur rationellen Rattenvertilgung ver- mittelst Priparate des Laboratoriums. Centralbl. f. Bakteriol., 1 Abt. vol. 52, pp. 441-435.

1909 a The rational extirpation of rats by means of ratin prepara- tions. Halsovannen, Stockholm, vol. 24, pp. 329-333. 1910 Zur rationellen Vertilgung von Ratten mit Hilfe von Priparaten des Laboratoriums unter besonderer Beriicksichtigung des Ratinsys- tems. Ztschr. {. Fleisch. u. Milchhyg., Berl., vol. 20, pp. 389-393. BAINBRIDGE, F. A. 1909 On the bacterial nature and efficiency of certain rat - viruses. J. Path. and Bacteriol., vol. 13, pp. 457-466.

Bancrort, T. L. 1894 On the whip-worm of the rat’s liver. J. and Proc. Roy. Soc. N. South Wales, 1893, Sydney, 1894, xxvii, 86-90, 2 pl.

BannerMAN, W. B. 1906 The spread of plague in India. J. Hyg., vol. 6, pp. 179-211.

BARDELEBEN, KaRL VON 1899 Handbuch der Anatomie, vol. 4, Centralnerven- system, I Teil, von Prof. Dr. Th. Ziehen., p. 12. Spinal cord weight; rat (Ranke).

BaRNABO, VALENTINO 1913 Ulteriori richerce sperimentali sulla secrezione in- terna testicolare. Policlin., vol. 20, pp. 165-192.

Barrett-Hamitton, G. E. H. 1892 Mus alexandrinus in Ireland. The Zodlo- gist, vol. 16, p. 75.

BarteNErFF, L. 1891 On the distribution of the nerves in the plexus of the small intestine. Inaug.-Diss. 32 pp. 1 pl. (in Russian).

Bascu, 8. von 1870 Die ersten Chyluswege und die Fettresorption. Sitz. d. k. Akad. d. Wiss. math.-naturw. Cl. Wien, vol. 62, Abt. 2, pp. 617-634. 1 pl.

Basurorp, E. T. anp Murray, J. A.,eTc. 1900 General results of propagation of malignant new growths. The Imp. Cancer Research Fund, 3rd Scien. Report, pp. 262-283.

Baster, A. 1909 Beitrige zur Kenntnis der Bewegungsvorginge des Blinddarm- inhaltes. Arch. f. d. ges. Physiol., vol. 128, pp. 251-276, 9 text figures.

Basset, GARDNER C. 1914 Habit formation in a strain of albino rats of less than normal brain weight. Behavior monographs, vol 2, no. 4, serial number 9.

Bate, DorotuEea M. A. 1912 Ona new species of mouse and other rodent re- mains from Crete. Geol. Mag. Dec., V. vol. ix, no. 571, pp. 4-6. Epi- mys (Mus) rattus from the pleistocene cave deposits of Crete. 218 REFERENCES TO THE LITERATURE

Bateson, W. 1903 The present state of knowledge of colorheredity in mice and rats. Proc. Zoél. Soc., London, vol. 2, p. 71.

Baumaart, Martin 1904 Vergleichende Untersuchungen iiber Mus rattus und Mus decumanus und iiber die Ursachen der Verdringung der Hausratte durch die Wanderratte. Inaug.-Diss. Philos. Fak. Zitrich.

Bayon, H. 1911 Demonstration of specimens relating to the culture of the leprosy bacillus. Brit. M. J. part 2, pp. 1269-1272.

1912 Demonstration of acid-fast germs cultivated from cases of lep- rosy. Tr. Soc. Trop. M. and Hyg., vol. 5, pp. 103-105. Authors mentioned in text; no tables—rats.

1912a The experimental transmission of the spirochaete of Euro- pean relapsing fever to rats and mice. Parasitology (Suppl. to the J. Hyg.) vol. 5, pp. 135-149 3 figs.; experiments on white rats, pp. 142- 145; results summarized, not tabulated.

1912b The culture and identification of the germ of leprosy and the relationship of the human disease to rat leprosy. Tr. Soc. Trop.M. and Hyg., vol. 5, pp. 158-167.

1912c On the transmission of leprosy to animals by direct inocula- tion. Brit. M. J., part 1, pp. 424-426.

Becustsein, J. M. 1801 Gemeinniitzige Naturgeschichte Deutschlands nach allen drey Reichen. Zweite Ausgabe, vol 1, Saugethiere, pp. 931-952. Leipzig.

BEcHTEREW, W. von 1890 Ueber die verschiedenen Lagen und Dimensionen der Pyramidenbahnen beim Menschen und den Thieren und tiber das Vorkommen von Fasern in denselben welche sich durch eine friihere Entwickelung auszeichnen. Neurol. Centralbl., pp. 738-741.

Beck, WILHELM 1896 Uber den Austritt des N. Hypoglossus und N. Cervi- calis Primus aus dem Centralorgan beim Menschen und in der Reihe der Sdugetiere unter besonderer Beriicksichtigung der dorsalen Wur- zeln. Anat Hefte, vol. 6, pp. 251-344. Mus rattus, p. 312.

BEIuinG, Kart 1906 Beitrige zur makroskopischen und mikroskopischen Ana- tomie der Vagina und des Uterus der Saugetiere. Archiv. f. mikr. Anat., vol. 67, pp. 573-637. Mus decumanus, p. 588.

Bei, E.T. 1911 The interstitial granules of striated muscle and their relation to nutrition. Internat. Monat. f. Anat. u. Physiol., vol. 28, pp. 297- 347.

BELL, THomas 1837-1874 British quadrupeds including the cetacea. John van Voorst, London; 2nd ed., pp. 310-320. Both rattus and decumanus: excellent pictures of each.

Beutonci, G. 1885 Del fuso direzionale e della formazione di un globulo polare nell’ovulo ovarico di alcuni mammiferi. Atti della R. Accad. dei Lincei, Ser 4. Rendiconti, pp. 285-286.

Bruuoy, G. 1899 Recherches sur l’origine des corps jaunes de l’ovaire chez le rat et le cochon d’Inde. Compt. rend. de l’Ass. d. Anat. Premiére ses- sion, Paris, pp. 47-52.

Benpva, Cart 1887 Untersuchungen iiber den Bau des funktionirenden Samen-

- kanilchens einiger SAugethiere und Folgerungen fiir die Spermatoge- nese dieser Wirbelthierklasse. Archiv f. mikr. Anat., vol. 30, pp. 49- 110. Rat, pp. 58 and 66. REFERENCES TO THE LITERATURE 219

BENEDICENTI; A. 1892 Recherches sur les terminaisons nerveuses dans la mu- queuse de la trachée. Résumé de |’Auteur. Arch. ital. de biol., vol. 17, pp. 46-48.

Benner, Cuartes B. 1914 The cholesterol content of cancers in rats. J. Biol.. Chem., vol. 17. pp. 13-14.

Beretta, Artur 1913 La normala dentatura dei Roditori in rapporto alle anomalie dentali in questi osservate. Stomatol., vol. 10, no. 2 and 3.

Beremann, A. M. 1908 Two methods for the extermination of rats, by the culture of Danysz’ rat bacillus and ratin. aaa Veterinartidskr., Stockholm, vol. 13, pp. 377-387.

Berkey, H. J. 1893 The intrinsic pulmonary nerves by the silver method. J. Comp. Neur., vol. 3, pp. 107-111, 1 pl. Mus decumanus.

1895 The intrinsic pulmonary nerves in mammalia. Johns Hopkins Hosp. Rep. (Baltimore), vol. 4, pp. 72-78 (240-246), 1 pl.

Berry, C.S. 1906 The imitative tendency of white rats. J. Comp. Neur. and Psychol., vol. 16, pp. 333-361.

Bert, Paut 1878 La pression barométrique; rescherches de physiologie expéri- mentale. G. Masson, Paris. Some observations on rats.

Bipra, Ernst von 1854 Vergleichende Untersuchungen iiber das Gehirn des Menschen und der Wirbelthiere. Basssermann and Mathy, Mannheim. Hausratte—Mus rattus, p. 22.

Biepu, Artur 1913 Innere Sekretion. 2 vols. Urban and Schwarzenberg, Berlin.

Bicnorti, G. 1900 Sul tarso del Mus decumanus. Monit. zodl. ital., vol. 11, suppl. pp. 17-19.

BircHEer, Evcen 1911 Die kretinische Degeneration (Kropf, endemischer Kretinistraus und Taubstummheit) in ihrer Beziehung zu anderen Wis- sensgebieten. Fortschr. d. Naturwissen. Forschung, vol. 2, pp. 273- 338, p. 289, figures of the normal and abnormal thyroid of the rat. All references by name only. 191la Weitere Beitrige zur experimentellen Erzeugung des Kropfes. Die Kropfatiologie ein colloid-chemisches Problem. Ztschr. f. exper. Path. u. Therap., vol. 9.

Biscuorr, T. L. W. 1832 Nervii accessorii Willisii anatomia et physiologia. 104 pp., 6 pl. 4°. Heidelbergae, typ. Reichardianis.

Buanc, Lovis 1892 Sur un ovule 4 deux noyaux observé dans |’ovaire de Mus decumanus. Ann. de la société Linneenne de Lyon Nouv. Sér., vol. 39, pp. 73-80.

Buasivus, J. H. 1857 Fauna der Wirbelthiere Deutschlands und der angrenzen- den Lander von Mitteleuropa. Vol. 1, Sdugethiere. Braunschweig. Viehweg. Descriptions of the several species of rats.

Buve, Rupert 1908 The underlying principles of anti-plague measures. Calif.

State J. Med., vol. 6, pp. 271-277. 1910 Rodents in relation to the transmission of bubonic plague. Found in “The rat and its relation to the public health,” pp. 145-152. Treasury Dept. Pub. Health and Mar. Hosp. Service of U.S. Gov- ernment Printing Office, Wash., D. C.

Boetter, W.R. 1909 Therat problem. John Bale, Sons and Danielsson, Lon- don, pp. 165. 220 REFERENCES TO THE LITERATURE

Bogarpus, E. 8. anp Henke, F. G. 1911 Experiments on tactual sensations in the white rat. J. Animal Behavior, vol. 1, pp. 125-187.

Bouten, F. 1894 Ueber die elektromotorischen Wirkungen der Magenschleim- haut. Arch. f. d. ges. Physiol., vol. 57, pp. 97-122.

Bornet, Ep. 1895 Résistance A la fatigue de 11 rats décapsulés depuis cing et six mois. Compt. rend. Soc. de biol., Paris, vol. 47, pp. 273-274.

1895 a Ablation des capsules vraies et accessoires chez le rat d’égout. Compt. Rend. Soc. de Biol., vol. 47, pp. 498-500.

1897 Diminution de résistance des rats doublement décapsulés a Vaction toxique de diverses substances. C. R. Soc. de Biol., p. 466. 1897 a Dix nouveaux cas de maladie d’Addison expérimentale chez le rat d’égout. C. R. Soc. de Biol., 8th and 15th of May, pp. 439 and 473.

BorcuErpina, Fr. 1889 Uber das Vorkommen der Hausratte, Mus rattus L., im nordwestlichen Deutschland. Zodlog. Garten, 30 Jahrg., pp. 92- 93.

Borenet, Aucust See Albertus Magnus.

Bovucuton, T. H. 1906 The increase in the number and size of the medullated fibers in the oculomotor nerve of the white rat and of the cat at dif- ferent ages. J. comp. Neur. and Psychol., vol. 16, pp. 153-165.

Boycort, A. E. anD Damant, G. C. C. 1908 Experiments on the influence of fatness on susceptibility to caisson disease. J. Hyg. Cambr., vol. 8, pp. 445-456. Pp. 447-450, tables and notes on experiments with rats giving sex, body weight and fatty acids.

1908 a A note on the total fat of rats, guinea-pigs and mice. J. Phys- iol., vol. 37, pp. 25-26.

Borcort, A. E., Damant, G. C. C. anp Haupans, J. S. 1908 The preven- tion of compressed air illness. J. Hyg. Cambr., vol. 8, pp. 342-443.

Brapitey, O. Charnock 1903 On the development and homology of the mam- malian cerebellar fissures. J. Anat. and Physiol., vol. 37, pp. 112-130. Cerebellum: Mus decumanus figs. 38, 39, 40 and 41.

Braun, M. 1882 Entwicklungsvorginge am Schwanzende bei einigenSauge- thieren mit Beriicksichtigung beim Menschen. Arch. f. Anat. u. Phys- io]., Anat. Abt., pp. 207-241. Taf. XII, XIII. Rat among animals used.

BrinckerHorr, WALTER R. 1910 Rat leprosy. Found in ‘‘The rat and its re- lation to the public health.’ Pp. 49-53. Treasury Dept. Pub. Health and Mar. Hospt. Service of the U. S. Government Printing Office, Wash., D. C.

Brisson, A. D. 1756 Le régne animal divisé en IX classes, etc. 4° Paris. P. 168, description of Mus rattus—many references.

Brown, Hersert H. 1885 On spermatogenesis in the rat. Quart. J. Micr. Sc., London, vol. 25, pp. 343-369.

Brown-Stquarp, E. 1856 Recherches expérimentales sur la physiologie et la pathologie des capsules surrénales. Arch. gén. de méd. vol. 2 (ser. 5, vol. 8) pp. 385-401; 572-598 (Oct. and Nov). Experiments chiefly on rabbits; but mentions another physiologist’s observations on rats, p. 595. REFERENCES TO THE LITERATURE 22]

BrittumEeR, JoHaNNES 1876 Anatomische und histologische Untersuchungen uber den zusammengesetzten Magen verschiedener Saugethiere. Tafeln J-V. Deutsche Ztschr. f. Thiermed., vol. 2, pp. 158-298 and 299-319.

Bruneau 1886 Un tuyau 4 gaz en plomb coupé par les rats. Ann. d’hyg., Par., 3s., xv, 530.

Britnrnc, Hermann 1914 Experimentelle Studien tiber die Entwicklung neu- geborener Tiere bei langerdauernder Trennung von der Sadugenden Mutter und nachheriger verschiedenartiger kinstlicher Ernahrung (Rats). Jahrb. f. Kinderheilk., vol. 80, pp. 65-85. 6 fig. in text (tables and graphs important). 1914a Untersuchungen iiber das Wachstum von Tieren jenseits der Sduglingsperiode bei verschiedenartiger kiinstlicher Ernihrung (Rat). Jahrb. Kinderheilk., vol. 79, pp. 305-319. 2 text figs., tables (impor- tant).

Brunn, A. von 1880 Notiz ‘iiber unvollkommene Schmelzentwicklung auf den Mahlzahnen der Ratte—M. decumanus. Arch. f. mikr. Anat., vol. 17, pp. 241-242.

1887 Ueber die Ausdehnung des Schmelzorganes und seine Bedeutung fiir die Zahnbildung Arch. f. mikr. Anat., vol. 29, pp. 367-383.

Bucwanan, A. 1910 The destruction of rats. Brit. M. J., Lond., vol. 2, p. 1388.

Buckianp, Francis T. 1859 Curiosities of natural history. Rudd and Carle- ton, N. Y. Rats, pp. 87-205.

Burron, GeorGe Louis LE Cierc, ComTE pE 1749-1789 Histoire naturelle, générale et particuliére. Paris, vol. 7, 1758, pp. 278-308; vol. 8, 1760, pp. 206-218.

Busarp, Eve. 1905 Sur les villosités intestinales. Bibl. anat., vol. 14, p. 236. 1909 Etude des types appendiciels de la muqueuse intestinale, en rap- port avec les régimes alimentaires. Morphologie comparée. Sitio- morphoses naturelles et expérimentales. Internat. Monatschr. f. Anat. u. Physiol., vol. 26, pp. 101-192. Plates VI-X, Rats, pp. 123- 124.

Buuue, Hermann 1887 Beitrige zur Anatomie des Ohres. Archiv f. mikr. Anat., vol. 29. pp. 237-264. Rat, p. 245.

Buutock, F. D. anp Roupensure, G. L. 1913 Primary sarcoma of the liver of the rat originating in the wall of a parasitic cyst. J. Med. Research, vol. 28 (n. s. vol. 23) pp. 477-481.

1915 Tumor-like growths in the rat stomach following irritation. Proc. of the Soc. for Exper. Biol. and Med., vol. 12, pp. 161-162. .

Buttock, W. E 1913 Contributions to the biochemistry of growth. On the lipoids of transplantable tumors of the mouse and the rat. Proc. R. Soc., London, vol. 87 B, pp. 236-239.

CaBIBBE, a 1904 Histologische Untersuchungen iiber die Nervenendi- gungen in den Sehnen und im Perimysium der Ratte und des Meer- schweinchens. Monatschr. f. Psychiat. u. Neurol., vol. 15, pp. 81-89. 3 figs.

Casat, S. Ramon 1889 Neuvas aplicaziones de metodo de colaracién de Golgi. Gac. med. Catal., vol. 12, pp. 6-8. DOD, REFERENCES TO THE LITERATURE

Casa, S. Ramon 1893 Sur les ganglions et plexus nerveux de l’infestin. Compt. rend. soc. de biol., ser. 9, vol. 5, pp. 217-223, Paris. 3 figs. 1897 Leyes de la morfologia y dinamismo de las células nerviosas. Rev. trimestr. Microgr., vol. 2, pp. 1-28.

1903 Un sencillo método de coloracién del reticulo protoplasmico y sus efectos en los diversos centros nerviosos de vertebrados é inverte- brados. Rev. trimestr Microgr., vol. 7, pp. 129-221, fig. 33.

1909, 1911 Histologie du systéme nerveux de homme et des verté- brés. 2 vols. A. Maloine. Paris For rat (vol. 1) figs. 19, 113, 123, 189, 190; (vol. 2) figs. 20, 21, 46, 246.

Cater, A. 1900 Studio istologico e morfologico di un’appendice epiteliale del pelo nella pelle del Mus decumanus var. albino e del Sus scrofa. Anat. Anz., vol. 17, pp. 509-517.

CautmetTs, A. 1910 La lutte internationale contre les rats. L’Hygiéne, Par., no. 9, 5-7.. ; 1911 La lutte internationale contre les rats. J. de méd. de Par., 2s. vol. 23, pp. 588-591.

Campana, Roserto 1911 I bacilli acidi nei topi in Mancuiria; ed altri studi. Clin. dermosifilopat d. r. Univ. di Roma, vol. 29, pp. 47-50.

CampsBELL, J. MacNaueut 1892 On the appearance of the brown rat (Mus de- cumanus Pallas) on Ailsa Craig. Ann. of Scott. Nat. Hist. I. no. 2. pp. 1382-134.

Cannigvu, ANDRE 1893 Récherches sur le nerf auditif, ses rameaux et ses gang- lions. Revue biol. du Nord de la France, Année VI, pp.87-153. Rat among animals used.

CarMicHaEL, E. S. and Marsnauu, F.H.A. 1907 The correlation of the ovarian and uterine functions. Proc. Roy. Soc. 8. B. vol.79, pp.387-394. Rats —4 experiments.

Carpenter, F. W. anp Const, J. L. 1914 A study of ganglion cells in the sym- pathetic nervous system, with special reference to intrinsic sensory neurones. J. Comp. Neur., vol. 24, pp. 269-281.

Carr, Harvey anp Watson, J.B. 1908 Orientation in the white rat. J. Comp. Neur. and Psychol., vol. 18, pp. 27-44.

Castie, W.E. 1911 Heredity. Chapter 6. D. Appleton & Co., N.Y.

1912 Some biological principles of animal breeding. Am. Breeders Mag., vol. 3, pp. 270-282.

1912a The inconstancy of unit characters. Am. Naturalist, vol. 46, pp. 352-362.

Caste, W. E. anp Puitures, J. C. 1914 Piebald rats and selection. An ex- perimental test of the effectiveness of selection and of the theory of gametic purity in Mendelian crosses. Carnegie Inst. Wash., no. 195.

Caste, W. E. 1914 Some new varietiesof rats and guinea pigs and their rela- tion to problems of color inheritance. Am, Naturalist, vol. 48, pp. 65-73.

1914 Yellow varieties of rats. Am..Naturalist, vol. 48, p. 254.

Cavazzant, E. anp Muzziou, M. 1912 Contribution 41’étude de l’eau dans les organismes. Arch. ital. Biol., vol. 57, pp. 473-480. REFERENCES TO THE LITERATURE 223

Crsana, G. 1910 Lo sviluppo ontogenico degli atti riflesi (Rat) Arch. di Fisiol., vol. 9, pp. 1-120, 43 figs—full tables.

Cuaprin, C. W. 1912 An acid-fast organism resembling the bacillus of human leprosy cultivated from the tissues of a leprous rat. Pub. health rep. U.S. Mar. Hosp. Serv., vol. 27, part 1, p. 161. i

Crick, HARRIETTE AND Martin, C. J. 1911 The fleas common on rats in differ- ent parts of the world and the readiness with which they bite man. J. Hyg., vol. 11, pp. 122-136.

Cuipester, F.E. 1912 Experiments with desiccated thyroid, thymus and su- prarenals. Science, vol. 36, no. 932, November 8th.

Curevitz, J.H. 1885 Beitrige zur Entwicklungsgeschichte der Speicheldriisen.

d Arch. f. Anat. u. Entweklngsgesch., pp. 401-436, 1 pl.

Cuisoium, R.A. 1911 On the size and growth of the blood in tame rats. Quart. J. Exper. Physiol., vol. 4, pp. 207-229.

CuarKE, W. E. 1891 Black and Alexandrine rats at Leith (M. rattus and al- exandrinus) Ann. of Scott. Nat. Hist., vol. 3, p. 36.

Coz, W. R. 1908 The maturation of the egg of the rat. Science, vol.27, no. 690, March 20th, p. 444. ;

Conevon, E. D. 1912 The surroundings of the germ plasm. III. The inter- nal temperature of warm-blooded animals (Mus decumanus, M. muscu- lus, Myoxus glis) in artificial climates. Archiv f. Entweklngsmechn. d. Organ., vol. 33, pp. 703-715.

Converse, G. M. 1910 Rat suppression in San Francisco, California. Pub. Health Rep., U. S. Mar. Hosp. Serv. Wash., vol. 25, pp. 1003-1005.

Coox, C. 1886 Poisoning from a rat bite. Indiana M. J., vol. 9, p. 77.

Coox, F.C. 1913 The importance of food accessories as shown by rat-feeding experiments. Science, p. 675. November 7.

CorNALiA, Emite 1858-1871 Mammiféres fossiles de Lombardie, Milan—being 2nd Series in Paléonotologie Lombarde par |’Abbie Antoine Stoppani. 4°. pp. 38-40. Mus rattus.

CornisH, Toom. 1890 Black rat in Cornwall. Zodlogist, vol. 13, p. 450.

Cramer, W. 1908 The gaseousmetabolism inrats inoculated with malignant new growths. Third Scien. Report Imp. Cancer Research Fund, pp. 427- 433.

Cramer, W. anD PrincLe, Harotp 1910 Contributions to the biochemistry of growth. The total nitrogen metabolism of rats bearing malignant new growths. Proc. R. Soc., London, vol. 82 B, pp. 307-315.

Cramps, Huco 1877 Kreuzungen zwischen Wanderatten verschiedener Farbe. Landwirths. Jahrb., vol. 6, p. 384.

1883 Zucht-Versuche mit zahmen Wanderratten. I. Resultate der Zucht in Verwandtschaft. Landwirths. Jahrb., vol. 12.

1884 Zucht-Versuche mit zahmen Wanderratten. II. Resultate der Kreuzung der zahmen Ratten mit wilden. Landwirths. Jahrb., vol. 13.

CREEL, Ricuarp H. 1910 Rat proofing as an antiplague measure. Found in “The rat and its relation to the public health,”” pp. 171-178. Treasury Dept. Pub. Health and Mar. Hosp. Service of the U. S. Government Printing Office, Wash., D. C. 224 REFERENCES TO THE LITERATURE

Cristiani, H. 1892 L’inversion des feuillets blastodermiques chez le rat albi- nos. Arch. de Phys. norm. et pathol., vol. 24 (S. 5, T. 4).

1893 De la thyroidectomie chez le rat pour servir A la physiologie de la glande thyroide. Arch. de physiol. norm. et path., 5th series, vol. 5, pp. 39-46.

1893 a Remarques sur l’anatomie et la physiologie des glandes et glandules thyroidiennes chez le rat. Arch. de physiol. norm. et path., 5th series, vol. 5, pp. 164-168.

1893 b Des glandules thyroidiennes accessoires chez la souris e le campagnol. Arch. de physiol. norm. et path., 5th series, vol. 5, pp. 279-283.

1895 De la greffe thyroidienne in général et de son évolution histo- logique en particulier. Arch. de physiol. norm. et path., 5th series, vol. 7 (vol. 27), pp. 65-76.

1900 Développement des greffes thyroidienne; analogie avec le dé- veloppement embryonnaire du corps thyroide et avec la formation du goitre hyperplasique. Compt. rend. Soc. de Biol., Paris, vol. 52, pp. 967-969.

Cristiani, H. anp Cristiani, A. 1902 Recherches sur les capsules surrénales (Planche I.) J. de physiol. et de path. gen., vol. 4, pp. 837-844. 1902a De la greffe des capsules surrénales (Planche II). J. de phy- siol., vol. 4, pp. 982-997.

1902 b Réle prépondérant de la substance médullaire des capsules surrénales dans la fonction de ces glandes. Compt. rend. Soc. de Biol., vol. 54, pp. 710-711.

1902 c Histologie pathologique des greffes de capsules surrénales. Compt. rend. Soe. de Biol., vol. 54, pp. 811-814.

1902 d Del’insuffisance fonctionelle des greffes de capsules surrénales. Compt. rend. Soc. de Biol., vol. 54, pp. 1124-1126.

Cutnot, L. 1899 Sur la determination du sexe chez les animaux. Bull. sci. de la France et de la Belgique, vol. 32.

Curriz, Donato H. 1910 Bacterial diseases of the rat other than plague. Found in “The rat and its relation to the public health,’”’ pp. 55-57. Treasury Dept. Pub. Health and Mar. Hosp. Service of the U. S. Government Printing Office, Wash., D. C.

Custor, J. 1873 Ueber die relative Grésse des Darmcanals und der haupt- sichlichsten Kérpersysteme beim Menschen und bei Wirbelthieren. Diss. Berlin.

Cuvier, G. 1805 Lécons d’Anatomie comparée. Paris. T. iii, p. 388. In the rat family the stomach presents two divisions.

CzEeRMAK, Nicotay 1895 Ernihrungswege einer epithelialen Zelle. Anat. Anz., vol. 11, pp. 547-550, 1 Abb.

Czerny, ADALBERT 1890 Ueber Rickbildungsvorgiinge an der Leber. Archiv f. mikr. Anat., vol. 35, pp. 87-103. Rat, p. 88 and 101.

Darwin, Cuartes 1883 Animals and plants under domestication. Vol. 2, p. 65. Varieties of cross-bred rats.

Dean, Georce 1903 A disease of the rat caused by an acid-fast bacillus. Cen- tralbl. f. Bakteriol. u. Parasitenk., vol. 34, part 1, pp. 222-224. REFERENCES TO THE LITERATURE 220)

Dean, Georce 1905 Further observations on a leprosy-like disease of the rat. J. Hyg., vol. 5, pp. 99-112.

Denne, A. 1855 Mus decumanus, Pallas: Die Wanderratte u. ihre Varietiten. Allg. deutsche Naturhist. Zeit. n. f., vol. 1, pp. 169-174.

Demaison, L. 1906 Sur les rois de rats. Feuille jeun. Natural (4) Ann. 37, p. 38.

DEMJANENKO, K. 1909 Das Verhalten des Darmepithels bei verschiedenen funktionellen Zustinden. Ztschr. f. Biol., vol. 52, pp. 153-188:

_ (Zweite Mitt. nebst Bemerkung von Leon Asher.)

Dusock, James F. See Giraldus Cambrensis.

Dissetuorst, Rupoitr 1897 Die accessorischen Geschlechtsdriisen der Wir- beltiere. Eine vergleichend-anatomische Untersuchung. Arch. f. wissensch. u. prakt. Thierh., vol. 23.

1897 a Die accessorischen Geschlechtsdriisen der Wirbeltiere, mit be- sonderer Beriicksichtigung des Menschen. viii, pp. 279, 16 pl. 8°. J. F. Bergmann, Wiesbaden.

1904 Ausfithrapparat und Anhangsdriisen der Mannlichen Geschlechts- organe. In Oppel, A, ‘‘Lehrbuch der Vergleichenden Mikroskopi- schen Anatomie der Wirbeltiere.’ Vierter Teil. Gustav Fischer: Jena. Rodentia—Mus decumanus, pp. 263-282.

DoutFts, ApRIEN 1906 Les rois de rats. Feuille jeun. Natural (4) Ann. 36; pp. 174-175, 185-188.

Donatpson, H. H. 1900 The functional significance of the size and shape of the neurone. J. Nerv. and Ment. Dis., vol. 27, no. 10.

Downatpson, H. H. anp Hoxe, G. W. 1905 On the areas of the axis cylinder and medullary sheath as seen in cross sections of the spinal nerves of vertebrates. J. Comp. Neur. and Psychol., vol. 15, pp. 1-16.

Donatpson, H. H. 1906 A comparison of the white rat with man in respect to the growth of the entire body. Boas Anniversary Volume, pp. 5-26. G. E. Stechert & Co., N. Y.

1908 A comparison of the albino rat with man in respect to the growth of the brain and of the spinal cord. J. Comp. Neur. and Psychol., vol. 18, pp. 345-392.

1909 On the relation of the body length to the body weight and to the weight of the brain and of the spinal cord in the albino rat (Mus nor- vegicus var. albus). J. Comp. Neur. and Psychol., vol. 19, pp. 155-167. 1910 On the percentage of water in the brain and in the spinal cord of the albino rat. J. Comp. Neur. and Psychol., vol. 20, pp. 119-144. 1911 On the influence of exercise on the weight of the central nervous system of the albino rat. J. Comp. Neur., vol. 21, pp. 129-137.

19114 The effect of underfeeding on the percentage of water, on the ether-alcohol extract, and on medullation in the central nervous sys- tem of the albino rat. J. Comp. Neur., vol. 21, pp. 189-145.

1911 b An interpretation of some differences in the percentage of water found in the central nervous system of the albino rat and due to conditions other than age. J. Comp. Neur., vol. 21, pp. 161-176. 1911 c¢ Studies on the growth of the mammalian nervous system. J. Nerv. and Ment. Dis., vol. 38, pp. 257-266. 226 ‘REFERENCES TO THE LITERATURE

Dona.pson, H. H. anp Hatar, § 1911 <A comparison of the Norway rat with the albino rat in respect to body length, brain weight, spinal cord weight and the percentage of water in both the brain and the spinal cord. J. Comp. Neur. vol. 21, pp. 417-458.

1911 a Note on the influence of castration on the weight of the brain and spinal cord in the albino rat and on the percentage of water in them. J. Comp. Neur., vol. 21, pp. 155-160.

Donarpson, H. H. 1912 A comparison of the European Norway aa albino rats (Mus norvegicus and Mus norvegicus albinus) with those of North America in respect to the weight of the central nervous system and to cranial capacity. J. Comp. Neur., vol. 22, pp. 71-97.

1912. On the weight of the crania of Norway and albino rats from three stations in western Europe and one station in the United States. Anat. Record, vol. 6, pp. 53-63.

1912b The history and zodlogical position of the albino = J. Acad. Nat. Sc. Phila., vol. 15, 2nd series, pp. 365-369.

1912¢ An erotica analysis of growth. Trans. 15th Internat. Cong. Hyg. and Demography, Wash., D. C., Sept. 23-28.

Doncaster, L. 1906 On the inheritance of coat color in rats. Proc. Cambridge Philos. Soc., vol. 13, pp. 215-228.

Downnporrr, J. A. 1792 Zodlogische Beitrige zur XIII Ausgabe des Linneschen Natursystem. 2 vols. Leipzig. Vol. 1, Die Siugethiere, p. 427.

Dostoirwsxy, A. 1886 Ueber den Bau der Vorderlappen des Hirnanhanges. Arch. f. mikr. Anat., vol. 26, pp. 592-598.

1886.a Ein Beitrag zur mikroskopischen Anatomie der Nebennieren bei Sliugethieren. Archiv f. mikr. Anat., vol. 27, pp. 272-296. Rat, p. 279 and 287.

DrascH, O. 1886 Zur Frage der Regeneration und der Aus—und Rickbildung der Epithelzellen. Sitz. d. k. Akad. d. Wiss. math.-naturw. Cl. Wien. Vol. 93, Abt III, pp. 200-213, 1 pl.

Duessere, J. 1907 Die Mitochondrial-Apparat in den Zellen der Wirbeltiere und Wirbellosen. Arch. f. mikr. Anat., vol. 71, pp. 284-296.

1908 Les divisions des spermatocytes chez le rat (Mus decumanus Pall., variété albinos). Arch. f. Zellforsch., vol. 1.

1908 a La Spermatogénése chez le rat (Mus decumanus Pall., Variété albinos) Mémoire présenté pour l’obtention du titre de docteur spécial en sciences anatomiques, Université de Liége. Wilhelm En- gelmann. Leipzig. Also (b) Arch. f. Zellforsch., vol. 2, pp. 137-180. 1909 Note complémentaire sur la spermatogenése du rat. Arch. f. Zellforsch., vol. 3, pp. 553-562.

Down, EvizasetH H. 1908 A study in the gain in weight for the light and heavy

individuals of a single group of albino rats. Proc. Assoc. Am. Anat. in Anat. Record, vol. 2, pp. 109-110. 1912 The influence of age, sex, weight and relationship upon the number of medullated nerve fibers and on the size of the largest fibers in the ventral root of'the second cervical nerve of the albino rat. J. Comp. Neur., vol. 22, pp. 131-157. REFERENCES TO THE LITERATURE 227

DuPoy, W. A. anp Brewster, E. T. 1910 Our duel with the rat. MeClure’s Mag., vol. 35, pp. 69-79. .

Duruam, Ftorence M. 1904 On the presence of tyrosinases in the skins of some pigmented vertebrates. Proc. Roy. Soc., vol. 74, pp. 310-313.

Douvat,C.W. 1910 The cultivation of the leprosy bacillus and the experimental preduction of leprosy in the Japanese dancing mouse. J. Exper. M., vol. 12, pp. 649-665.

1911 Notes on the biology of B. leprae. N.Orl. M. and S. J. , vol. 63, pp. 549-559.

Duvat, C. W. anp Gurp, F. B. 1911 Experimental immunity with reference to the bacillus of leprosy. Part 1. A study of the factors determining infection in animals. J. Exper. Med., vol. 14, pp. 181-195.

1911 a Studies on the biology of and immunity against the bacillus of leprosy: with a consideration of the possibility of specific treatment and prophylaxis. Arch. Int. Med., vol. 7, pp. 230-245.

Dovat, C. W. anpD WELLMAN, CREIGHTON 1912 A new and efficient method of cultivating bacillus leprae from the tissues; with observations on the different strains of acid-fast bacilli found in leprous lesions. J. Am. M. Ass., vol. 58, p. 1427.

Dovat, C. W. anp Harris, W.H. 1913 Further studies upon the leprosy bacil- lus: its cultivation and differentiation from other acid-fast species. J. Med. Research, vol. 26 (n.s. 21), pp. 165-198.

EBNER, V. von 1873 Die acinésen Driisen der Zunge und ihre Beziehungen zu den Geschmacksorganen. Leuschner und Lubensky, Graz., 66 pp., 2 pl. 1888 ZurSpermatogenese bei denSaugethieren. Archivf.mikr. Anat., vol. 31, pp. 236-292. Tafel XV, XVI, XVII (Rat).

EDELMANN, RicHarp 1889 Vergleichend anatomische und physiologische Untersuchungen iiber eine besondere Region der Magenschleimhaut (Cardiadriisen-region) bei den S&ugethieren. Deutsche Ztschr. f. Thiermed., vol. 15, pp. 165-214.

Epixcton, A 1901 Rattenpest. Centralbl. f. Bacter., vol. 29, p. 889.

Epwarps, A. Minne 1871 Melanismin Mus decumanus. Ann. Soc. Nat. Hist., vol. 15, art. 7.

1872 Note sur la variété mélanienne du surmulot (Mus decumanus). Ann. des. Se. Nat. Zool., 5th ser., vol. 15.

Eimer, G.H.Tx. 1869 Die Wege des Fettes in der Darmschleimhaut bei seiner Resorption. Arch. f. pathol. Anat., vol. 48, pp. 119-177, pl. 4 and 5.

EIsELSBERG, von 1890 Ueber einen Fall von erfolgreicher Transplantation eines Fibrosarkoms bei Ratten. Wiener klin. Wochenschr., no. 48.

ELLENBERGER, W. 1906 Zum Mechanismus der Magenverdauung. Arch. f. d. ges. Physiol., vol. 114, pp. 93-107. Critique of A. Scheunert, ibid., p. 64.

ELLENBERGER, WILHELM AND GUENTHER, G. 1908 Grundriss der vergleichen- den Histologie der Haussiugetiere. Berl. Parey., 3rd ed. rev. and enlarged.

Exvuiort, T. R. anp Barcuay-Smitn, E. 1904 Antiperistalsis and other muscu- lar activities of the colon. J. Physiol., vol. 31, pp. 272-304. Rat: pp. 283-287. Fig. 3. 228 “REFERENCES TO THE LITERATURE

Exuiortr, T. R. any Tuckxert, J. 1906 Cortex and medulla in the suprarenal glands. J. Physiol., vol. 34, pp. 332-369.

ENGELMANN, Tu. W. 1877 Vergleichende Untersuchungen zur Lehre von der Muskel- und Nervenelektrizitét. Arch. f. d. ges. Physiol., vol. 15, pp. 116-148.

Erpgfry, A. 1905 Untersuchungen tiber die Eigenschaften und die Entstehung der Lymphe. Fiinfte Mitt. Uber die Beziehungen zwischen Bau und Funktion des lymphatischen ApparatesdesDarmes. Taf.III. Ztschr. f. Biol., vol. 46, pp. 119-152. Tabulation of numbers of lymphocytes.

ErpuHeim, JAkos 1906 Zur Anatomie der Kiemenderivate bei Ratte, Kaninchen undIgel. Anat. Anz., vol. 29, pp. 609-623. Rats, pp. 610-616, Fig., p. 621. 1906 a Tetania parathyreopriva. Mitt. a. d. Grenzgeb. d. Med. u. Chir., vol. 16, pp. 632-744. 1907 Tetania parathyreopriva. Med. Press and Circ., vol. 83, pp. 91-93. 1911 Ueber den Kalkgehalt des wachsenden Knochens und des Callus nach der Epithelkérperchenexstirpation. Frankfurt. Ztschr. f. Path., vol. 7, pp. 175-230. : 1911a Zur Kenntnis der parathyreopriven Dentinverinderung. Frankfurt Ztschr. f. Path., vol. 7, pp. 238-248. Figs. Rats. No tables: 1911 b Ueber die Dentinverkalkung im Nagezahn bei der Epithel- kérperchentransplantation. Frankfurt. Ztschr. f. Path., vol. 7, pp. 295-342.

ERxLEBEN, Jo. Curist P. 1777 Systema regni animalis. Classis I. Mam- malia. Lipsiae. p. 381. Mus norvegicus: original description.

Fatcone, Cesare 1898 Contribution a Vhistogénése et 4 la structure des glandes salivaires. Monitore zool. ital., vol. 9, pp. 11-27. 1 plate.

Fatta, W. anp Noraeeraty, C. T. 1905 Fiitterungsversuche mit kiinstlicher Nahrung. Beitrige z. chem. Physiol. u. Pathol., vol. 7, pp. 313-322.

Fantuam, H. B. 1906 Piroplasma muris Fant., from the blood of the white rat, with remarks on the genus Piroplasma. Quart. J. micr. Se., vol. 50, pp. 493-516.

Ferrier, Davin 1886 The functions of the brain. 2nd ed. Smith, Elder & Co., London. Rat, pp. 261-262.

Ferry, Epna L. 1913 The rate of growth of the albino rat. Anat. Record, vol. 7, pp. 433-441.

Fisicer, J. 1913 Ueber eine durch Nematoden (Spiroptera sp.n.) hervorge- rufene papillomatése und carcinomatése Geschwulstbildung im Magen der Ratte. Berl. Klin. Wochenschr., L, pp. 289-298. 1913.a The nematode (Spiroptera sp. n.) and its capacity to develop papillomatous and carcinomatous tumors in the ventricle of the rat. Hosp.-Tid. Kobenh., 5 R., 6, 417; 449, 6 pl., 473. Discussion, pp. 441-448. 1913 b Untersuchung tiber eine Nematode (Spiroptera sp.n.) und deren Fahigkeit, papillomatése und carcinamatése Geschwulstbildungen im Magen der Ratte hervorzurufen. Zeitschr. f. Krebsforsch., Berl., vol. 13, pp. 217-280, 14 pl. REFERENCES TO THE LITERATURE 229

Fisicer, J. 1914 Further investigations on Spiroptera cancer in rats. Hosp.- Tid., Kobenh., 5 R., 7, 1049; 1081, 3 pl.

Fiscnet, Aurrep 1914 Zur normalen Anatomie und Physiologie der weib- lichen Geschlechtsorgane von Mus decumanus sowie iiber die experi- mentelle Erzeugung von Hydro- und Pyosalpinx. Arch. f. Entwekl- ngsmechn. d. Organ., vol. 39, pp. 578-616.

Fiscuer, F. von 1872 Calculation of possible progeny of one pair of rats in ten years. Zool. Garten, pp. 125-126. (48, 319, 698, 843, 030, 344, 720.)

Fiscner, J. von 1869 Die Sdugethiere des St. Petersburg Governments. Zool. Garten, vol. 10.

1874 Beobachtungen iiber Kreuzungen verschiedener Farbenspiel-

artan innerhalb einer Species. Zool. Garten, vol. 15.

FLEXNER, SIMON AND Noctcui, H. 1906 The effect of eosin upon tetanus toxin and upon tetanus in rats and guinea-pigs. J. Exp. Med., vol. 8, pp. 1-7.

FLExNER, Sr10n AnD JoBiine, J. W. 1907 Metaplasia and metastasis of a rat tumor. Proc. Soc. Exp. Biol. and Med., vol. 5, pp. 52-53.

Frower, W.H. 1872 Lectures on the comparative anatomy of the Mammalia. Med. Times and Gaz., vol. 1 and vol. 2. For rat, see vol. 2, p. 115.

Four, Orro anp Morais, J. Lucien 1913 The normal protein metabolism of the rat. J. Biol. Chem., vol. 14, pp. 509-515. Metabolism like that of man.

Forsss, E. B. ann Kerry, M. HEtEN 1914 A review of the literature of phos- phorous compounds in animal metabolism. Ohio Agr. Exp. Sta- tion, Technical series, bull. no. 5. See p. 332 and p. 506—valuable bibliography with abstracts.

Forturn, A. B. Droociterver 1914 Cortical cell-lamination of the hemi- spheres of some rodents. Arch. Neurol., Path. Lab. London County Asyl., vol. 6, pp. 221-354. Mus decumanus (Pall), p. 260, figures 18-22.

Foster, N. K. 1909 The rat as a factor in disease (Abstr.) Am. J. Pub. Hyg., vol. 19, pp. 58-61.

Fox, C. 1912 The rat guard used in the Philippine Islands. Pub. Health Rep. U.S. Mar. Hosp. Serv., Wash., xxvii, 907.

Foy, F. A. 1913 Destructionof rats inthe portof Rangoon. Brit.M. J., Lond., vol. 2, pp. 439-441.

Frank, Franz anv ScHITTENHEMM, A. 1912 Ueber die Brauchbarkeit tief _ abgebauter Eiweisspriparate fiir die Ernahrung. Therap. Monatsh., vol. 26, pp. 112-117.

FRANKENHAEUSER, CoNnsTANTIN 1879 Untersuchungen iiber den Bau der Tracheo-bronchialschleimhaut. Diss. von Dorpat, 120 pp., 1 plate. St. Petersburg.

Fraser, A. 1883 On the inversion of the blastodermic layers in the rat and mouse. Proc. Roy. Soc., no. 223.

Frépéric, J. 1907 Beitrige zur Frage des Albinismus. Ztschr. f. Morphol. u. Anthrop., vol. 10, no. 2.

FRENKEL, Moise 1892 Du tissu conjontif dans le lobule hépatique de certains mammiféres. Compt. rend. soc. de biol. Année 44 (ser. 9, v. 4), pp. 38-39. 230 REFERENCES TO THE LITERATURE

FREUND, Pauta 1892 Beitrige zur Entwicklungsgeschichte der Zahnanlagen bei Nagethieren. Arch. f. mikr. Anat., vol. 39, pp. 525-556. 1911 Uber experimentelle Erzeugung teratoider Tumoren bei der weissen Ratte. Inaug.—Diss. Munchen.

Fucus-WoLFRING, Sorui1e 1898 Ueber den feineren Bau der Driisen des Kehl- kopfes und der Luftréhre. Arch. f. mikr. Anat., vol. 52, pp. 735-762. Rat, pp. 755-756, 1 plate.

Fusari, R. anp Panasci, A. 1891 Les terminasions des nerfs dans la muqueuse et dans les glandes sereuses de la langue des mammiféres. Résumé “originel des auteurs. Arch. ital. de biol., vol. 14, pp. 240-246, pl. 1.

Fusart, Romeo 1894 Terminaisons nerveuses dans divers épithéliums. (Note lué 4 Académie des sciences naturelles et médicales de Ferrare dans la séance du 28 Mai 1893). Arch. ital. de biol., vol. 20, pp. 279-287. Observations mainly on the white rat.

Gauu-Vaterio, Bruno 1902 The part played by the fleas of rats and mice in the transmission of bubonic plague. Journ. trop. Med., vol. 5, pp. 33-36.

1908 Dangers et destruction des rats noirs (Mus rattus) et gris (Mus decumanus). Chronique Agric. Vaud Ann. 21, pp. 142-147.

Gamcesr, ArTHUR 1898 Article ‘‘Haemoglobin” in E. A. Schafer s Textbook of Physiology, vol. I, pp. 193-194. Small haemoglobin content and rapid ecrystalization in rat’s blood, p. 206. Oxyhaemoglobin in rat’s blood highly insoluble.

Garnier, Cuartes 1897 Les filaments basaux des cellules glandulaires. Note préliminaire. Bibliog. Anat., vol. 5, pp. 278-289, 13 fig.

Gavuruier, J. C. anp Raysaup, A. 1903 Sur le rédle des parasites du rat dans la transmission de la peste. C. R. Soc. de Biol., vol. 54, p. 1497.

Gay, F. P. 1909 A transmissible cancer of the rat considered from the stand- point of immunity. J. Med. Research, vol. 20, p. 175.

Gaytorp, H. R. 1906 Endemisches Vorkommen von Sarkomen in Ratten. Zeitschr. f. Krebsforschung, vol. 4, p. 679.

GEGENBAUR, CaRL 1892 Die epiglottis. Vergleichend anatomische Studie- fol. 69 pp., 2 plates and 15 cuts in text. In Festschr. Albert von Koelliker. W. Engelmann, Leipzig.

GEISENHEYMER, L. 1892 Zum Vorkommender Hausratte, Mus rattusL. Natur- wiss. Wochenschr., vol. 7, pp. 96-97.

GEMELLI, Evoarpo 1903 Nuove richerche sull’anatomia e sull’embriologia dell’ ipofisi. Boll. della soc. medico-chir. di Pavia. Anno 1903, pp. 177-222, 5 pl.

GeMELU, Epoarpo after 1904 = GemELut, (Fra) AGosTINO

GEMELLI, AcostiNno 1905 Nuovo contributo alla conoscenza della struttura dell’ipofisi dei mammiferi. Rivista di Fisicae Matematica, vol. 12, pp. 136-145; pp. 235-247; pp. 338-346; pp. 419-431. 1906 Contributo alla fisiologia dell’ipofisi. Arch. di fisiol., vol. 3, pp. 108-112. 1906 a Ulteriori osservazioni sulla struttura dell’ipofisi. Anat. Anz., vol. 28, pp. 613-628, 14 figures. REFERENCES TO THE LITERATURE 231

Gentes, L. 1903 Note sur la structure du lobe nerveux de l’hypophyse. Compt. rend. Soc. de Biol., vol. 55, pp. 1559-1561. Rat among other animals.

GrEorrroy SAint-Hinarre, EtreNNE 1812 Mus alexandrinus. Deser. Egypt. II, p. 738, 1812 (1829). Atlas, p. V, fig. 1, 1809.

Gesner, C. von 1551 Conradi Gesneri medici Tigurini Historiae Animalium Lib | de Quadrupedibus Viviparis. Tiduri Christ Froschoverum Anno 1551, p. 829. De majore domestico mure quem vulgo rattum vocant.

GevaeErts, Jacques 1901 Diéte sous phosphore. La Cellule, vol. 18, pp. 7-33.

Gicuio-Tos, E. 1900 Un parasite intranucléaire dans les reins du rat des égouts. Arch. ital. de Biol., vol. 34, p. 36.

Giutette 1872 Description et structure de la tunique musculaire de |’oe- sophage chez l’homme et chez les animaux. J. de |]’anat. et physiol., vol. 8, pp. 617-644.

GrraLpus CaMBRENSIS (1146?-1220) 1861-1891 Opera (8 vols.) Vol. 5, 1867, vol. 6, 1868, edited by James F. Dimmock, M.A. Published under the direction of the Master of the Rolls. Longmans, Green, London.

Gras, Eur 1904 Uber die Entwickelung und Morphologie der inneren Nase der Ratte. Anat. Hefte, vol. 25, pp. 275-341.

GmMeuin 1892 Zur Morphologie der Papilla vallata und foliata. Archiv f. mikr. Anat., vol. 40, pp. 1-28. .

Gopman, Joun D. 1826-1828 American natural history. 3 v.,8°. H.C. Carey and I. Lea, Phila. Pt. 1. Mastology.

Goetscu, Emit anp Cusnine, Harvey 1913 The pars anterior and its rela- tion to the reproductive glands. Proc. Soc. Exper. Biol. and Med., vol. 11, pp. 26-27.

Goupmann, E. E. 1909 Die dussere und innere Secretion des gesunden und kranken Organismus im Lichte der vitalen Farbung. Beitr. z. klin. Chir., vol. 64, p. 192.

1912 Die dussere und innere Sekretion des gesunden und kranken Organismus im Lichte der vitalen Farbung. Beitr. z. klin. Chir., vol. 78, pp. 1-108.

GoupsteIn, K. 1904 Zur vergleichenden Anatomie der Pyramidenbahn. Anat. Anz., vol. 24, p. 451.

Goto, Seiraro 1906 A laboratory guide of zodlogy (In Japanese). 2 vols. Kinkodo, Japan. See vol. 2, pp. 297-373—-white rat (Mus rattus, X Mus decumanus).

GotrscHavu, M. 1883 Structure und embryonale Entwickelung der Neben- nieren bei Saugethieren. Arch. f. Anat. u. Physiol., Anat. Abthlg., fig. 12.

Gourtay, C. A. 1907 Notes on the rats of Dacca, Eastern Bengal. Records of the Indian Museum, Calcutta, vol. 1, pp. 263-266. Relative num- bers of Mus rattus and Nesokia bengalensis. Measurements on both good.

GraHam, L. W. axnp Hutcuison, R. H. 1914 The influence of experimental trypanosomiasis upon the body temperature of white rats. Am. J. of Trop. Dis and Prev. Med., vol. 1, pp. 760-775. 232 REFERENCES TO THE LITERATURE

Greenman, M. J. 1913 Studies on the regeneration of the peroneal nerve of the albino rat: number and sectional areas of fibers: area relation of axis to sheath. J. Comp. Neur., vol. 23, pp. 479-513.

Grecersen, J. P. 1911 Untersuchungen titber den Phosphorstoffwechsel. Zeit. physiol. Chem., vol. 71, pp. 49-99.

Cramans; S. B. anp ia eee B. E. 1913 Fumigation of vessels for the

destruction of rats. Pub. Health Rep., Wash., vol. 28, pp. 1166-1274.

Grirzner, P. 1875 Neue Untersuchungen iiber a Bildung u. Ausscheidung

des Pepsins. Breslau.

1878 Ueber Bildung und Ausscheidung von Fermenten. Arch. f. d. ges. Physiol., vol. 16, pp. 105-128. 1894 Zur Physiologie der Darmbewegung. Deutsche med. Wehnschr., vol. 20, pp. 897-898. 1898 Ueber die Bewegung des Darminhaltes. Arch. f. d. ges. Physiol., vol. 71, pp. 492-522. 1905 Ein Beitrag zum Mechanismus der Magenverdauung. Arch. f. d. ges. Physiol., vol. 106, pp. 463-522. (13 text figures.)

Gupernatscn, J. F. 1915 Feeding experiments on rats. Anat. Record, vol. 9, pp. 78-80. In fullin Am. J. Physiol., vol. 36, pp. 370-379.

GuiryrssE, A. 1898 Sur quelques points d’anatomie des muscles des appareil respiratoire. J.de V’anat. et physiol., vol. 34, pp. 419-432. 5 figs. Rat p. 423.

GuutuIvER, GEorcE 1839 Observations on the muscular fibers of the oesophagus and heart in some of the Mammalia. Part 1. Proc. Zool. Soc., vol. 7, pp. 124-129. Mus decumanus, p. 126. 1842 Observations on the muscular fibers of the oesophagus and heart in some of the Mammalia. Part 2. Proc. Zool. Soc., vol. 10, pp. 63- 72. Mus decumanus, p. 70. 1875 Observations on the sizes and shapes of the red corpuscles of the

om blood of vertebrates, with drawings of them to a uniform scale, and extended and revised tables of measurements. Proc. Zool. Soc., London, pp. 474-494.

Haacxe, V. W. 1895 Ueber Wesen, Ursachen, und Vererbung von Albinismus, etc. Biol. Centralbl., vol. 15.

Teenoum A. L. 1911 The interrelation of genetic and non-genetic factors in development. Verh. d. naturf. Verein Brinn, vol. 49, pp. 1-18. 1914 Studies on variation and selection. Ztschr. f. indukt. Abstam- mungs u. Vererbungsl., vol. 11, pp. 145-1838.

Hatier, B. 1910 Zur Ontogenie der Grosshirnrinde der Sfiugetiere. Anat.

Anz., vol. 37, pp. 282-298. 4 figures. Rat, p. 285.

Hau.ipurton, W. D. 1888 On the haemoglobin crystals of rodents’ blood. Quart. J. Microscop. Science, vol. 28, pp. 181-199. Rat, pp. 192, 193, 194.

‘Hamitron, Atice 1901 The division of differentiated cells in the central nervous system of the white rat. J. Comp. Neur., vol. 11, pp. 297-320.

‘Hamy, E.T. 1906 Sur la variété négre du Mus decumanus observée au Muséum de Paris. Bull. du Mus. d’hist. nat., vol. 12, pp. 87-89. REFERENCES TO THE LITERATURE 233

HaNnseMANN, Davin 1895 Ueber die Poren der normalen Lungenalveolen. Sitz. d. Preuss. Akad. d. Wiss., pp. 999-1001 1 plate. Also Math. u. naturw. Mitt. d. k. Preuss. Akad. d. Wiss., vol. 9, pp. 451-454.

HANSEMANN, VON 1904 Ueber abnorme Rattenschidel. Arch. Anat. Physiol. physiol. Abt.

Haran, Ricnarp 1825 Fauna Americana. Being a description of the mam- miferous animals inhabiting North America—Philadelphia. p. 148— —M. Rattus—description.

Haruey, GEorGE 1857 Report on meeting of the Pathological Society, Novem-~- ber 28, 1857, giving report of Dr. Harley on “‘Rats from which the supra- renal capsules had been removed.”’ Med. Times and Gaz., N.S., vol. 15 (O.S., vol. 36), pp. 564-565.

1858 Living specimen of a rat from which both the suprarenal cap- sules and the spleen had been removed. Tr. Path. Soc. Lond., vol. 9, p. 401.

1858 a An experimental inquiry into the function of the suprarenal capsules, and their supposed connection with bronzed skin (in 2 parts). Brit. and For. M.-Chir. Rev., vol. 21, pp. 204-221; 498-510. -

1858 b Diseased suprarenal capsule, removal by operation from an apparently healthy animal. Tr. Path. Soc., Lond., vol. 9, pp. 401-402. (This volume is a report of the season of 1857-88.)

Hart, HE. B. anp McCottum, E. V. 1913 The influence of restricted rations on growth. Proc. Soc. Biol. Chemists, vol. 3, pp. 38-39.

Hartiey, Perctvan 1907 On the nature of the fat contained in the liver, kid- ney and heart. J. of Physiol., vol. 36, pp. 17-26.

Harz, W. 1883 Beitraige zur Histologie des Ovariums der Saugetiere. Arch. f. mikr. Anat., vol. 22, pp. 374-407.

Hatat1,S. 1901 The finer structure of the spinal ganglion cells in the white rat. J. Comp. Neur., vol. 11, pp. 1-24. 1901 a On the presence of the centrosome in certain nerve cells of the white rat. J. Comp. Neur., vol. 11, pp. 25-39. ; 1902 Number and size of the spinal ganglion cells and dorsal root fibers in the white rat at different ages. J. Comp. Neur., vol. 12, pp. 107-124. 1902 a Preliminary note on the presence of a new group of neurones in the dorsal roots of the spinal nerves of the white rat. Biol. Bull., vol. 3, pp. 140-142. 1902 b On the origin of neuroglia tissue from the mesoblast. J. Comp. Neur., vol. 12, pp. 291-296. 1903 The finer structure of the neurones in the nervous system of the white rat. Decennial Pub., Univ. of Chicago, vol. 10, pp. 3-14. 1903 a The effect of lecithin on the growth of the white rat. Am. J. Physiol., vol. 10, pp. 57-66. 1903 b On the increase in the number of medullated nerve fibers in the ventral roots of the spinal nerves of the growing white rat. J. Comp. Neur., vol. 13, pp. 177-183. 1903 c On the nature of the pericellular network of nerve cells. J. Comp. Neurol., vol. 13, pp. 139-147. 234

Harat, 8.

REFERENCES TO THE LITERATURE

1903 d The neurokeratin in the medullary sheaths of the peripheral nerves of mammals. J. Comp. Neurol., vol. 13, pp. 149-156. 1904 A note on the significance of the form and contents of the nucleus in the spinal ganglion cells of the foetal rat. J. Comp. Neur. and Psychol., vol. 14, pp. 27-48. 1904 The effect of partial starvation on the brain of the white rat. Am. J. Physiol., vol. 12, pp. 116-127.

_ 1905 The excretion of nitrogen by the white rat as affected by age and

body weight. Am. J. Physiol., vol. 14, pp. 120-132.

1907 On the zoélogical position of the albino rat. Biol. Bull., vol. 12, pp. 266-273.

1907 a Effect of partial starvation followed by a return to normal diet, on the growth of the body and central nervous system of albino rats. Am. J. Physiol., vol. 18, pp. 309-320.

1907 b A study of the diameters of the cells and nuclei in the second cervical spinal ganglion of the adult albino rat. J.Comp. Neur. and Psychol., vol. 17, pp. 469-491.

1907 c Studies on the variation and correlation of skull measurements in both sexes of mature albino rats (Mus norvegicus var. albus). Am. J. Anat., vol. 7, pp. 423-441.

1908 Preliminary note on the size and condition of the central nervous system in albino rats experimentally stunted. J. Comp. Neur. and Psychol., vol. 18, pp. 151-155.

1909 A comparison of the albino with the gray rats in respect to the weight of the brain and spinal cord. Proc. of Assoc. of Am. Anat. in Anat. Record, vol. 3, p. 245.

1909 a Note on the formulas used for calculating the weight of the brain in the albino rats. J. Comp. Neur. and Psychol., vol. 19, pp. 169-173.

1910 A mathematical treatment of some biological preblems. Biol. Bull., vol. 18, pp. 126-130.

1910a DeForest’s formula for ‘‘An unsymmetrical probability curve.”’ Anat. Record, vol. 4, pp. 281-290.

1911 Aninterpretation of growth curves from a dynamical standpoint. Anat. Record, vol. 5, pp. 373-382.

1911a The Mendelian ratio and blended inheritance. Am. Natural- ist, vol. 45, pp. 99-106.

1912 On the appearance of albino mutants in litters of the common Norway rat, Mus norvegicus. Science, n.s. vol. 35, no. 909, pp. 875- 876, May 31.

1913 On the weights of the abdominal and the thoracic viscera, the sex glands, ductless glands and the eyeballs of the albino rat (Mus norvegicus albinus) according to body weight. Am. J. Anat., vol. 15, pp. 87-119.

1913. a The effect of castration, spaying or semi-spaying on the weight of the central nervous system and of the hypophysis of the albino rat; also the effect of semi-spaying on the remaining ovary. J. Exper. Zool., vol. 15, pp. 297-314. REFERENCES TO THE LITERATURE 235

Harar, S. 1914 On the weight of the thymus gland of the albino rat (Mus nor- vegicus albinus) according to age. Am. J. Anat., vol. 16, pp. 251-257. 1914a On the weight of some of the ductless glands of the Norway and of the albino rat according to sex and variety. Anat. Record, vol. 8, pp. 511-523.

1915 The growth of organs in the albino rat as affected by gonadec- tomy. J. Exper. Zoél., vol. 18, pp. 1-67.

1915 a Growth of the body and organs in albino rats fed with a lipoid- free ration. Anat. Record, vol. 9, pp. 1-20.

Henn, VixTor 1911 Kulturpflanzen und Hausthiere in ihrem Uebergang aus Asien nach Griechenland und Italien sowie in das iibrige Europa. Achte auflage. Historisch-linguistische Skizzen, Berlin, Gebriider Borntraeger.

Heiser, Vicror G. 1910 Plague eradication in cities by sectional extermina- tion of rats and general rat proofing. Found in ‘‘The rat and its rela- tion to public health,’’ pp. 205-206. Treasury Dept. Pub. Health and Mar.-Hosp. Service of the U.S. Government Printing Office, Wash., D.C.

1913 The rats of our cities; what becomes of the carcasses of rats dying natural deaths? Pub. Health Rep., Wash., vol. 28, p. 1553.

HENNEBERG, B. 1899 Die erste Entwickelung der Mammarorgane bei der Ratte. Anat. Hefte, Wiesb., vol. 13, pp. 1-68.

1900 Verhalten der Umbilicalarterien bei den Embryonen von Ratte und Maus. Anat. Anz., vol. 17, pp. 321-324.

Herzoc, Maximinian 1905 Zur Frage der Pestverbreitung durch Insecten. Eine neue Species von Rattenfloh. Zeitschr. Hyg. Infektionskrankh., vol. 51, pp. 268-282.

HeEvsER, CnesterR H. 1914 The form of the stomach in mammalian embryos. Proc. Am. Assoc. of Anatomists in Anat. Record, vol. 8, no. 2.

Hewer, Evetyn E. 1914 The effect of thymus feeding on the activity of the reproductive organs in the rat. J. Physiol., vol. 47, pp. 479-490.

Hewett, G. M.A. 1904 Therat. Adam and Charles Black. London.

Heymann, Fevix 1904 Zur Einwirkung der Castration auf den Phosphorge- halt des weiblichen Organismus. Arch. Gynikol., vol. 73, pp. 366-405. Also Zeit. physiol. Chem., vol. 41, pp. 246-258.

Hitt, A.M. 1913 The effects of high external temperatures on the metabolism of rats. J. Physiol., vol. 46, pp. xxxi-xxxii.

Hitz, LeEonarp anp Macteop, J. J. R. 1903 The influence of compressed air on the respiratory exchange. J. Physiol., vol. 29, pp. 492-510.

Hospy, Wittram C. 1910 The rat in relation to shipping. Found in ‘‘The rat and its relation to the public health,’ pp. 207-213. Treasury Dept. Pub. Health and Mar.-Hospt. Service of the U.S. Government Print- ing Office, Wash., D. C.

H6ser, RupotF 1911 Physikalische Chemie der Zelle und der Gewebe. Wil- helm Engelmann. Leipzig. 3rd Ed., p. 254. Analysen der Plasma- hautstruktur bei den Blutkérperchen.

Houtsaum, Jos. 1912 Beitrige zur Kenntnis der Epithelkérperchenfunktionen. Beitr. z. path. Anat. u. z. allg. Path., vol. 53, pp. 91-104. 236 ‘REFERENCES TO THE LITERATURE

Houmeirr, F. 1901 Ueber Aenderungen der Fermentmengen im Mageninhalt. Inaug.-Diss. Tiibingen.

Hoitimann, Harry T. 1912 The cultivation of an acid-fast bacillus from a rat suffering with rat leprosy (a preliminary report) Pub. health rep. U.S. Mar. Hosp. Serv., vol. 27, part 1, pp. 69-70.

Home, Str Everep 1807 Observations on the structure of the stomach of dif- ferent animals. Phil. Trans. Roy. Soc., part1, Plates V—-XITI, p. 150. The common rat.

Hoénicscumiep, Jon. 1873 Beitrige zur mikroskopischen Anatomie tiber die Geschmacksorgane der Siugethiere. Zeitschr. f. wissen. Zool., vol. 23, pp. 414-434.

Hopkins, F.G. 1912 Feeding experiments illustrating the importance of acces- sory factors in normal dietaries. J. Physiol., vol. 44, pp. 425-460.

Hopkins, F. G. anp Nevinun, ALLEN 1912 A note concerning the influence of diets upon growth. Biochem. J., vol. 7, pp. 97-99.

Horton, Jessis M. 1905 The anthracidal substance in the serum of white rats. J. of Infect. Dis., vol. 3, pp. 110-115.

Hossacx, W.C. 1906 Preliminary note on the rats of Calcutta. Journ. Proc. Asiat. Soc., Bengal, vol. 2, pp. 183-186. 1907 An account of the rats of Calcutta. Mem. Ind. Museum, vol. 1, no. 1. Pl. I-VIII. Elaborate tables of measurements—very com- plete. Several colored plates. 1907 a Aids to the identification of rats connected with plague in India. Allahabad, Pioneer Press, 10 pp. 1907 b The original home of Mus decumanus. Records of the Indian Museum, Calcutta, vol. 1, pp. 275-276. Discussion of wild coloration.

Horer, H. 1890 Ueber den Nachweis des Mucins in Geweben mittelst der Farbemethode. Arch. f. mikr. Anat., vol. 36, pp. 310-374. Rat in- cluded among mammals examined.

Huszert, Heren B. 1914 Time versus distance in learning. J. Animal Be- havior, vol. 4, pp. 60-69. 1915 Elimination of errors in the maze. J. Animal Behavior, vol. 5, pp. 66-72.

Huser, G. Carn 19158 The development of the albino rat from the end of the first to the tenth day after insemination. Anat. Record, vol. 9, pp. 84-88. 1915a The development of the albino rat (Mus norvegicus albinus). Part 1. From the pronuclear stage to the stage of mesoderm anlage; end of the first to the end of the ninth day. J. of Morphology, vol. 26, pp. 247-358. 1915 b The development of the albino rat (Mus norvegicus albinus). Part IJ. Abnormal ova. End of the first to the end of the ninth day. J. of Morphology, vol. 26, pp. 359-386.

Hunt, Rew, anp Semeur, A. 1909 Studies on thyroid. I. The relation of iodine to the physiological activity of thyroid preparations. Bull. no. 47 Hyg. Lab. U. S. Pub. Health and Mar. Hosp. Serv., Wash. REFERENCES TO THE LITERATURE 237

Hunt, Ret 1910 The effects of a restricted diet and of various diets upon the resistance of animals to certain poisons. Bull. no. 69, Hyg. Lab. U. S. Pub. Health and Mar. Hosp. Serv., Wash., pp. 3-93.

Hunter, A., Givens, M. H. anp Gurion, C. M. 1914 Studies in the com- parative biochemistry of purine metabolism. I. The excretion of purine catabolites in the urine of marsupials, rodents and carnivora. J. Biol. Chem., vol. 18, p. 387.

Hunter, Waiter §. 1912 A note on the behavior of the white rat. J. Animal Behavior, vol. 2, pp. 137-141.

1913 The delayed reaction in animals and children. Behavior Mono- graphs, vol. 2, no. 1, serial number 6, pp. 1-86.

1914 The auditory sensitivity of the white rat. J. Animal Behavior, vol. 4, pp. 215-222.

Houruter, K. 1912 Vergleichende Untersuchungen itiber den Bacillus paraty- phosus B, den Bacillus enteritidis Gartner und die Rattenbacillen: Ratinbacillus, Bacillus ratti Danysz, Bacillus ratti Dunbar und Bacil- lus ratti Issatschenko. Centralbl. f. Bakteriol., 1 Abt., Jena, vol. 63, pp. 341-372.

Hyrt., JoserH 1845 Vergleichend-anatomische Untersuchungen iiber das innere GehGrorgan des Menschen und der Saugethiere. Pp. 1-139, 9 plates. Friedrich Ehrlich. Prag. Diameters of the several semi-circular eanals with their greatest distance from the vestibule for M. decu- manus.

Inpia Piacue Commission 1908 Etiology and epidemiology of plague, p. 9. Calcutta.

Isevin, Hans 1908 Wachstumshemmung infolge von Parathyreoidektomie bei Ratten: ein Beitrag zur Kenntnis der Epithelkorperchen-Funktion bei jungen Ratten. Deutsche Ztschr. f. Chir., vol. 93, pp. 494-500.

wIsutz,A.pE, 1865 Del’existence d’une race négre chez le Rat ou de l’identite spécifique du Mus rattus et du Mus alexandrinus. Ann. d. sc. nat. Zool., 5th series, vol. 4, pp. 173-222.

Jackson, C. M. anp Lowrey, L.G. 1912 On the relative growth of the compo- nent parts (head, trunk and extremities) and systems (skin, skeleton, musculature and viscera) of the albino rat. Anat. Record, vol. 6, pp. 449-474,

Jackson, C. M. 1912 On the recognition of sex through external characters in the young rat. Biol. Bull., vol. 23, pp. 171-174.

1913 Postnatal growth and variability of the body and of the various organs in the albino rat. Am. J. Anat., vol. 15, pp. 1-68.

1915 Effects of acute and chronic inanition upon the relative weights of the various organs and systems of adult albino rats. Anat. Record, vol. 9, pp. 90-91. Full paper: Am. J. Anatomy, vol. 18, pp. 75-116. 1915 a Changes in young albino rats held at constant body weight by underfeeding for various periods. Anat. Record, vol. 9, pp. 91-92. 1915 b Changes in the relative weights of the various parts, systems and organs of young albino rats held at constant body weight by under- feeding for various periods. J. Exper. Zodl., vol. 19, pp. 99-156. 238 ‘REFERENCES TO THE LITERATURE

Jacos, Lupwie 1906 Fiitterungsversuche mit einer aus den einfachen Nah- rungsstoffen zusammengesetzten Nahrung an Tauben und Ratten. Zeit. Biol., vol. 48 (N. F. 30) pp. 19-62.

JADASSOHN, J. 1913. Lepra. in (Kolle, Wilhelm und Wassermann, A. von, (eds.) Handbuch der pathogenen Mikroorganismen. vol. 5, part 2, pp. 791- 930). Page 821, Rattenleprabacillus.

Jensen, C. O. 1908 Uebertragbare Rattensarkome. Ztschr. f. Krebsfor- schung, vol. 7, p. 45.

JENSEN, O. S. 1887 Untersuchungen itiber die Samenkérper der Sdugethiere, Végel und Amphibien. Arch. f. mikr. Anat., vol. 30.

Joannovics, Gkore 1912 Ueber das Verhalten transplantierter Karzinome in kiinstlich anémischen Maéusen. Wiener Klin. Wochenschr., vol. 25, pp. 37-39.

Jos, THESLE T. 1915 The adult anatomy of the lymphatic system in the com- mon rat (Epimys norvegicus). Anat. Record, vol. 9, pp. 447-458.

Jouuy, J. er Stin1, J. 1905 Masse totale du sang chez le rat blanc. Compt. rend. Soc. de biol., Paris, vol. 58, pp. 835-837.

JoLyYeT ET CHaker 1875 De l’acte de ronger étudie chez les rats. C. R. et Mem. Soc. Biol., Paris, Ann. 1875, pp. 73-74. Lateral motion of in- ferior incisors.

Juncano 1909 Surla flore anaérobiedurat. Comp. rend. Soc. de biol., vol. 66, p. 112.

Jiraens, G. 1903 Beitrag zur Biologie der Rattentrypanosomen. Arch. f. Hyg., vol. 42, p. 265.

Kanruack, A. A. anD Harpy, W. B. 1894 The morphology and distribution of the wandering cells of mammalia. J. Physiol., vol. 17, pp. 81-119.

KartzenstEIn, J. 1903 Ueber die elastischen Fasern im Kehlkopfe mit beson- derer Beriicksichtigung der funktionellen Struktur und der Function der wahren und falschen Stimmlippe. Arch. f. Laryngol. u. Rhinol., vol. 13, pp. 329-352, pl. XVIII-XIX.

KELLER, Orro 1909 Die Antike Tierwelt. I. Sdugetiere. pp. 203-205. En- gelmann, Leipzig.

Kewier-Zscuoxrxe, J. 1892 Mus rattus noch in der Schweiz. Zool. Garten, 33 Jhg. no. 2, p. 60.

Kerr, Joun W. 1910 The rat in relation to international sanitation. Found in ‘The rat and its relation to the public health,” pp. 227-254. Treas- ury Dept. Pub. Health and Mar.-Hospt. Service of the U.S. Govern- ment Printing Office, Wash., D.C.

Kine, HetenD. 1910 The effects of various fixatives on the brain of the albino rat, with an account of a method of preparing this material for a study of the cells in the cortex. Anat. Record, vol. 4, pp. 214-244.

1911 The effects of pneumonia and of post-mortem changes on the per- centage of water in the brain of the albino rat. J. Comp. Neur., vol. 21, pp. 147-154. 191la The effects of semi-spaying and of semi-castration on the sex ratio of the albino rat (Mus norvegicus albinus). J. Exper. Zoél., vol. 10, pp. 381-392. REFERENCES TO THE LITERATURE 239

Kine, Heten D. 1911 b The sex ratio in hybrid rats. Biol. Bull., vol. 21, pp. 104-112.

1918 Some anomalies in the gestation of the albino rat (Mus nor- vegicus albinus). Biol. Bull., vol. 24, pp. 377-391.

}. 1913 a The effects of formaldehyde on the brain of the albino rat. J. Comp. Neur., vol. 23, pp. 283-314. 1915 On the weight of the albino rat at birth and the factors that in- fluence it. Anatomical Record, vol. 9, pp. 213-231.

Kine, Heren D. anv Stotrsensure, J. M. 1915 On the normal sex ratio and the size of the litter in the albino rat (Mus norvegicus albinus). Ana- tomical Record, vol. 9, pp. 403-420.

Kring, Jess1zL. 1910 The cortico-spinal tract of the rat. Anat. Rec., vol. 4, pp. 245-252.

Kirxaam, Witt1aM B. 1910 Ovulation in mammals, with special reference to the mouse and rat. Biol. Bull., vol. 18, pp. 245-251.

Kirxgam, WILLIAM B. anp Burr, H.S. 1913 The breeding habits, maturation of eggs and ovulation of the albino rat. Am. J. Anat., vol. 15, pp. 291- 317. Six excellent plates illustrating the egg in various phases.

Kurss, E. 1891 Zur vergleichenden Anatomie der Placenta. Archiv. f. mikr. Anat., vol. 37, pp. 335-356.

Kein, Epwarp unp Verson, E. 1871 Der Darmkanal. In Stricker’s Hand- buch der Lehre von den Geweben des Menschen und der Tiere. See ““Magen,’’ p. 395. .

Kuzin,E. 1875 Theanatomy of the lymphatic system. II. Thelung. Smith, Elder & Co., London, 88 pages, 6 plates. Observations mainly on guinea pig. Rat among other animals used.

Kuiunzincer, C.B. 1908 Ueber unsere Ratten und Mause, deren Schaden und Bekimpfung. Jahresh. Ver. vaterl. Naturk. Wirttemberg Jahrg., 64 p. xxxi-xxxviii.

Knapp, Pau. 1908 Experimenteller Beitrag zur Ernihrung von Ratten mit kiinstlicher Nahrung und zum Zusammenhang von Ernahrungs- stérungen mit Erkrankungen der Conjunctiva. Zeit. exp. Path. u. Ther., vol. 5, pp. 147-169.

Kocu, Matainpe L. 1913 Contributions to the chemical differentiation of the central nervous system. I. A comparison of the brain of the albino rat at birth with that of the fetal pig. J. Biol. Chem., vol. 14, pp. 267-279.

Kocu, W. anp Mann, 8. A. 1909 A chemical study of the brain in healthy and diseased conditions, with especial reference to dementia praecox. Archives of Neurol. and Psychiatry (Mott), vol. 4, pp. 201-204.

Kocu, WALDEMAR AND Kocu, MatuinpE L. 1913 Contributions to the chemical differentiation of the central nervous system. II. A comparison of two methods of preserving nerve tissue for subsequent chemical exam- ination. J. Biol. Chem., vol. 14, pp. 281-282.

1913 a Contributions to the chemical differentiation of the central nervous system. III. The chemical differentiation of the brain of the albino rat during growth. J. Biol. Chem., vol. 15, pp. 423-448. 240 ‘REFERENCES TO THE LITERATURE

Korrert, Orro 1904 Nochmals der Rattenkénig. Natur u. Haus., vol. 12, pp. 118-119.

KoganeI, J. 1885 Untersuchungen itber den Bau der Iris des Menschen und der Wirbelthiere. Archiv.f.mikr. Anat., vol. 25, pp. 1-48. Rat, p. 16

KouuMEYER, O. 1906 Topographie des elastischen Gewebes in der Gaumen- schleimhaut der Wanderratte, Mus decumanus. Zeitschr. wiss. Zool., vol. 81, pp. 145-190.

Koxazy, JoseF 1871 Ueber die Lebensweise von Mus rattus, varietas, alba. Verhandl. Zool. Bot. Gesellsch. Wien, pp. 731-734. Unusually good account. >

Kormer, J. A. anp Yui, C. V. anp Tyau, E.S8. 1918 Concerning the activity and fixability of the complement in rat serum. J. Med. Research, vol. 28 (n.s. vol. 23), pp. 483-495.

Koster, Rup. 1901 Vergleichend anatomische Studien itiber den M. pro- nator teres der Séugetiere. Anat. Hefte, vol. 17, pp. 673-834. Mus. rattus, p. 714.

Konstansorr, 8. V. 1910 Organized extermination of rats in general and on the territory of the port of Feodossiyz in particular. Vestnik obsh. hig., sudeb. i prakt. med., St. Petersb., vol. 46, pp. 777-783.

Koroitkow, P. 1892 Die Nervenendigungen in den Speicheldriisen. Rev. d. sc, nat. de St. Petersbourg, Ann. 3, pp. 109-112 (Russian). In German in Anat. Anz., vol. 7, pp. 580-582, 1 fig., white rat.

Krause, WitnELM 1870 Die Nervenendigung in der Zunge des Menschen, Géttinger Nachr., pp. 423-426.

1876 Allgemeine und mikroskopische Anatomie. Handbuch der menschlichen Anatomie, Bd. 1. Hannover, 1876. (Vol. 1 of Krauss, Cart F,T. Handbuch der menschlichen Anatomie, 3 Aufl.).

ISREIDL, A. UND Neumann, A. 1908 Zur Frage der Labgerinnung im Sduglings- magen. Zentralbl. f. Physiol., vol. 22, pp. 133-136. (See p. 136).

Kunwarpr, J. C., Taytor, J. anp Orners 1915 Epidemiological observa- tions in Madras Presidency. VI. Rat and flea prevalence, p. 725. J. of Hyg., Plague Suppl. IV, 9th Report on Plague Investigations in India.

Kuprrer, C. W. von 1876 Ueber Sternzellen in der Leber. Arch. f. mikr. Anat., vol. 12, part 2, pp. 352-358. Results verified on rat. Lacarriqus, Maurice 1911 La lutte contre le rat. Paris, Jouve & Cie. 102

pp. 8°.

Lampert, R. A. 1910 A note on parabiosis between mice and rats. Proce. Soc. Exper. Biol. and Med., 38th meeting, April 20.

1911 The influence of mouse-rat parabiosis on the growth in rats of a transplantable mouse sarcoma. J. Exp. Med., vol. 13, pp. 257-262.

Lanpois, H. 1886 Uber Bleirohre von Ratten zernagt. 15 Jahresber. West- fal. Prov.-Ver., pp. 12-13.

LanE-Cuaypon, JANET E, 1909 Observations on the influence of heating upon the nutrient value of milk as an exclusive diet for young animals. J. Hyg., vol. 9, pp. 233-238.

Laneuey, J. N. 1879 On the structure of serous glands in rest and activity. Proc. Roy. Soc., London, vol. 29, pp. 377-382. REFERENCES TO THE LITERATURE 241

Lancer, J.N.anpSewat.,H. 1879 On the changes in pepsin-forming glands during secretion. J. Physiol., vol. 2, pp. 281-301; Proc. Roy. Soc., London, vol. 29, p. 383.

Laneuey, J.N. 1882 On the histology of the mammalian gastric glands, and the relation of pepsin to the granules of the chief cells. J. Physiol., vol. 3, pp. 269-291.

Lanetois, J. P. anp Lorr, A. 1902 la résistance des rats et des insectes a lacide carbonique et A l’acide sulfureux. Compt. rend. Soc. de biol., vol. 54, pp. 414-415.

Lantz, Davin E. 1907 Methods of destroying rats. U.S. Dept. of Agr. Farmers’ Bull.no.297.. Government Printing Office, Washington, D.C. 1909 The brown rat in the United States. U.S. Dept. of Agr., Biol. survey, Bull. no. 33, Washington, D.C., pp. 12-13.

1910 Natural history of the rat. Found in ‘The rat and its relation to the public health,’’ pp. 15-27. Treasury Dept. Pub. Health and Mar.-Hospt. Service of the U. S., Washington, D. C. Government Printing Office.

1910a Natural enemies of the rat. Found in ‘‘The rat and its rela- tion to the public health,’’ pp. 163-169. Treasury Dept. Pub. Health and Mar.-Hospt. Service of the U.S. Government Printing Office. Washington, D. C.

1910 b The rat as an economic factor. Found in ‘‘The rat and its relation to the public health,’’ pp. 215-226. Treasury Dept. Pub. Health and Mar.-Hospt. Service of the U. S. Government Printing Office, Washington, D.C.

Lapicque, Louis 1907 Différence sexuelle dans le poids de l’encéphale chez les animaux. Rat et moineau. C.R. Soc. Biol., Paris, vol. 63, pp. 746-748.

LapicquE, Lotvts anp Girarp, P. 1907 Sur le poids de l’encéphale chez les animaux domestiques. Societé de Biol., vol., 62, p. 1015.

LaricqvE, Lovis anp LEGENDRE, R. 1911 Sur les rats noirs du Jardin des Plantes. Bull. du Muséum d’histoire naturelle, no. 6, pp. 1-5.

Lasuuey, K.S. 1912 Visual discrimination of size and form in the albino rat. J. Animal Behavior, vol. 2, pp. 310-331.

Lauser, Hans. 1901 Beitrige zur Anatomie des vorderen Augenabschnittes der Wirbeltiere. Anat. Hefte, vol. 18, pp. 371-453. Mus rattus, p. 427.

LavERAN, A. AND Mesnit, F. 1900 Sur l’agglutination des trypanosomes du rat par diverssérums. C.R. Soc. de Biol., Nov. 10, p. 939.

1900 a De la longue conservation A la glaciére des trypanosomes du rat et de l’agglomération de ces parasites. C.R. Soc. de Biol., Oct. 6, p. 816.

1900 b Surle mode de multiplication du trypanosome du rat. C.R. Soc. de Bicl., Nov. 17, p. 976.

Lavrinovicu, M.O. 1910 Extermination of rats in St. Petersburg by cultures of Danich’s bacilli. Vestnik. Obsh. vet., St. Petersb., vol. 22, p. 885. (Russian.)

Lesorvur, A. 1912 Existence de lepra murium (lépre des rats) en Nouvelle Calédonie. Bull. Soc. path. exot., vol. 5, pp. 463-465. 242 REFERENCES TO THE LITERATURE

Ler, Freperic S. 1910 Thenature of fatigue. Popular Science Monthly, Feb- ruary, pp. 182~195. See fig. 4.

LEEUWENHOECK, ANT. 1693 On the testicles of a rat and the animalcules therein contained; with some observations of small animals found in oysters and in the sap of vines. Phil. Trans., vol. 17, pp. 593-594.

Lerroy, Sir Joun Henry 1882 The Historye of the Bermudaes or Summer Islands, 1609— By Capt. John Smith (?) Pub. of the Hakluyt Soc., London.

LeiscHner, H. 1907 Ueber Epithelkérperchen-Transpkantationen und deren praktische Bedeutung in der Chirurgie. Arch. f. klin. Chir., vol. 84, pp. 208-222.

Lerscuner, H. anp Kéuter, R. 1911 Ueber homioplastische Epithelkérper- chen und Schilddriisenverpflanzung. Arch. f. klin. Chir., vol. 94, pp- 169-185.

LennosséK, M.von 1889 Ueber die Pyramidenbahnen im Riickenmarke einiger Siugetiere. Anat. Anz., vol. 4, pp. 208-219.

1898 Untersuchungen tiber Spermatogenese. Arch. f. mikr. Anat., vol. 51, pp. 215-318.

Lreopoitp, Jerome S. anp Reuss, A. von 1908 Ueber die Beziehungen der Epithelkérperchen zum Kalkebestand des Organismus. Wien klin. Wehnschr., pp. 1243-1246.

Lerscu, B.M. 1871 Zur Geschichte der Rattophagie. Deutsche Klinik, Berl., vol. 23, p. 42.

Levin, Isaac 1908 The reactive power of the white rat to tissue implantation (Second communication.) Proc. Soc. Exper. Biol. and Med., vol. 5. pp. 41-43.

1910 Immunity to the growth of cancer induced in rats by treatment with mouse tissue. Proc. Soc. Exper. Biol. and Med., 38th meeting, April 20. ; 1910 a Resistance to the growth of cancer induced in rats by injec- tion of autolyzed rat tissue. Proc. Soc. Exper. Biol. and Med., Feb- ruary 16. 1911 The relation of the reactive stroma formation to the transplant- ability of the cancers of the white rat. J. Exp. Med., vol. 13, pp. 604- 615.

Lewin, C. 1912 Ueber Immunisierung mit Blutserum von spontan geheilten Tumorratten. Zeitschr. f. Krebsforsch., vol. 11, p. 334. ‘ 1912a Immunisierungs und Heilversuche mit Autolysaten bei Rat- tentumoren. Zeitschr.f. Krebsforsch., vol. 11, p. 317.

Lewis, Freperic T. 1915 The comparative embryology of the mammalian stomach. Proc. of Am. Assoc. of Anatomists in Anat. Record, vol. 9, pp. 102-103.

Lewis, W. Bevan 1881 On the comparative structure of the brain in rodents. Phil. Trans., 1882, pp. 699-749.

Leypia, F. 1850 Zur Anatomie der mannlichen Geschlechtsorgane und Anal- driisen der Siugetiere. Ztschr. f. wiss. Zool., vol. 2, pp. 1-57, Taf. I-IV. REFERENCES TO THE LITERATURE 243

Leynpig, F. 1854 Kleinere Mitteilungen zur tierischen Gewebelehre. Arch. f, Anat. u. Entweklngsgesch., pp. 296-348, pl. XI and XIII. Mus de- cumanus, pp. 341-345.

1857 Lehrbuch der Histologie des Menschen und der Tiere. Frank- furta.M. 551 pp. See p. 374.

Liese, K. TH. 1891 Zudem Vorkommen der Hausratte (Mus rattus). Zoolog. Garten, 31 Jhg., pp. 156-157.

LinpNER, Fr. 1891 Notiz iber das Vorkommen der Hausratte (Mus rattus). Zoolog. Garten 31 Jhg., pp. 155-156.

LinnaEvs, C. 1746 Fauna Suecica. Stockholm.

1758 Systema naturae, etc. Tome 1, Editio 10. p. 61, M. rattus—5 references. 1766 Systema naturae, etc. Tome 1, Editio 12 (Mus rattus only).

LinseR, Paut 1900 Ueber den Bau und die Entwicklung des elastischen Ge- webes in der Lunge. Anat. Hefte, H. 42/43 (Bd. 13, H. 2/3) pp. 307-

335.

Liston, W.G. 1905 Plague, rats and fleas. J. Bombay Nat. Hist. Soe., vol. 16, p. 253. 1905 a Theratsof India. Indian M.Gaz., Calcutta, vol. 40, pp. 130- 132.

Lrvin1, Ferp. 1896 Intorno alla struttura della trachea. Monitore zool. ital. Anno 7. Mus decumanus, p. 103.

Lioyp,R.E. 1908 Remarkable cases of variation, I. Records Indian Museum, vol. 2, p. 29. 1909 The races of Indian rats. Records of Indian Museum, vol. 3, pp. 1-100. 1909 a The relation between fertility and normality in rats. Rec- ords Indian Museum, vol. 3, pp. 261-265. 1910 Further observations on the races of Indian rats. Records of the Indian Museum, Calcutta, vol. 5, pt. II, pp. 105-115. Peculiar large groups. 1911 The inheritance of fertility. Biometrika, vol. &, pp. 244-247. 1912 The growth of groups in the animal kingdom. London. 1 colored plate of three color varieties of Mus rattus.

Lores, Leo 1901 On transplantation of tumors. J. Med. Research, vol.6 (n.s. vol. 1—continuation of the Journ. of the Boston Soc. of Med. Sciences, pp. 28-38. 1902 Further investigations in transplantations of tumors. J. Med. Research, n.s. vol. 3, pp. 44-73. 1902a Ueber Transplantationen eines Sarcoms der Thyreoidea bei einer weissen Ratte. Arch. f. path. Anat., vol. 167, pp. 175-191. 1903 Mixed tumors of the thyroid gland. Am. J. Med. Sc., vol. 125, pp. 243-256, 1903a Uber Transplantation von Tumoren. Arch. f. path. Anat., vol. 172, pp. 345-368. 1904 Ueber das endemische Vorkommen des Krebses beim Tiere Centralbl. f. Bakteriol. u. Parasitenk., vol. 37, pp. 235-245. 244 REFERENCES TO THE LITERATURE

Loss, Leo. 1907 Observations on the inoculability of tumors and on the endemic occurrence of cancer. Internat. Clin., vol. 3, series 17, pp. 114-130. : 1913 Venom of heloderma. Carnegie Inst., Wash., D.C. Pub. no. 177, pp. 250.

LorwentHaL, N. 1894 Zur Kenntnis der Glandula infraorbitalis einiger Siu- getiere. Anat. Anz., vol. 10, pp. 123-130. 1894a Zur Kenntnis der Glandula submaxillaris einiger Sdugetiere. Anat. Anz., vol. 9, pp. 223-229. White rat, pp. 224-225. 1897 Note sur le structure fine des glandes de Cowper du rat blanc. Bibliogr. Anat., vol. 4, pp. 168-170. (1 text fig.) : 1900 Driisenstudien. II. Die Gl. infraorbitalis und eine besondere der Parotis anliegende Driise bei der weissen Ratte. Arch. f. mikr. Anat., vol. 56, p. 535. 1908 Driisenstudien. III. Die Unterkieferdriise des Igels und der weissen Ratte. Arch. mikr. Anat., vol. 71, pp. 588-666.

Locurm, J. J. van 1908 Some notes on the morphology of Spirochaeta dut- toni in the organs of rats. Ann. trop. Med. Parasit., vol. 1, pp. 521- 525.

Locuem, J. J. vAN AND SWELLENGREBEL, N. H. 1914 Kontinuierliche und metostatische Pest verbreitung. Ztschr.{. Hyg. u. Infectionskrankh., vol. 77, p. 460.

Lorr, I. M. 1903 Dég&ts causés parlesrats. Caducée Par., vol. 3, p. 89.

Léns, H. 1908 Musrattusin Celle. Jahresber. nat. Ges., Hannover, pp.41-42.

Lovén, C. 1868 Bidrag till kinnedomen om tungans smakpapiller. Med. Arch. Stockholm, vol. 3, 1866-1867. Trans. Beitriige zur Kenntnis vom Bau der Geschmackswirzchen der Zunge. Arch. f. mikr. Anat., vol. 4, pp. 96-110.

Lowrey, Lawson G. 1913 The growth of the dry substance in the albino rat. Anat. Record, vol. 7, pp. 143-168.

McCouium, E.V. 1909 Nucleinsynthesisin theanimal body. Am. J.Physiol., vol. 25, pp. 120-141. Also in Research Bull. no. 8, Univ. of Wis. Agr. Exper. Station, May, 1910.

McCouuium, E. V. anp Davis, MarcuErITe 1913 The influence of the compo- sition and amount of the mineral content of the ration on growth. J. Biol. Chem., vol. 14, no. 2. 1913.a The necessity of certain lipins in the diet during growth. J. Biol. Chem., vol. 15, pp. 167-175. 1914 Further observations on the physiological properties of the lipins of the egg yolk. Proc. Soc. Exper. Biol. and Med., vol. 11, p. 101.

McCoy, Gzorcre W. 1908 Distribution of the leprosy-like disease of rats in San Francisco, Cal. Pub. Health Rep. U.S. Mar. Hosp. Serv., Wash., vol. 23, p .1601. 1909 The keeping and handling of rats for laboratory purposes. N. Y. Med. J., vol. 89, p. 275. 1910 Plague infection in rats. Found in ‘‘The rat and its relation to the public health,’’ pp. 29-48. Treasury Dept. Pub. Health and Mar. Hospt. Service of the U.S. Government Printing Office, Wash., D.C. REFERENCES TO THE LITERATURE 245

McCoy, Grorcr W. 1910 a Organic diseases of the rat, including tumors. Found in “The rat and its relation to the public health,’’ pp. 59-68. Treasury Dept. Pub. Health and Mar. Hospt. Service of the U. S., Government Printing Office, Wash., D.C.

McMunn, Cuartes A. 1884 On myohaematin, an intrinsic muscle-pigment of vertebrates and invertebrates, on histohaematin and on the spectrum of the suprarenal bodies. Proc. of Physiol. Soc. in J. of Physiol., vol. 5, pp. XXiv—-xxvi.

MacCurpry, Hansrorp AnD CastLe, W. E. 1907 Selection and cross-breeding in relation to the inheritance of coat pigments and coat-patterns in rats and guinea-pigs. Carnegie Inst., Wash., Pub. no. 70.

MacGitiavry, T. H. 1875 Les dents incisives du Mus decumanus. Arch. Néerl. Sc. exact. et nat., Haarlem., vol. 10, 1 pl. Same as paper in Dutch, 1876.

1876 Desnitjanden von M.decumanus. Vers. en mededed. der Kon. Akad. v. Wetensch., II. R.9. Amsterdam. 1 pl.

Macteop,J.J.R. 1907 Observations on the excretion of carbon dioxide gas and the rectal temperature of rats kept in a warm atmosphere which was either very moist or very dry. Am. J. Physiol., vol. 18, pp. 1-13.

Masor, C. J. Forsyra Mus rattus remains at Molina di Anosa—near Pisa. Quoted at length by Baumgart, 1904, p. 8.

Ma tuory, F. B. anp Orpwary, Tuomas 1909 Lesions produced in the rat by a typhoid-like organism—Danysz virus. J. Am. Med. Assoc., vol. 52, p. 145.

Manpovut, H. 1909 Ratset pétrole. Arch. de parasitol., vol. 12, pp. 451-455.

Manovuvrisr, L. 1905 Un rapt de progéniture entre femelles de rat blanc. Bull. de I’Inst. gén. psychol., vol. 5, pp. 165-169.

Marcuovux, E. 1910 Les migrations du bacille de la lépre. Lepra, vol. 11, pp-

57-60. (II. Internationale wissenschaftliche Lepra-Konferenz abge- halten vom 16 bis 19 August, 1909, in Bergen. III. Band. Leipzig.) 1911 Culture d’un bacille acido-résistant provenant du mucus nasal des lépreux. (Note préliminaire.) Bull. Soc. path. exot., vol. 4, pp. 89-91. 1911 and 1912 Human leprosy and rat leprosy; a discussion of their respective problems. Tr. Soc. Trop. M. and Hyg., vol. 5, pp. 184-189. 1912 Réle des infections secondaires dans le développement de la lépre durat. Bull. Soc. path. exot., vol. 5, pp. 466-468.

Marcuovux, E.anp Soret, F. 1912 Lepra murium; infection et maladie ne sont pas synonymes. Compt. rend. Soc. de Biol., vol. 72, pp. 169-171. 1912 Lépre des rats; comparaison avec la lépre humaine. Compt. rend. Soc. de biol., vol. 72, pp. 214-217.

1912 b Lépre des rats; inoculation expérimentale. Compt. rend. Soc. de biol., vol. 72, pp. 269-272.

1912c¢ Recherches sur la lépre. 1° memoire: La lépre des rats (lepra murium). Ann. de l’Inst. Pasteur, vol. 26, pp. 675-700.

Marx, E. L. anp Lone, J. A. 1912 Studies on early stages of development in rats and mice. No.3. The living eggs of rats and mice with a de- scription of apparatus for obtaining and observing them. Univ. Cal. Pub. Zool., vol. 9, pp. 105-136. 246 REFERENCES TO THE LITERATURE

Marsna.t, F.H.A.anp Jotty, W.A. 1907 Results of removal and transplan- tation of ovaries. Tr. Roy. Soc. Edinb., vol. 45, pp. 589-597.

1908 On the results of heteroplastic ovarian transplantation as com- pared with those produced by transplantation in the same individual. Quart. J. Exper. Physiol., vol. 1, pp. 115-120.

Martin, Cuartes J. 1895 On the physiological action of the venom of the Australian black snake (Pseudechis porphysiacus). J. and Proc. Roy. Soc. of New South Wales, Sydney, vol. 29, pp. 146-277. Rat among test animals.

Martin, H. N. anp Moats, W. A. 1884 Handbook of vertebrate dissection.

’ Part III. How to dissect a rodent. Macmillan & Co., N. Y. Mus decumanus the rodent used.

Martini, E. 1901 Ueber Inhalationspest der Ratten. Ztschr. f. Hyg., vol. 38, p. 332.

Martinotti1, Giovanni 1889 Le reti nervose del fegato e della milza scoperte dal Prof.G. Rattone. Gior. d. r. Accad. di med. di Torino, Anno 52, vol. 37, pp. 15-30.

Matrues, M. anp MarquarpssEn, E. 1898 Uber die Reaktion des Diinndar- minhaltes. Verhaldl. des Congresses fiir innere Med. XVI. Wies- baden, pp. 358-365.

Mavrosannis 1903 L’action cataleptique de la morphine chez les rats. Con- tribution 4 la théorie toxique de la catalepsie. Compt. rend. Soc. de Biol., vol. 55, p. 1092.

Mayer, F. J.C. 1843 Ueber die ZungealsGeschmacksorgan. Nov. Act.Acad. C. L.-C. nat. cur., vol. 20, pp. 721-748. 4 pl. Mentions Mus rattus among other forms,

Mayer, S. 1894 Adenologische Mitteilungen. Anat. Anz., vol. 10, pp.177- 191. Rat, p. 179.

Mazzaretui, G. F. 1890 Sulla structura dello stomaco del Mus decumanus Pall, var. alba, e del Mus musculus L. Internat. Monatsschr. Anat. Phys., vol. 7, pp. 91-96, T. 8 (1) pl. VIII, figs. 1, 3 and 4. M. decuma- nus var. alba.

Merrx, ALEXANDER 1899 On the post-embryonal history of voluntary muscles inmammals. J. Anat. and Physiol., vol. 33, p. 601.

Meek, Water J. 1907 A study of the choroid plexus. J. Comp. Neur. and Psychol., vol. 17, no. 3, pp. 286-306.

Meuissinos, Konst. 1907 Die Entwicklung des Eies der Mause (Mus musculus var. alba u. Mus rattus albus) von den ersten Furchungs-Phinomenen bis zur Festsetzung der Allantois an der Ectoplacentarplatte. Arch. f, mikr. Anat., vol. 70, pp. 577-628.

Metiansy, Epwarp 1908 Creatin and creatinin. J. Physiol., vol. 36, pp. 447-487. Rat, p. 472.

MenpeEL, L. B. anp Danrets, AMy L. 1912 The behavior of fat-soluble dyes and stained fat in the animal organism. J. Biol. Chem., vol. 13, p. 71.

MenveE., L. B. 1918 The role of proteins in growth. Trans. XV Internat. Congress on Hyg. and Demography.

Meresukowsky, 8.8. anp Sarin, E. 1909 Ueber das Ratin II. Centralbl. f. Bakteriol., 1 Abt., Jena, vol. 51, pp. 6-10. REFERENCES TO THE LITERATURE 247:

Meresuxowsky, 8. S. 1912 Der Einfluss der Passagen durch graue Ratten (Mus decumanus) auf die Virulenz des Bacillus Danysz. Centralbl. f. Bakteriol., vol. 62, pp. 3-68. 1912a Die Wirkung der 186.-515. in 10 proz.-Hihnereiweissdekokt erwachsenen Generationen des Bacillus Danysz auf graue Ratten (Mus: decumanus). Centralbl.f. Bakteriol., 1 Abt., vol. 65, pp. 482-488.

Messer 1889 Das Vorkommen der Hausratte, Musrattus, in Bremen. Zoolog: Garten, 30 Jahrg., pp. 26-27.

METSCHNIKOFF AND Roux 1891 Sur la propriété bactéricide du sang de rat? Ann. de I’Inst. Pasteur, no. 8, p. 479. Also Centralbl. f. Bacteriol., vol. 10, p. 756.

Meves, F. 1898 Ueber das Verhalten der Centralkérper bei der Histogenese der Samenfiiden von Mensch und Ratte. Verhandl.d.anat. Gesellsch. 12 Vers., pp. 91-98. Diss. p. 98-100.

Meyer, Nicnotaus 1800 Prodromus Anatomiae Murium. IJnaug.-Diss. Jena, 40 pp., 2 pl. (50 figs.). Copper plates based on mouse—figures en- larged by 3. Gives teeth and ear bones. Dedicated to Goethe.

MeryYerHEIM, Martin 1898 Beitrage zur Kenntnis der Entwicklung der Schnei- dezihne bei Mus decumanus. Inaug.—Diss. Universitat Leipzig, Pés- chel & Trepte, Leipzig.

Mippenporrr, A.v. 1875 Reise in den dussersten Norden und Osten Sibiriens. Bd. 4 Uebersicht der Natur Nord und Ost-sibiriens. Teil2. St. Petérs- burg, Kommission d. Akademie.

Mittats, J.G. 1904 Mammals of Great Britain and Ireland. 4°. Pp. 203-232. Excellent colored plates for Mus norvegicus and Mus rattus.

1905 The true position of Musrattusanditsallies. 1pl.,2figs. The Zoologist, ser. 4, vol. 9, pp. 201-207. Figures of Mus rattus ater.

Miter, Gerrit S. Jr. 1910 The generic name of the house rat- Proc. Biol. Soc. Wash., vol. 23, pp. 57-60.

MILLER, Newron 1911 Reproduction in the brown rat (Mus norvegicus). =a Naturalist, vol. 45, pp. 623-635.

Mititer, W.S. 1893 The structure of the lung. J. Morphol., vol. 8, pp. 165- 188. 3 plates and other illustrations in text. Rat used with other mammals.

Mitts, WESLEY 1897 The functional development of the cerebral cortex in different groups of animals. Trans. R. Soc. Canada, vol. 2, Sect. IV, pp. 3-18.

Mitne-Epwarps See Epwarps, MILNE.

Minot, C.S. 1900 Ona hitherto unrecognized form of blood circulation with- out capillaries in the organs of vertebrata. Proc. of Boston Soc. of Nat. Hist., vol. 29, pp. 185-215. p. 207, Suprarenal capsule—rat.

MitcHEetL,O.W.H. 1912 Bacillus muris as the etiological agent of pneumoni- tis in white rats and its pathogenicity for laboratory animals. J. Infect. Dis., vol. 10, pp. 17-23.

MitcHe.t, P.C. 1911 Longevity. (Rat,5-G years.) Encyc. Britannica, 11th ed., vol 16, p. 976 (middle of first column).

Mossisovics, von Mossvin 1897 Das Tierleben der ésterr.-ungar. Tiefebenen, Wien, Halder, 1897. 248 REFERENCES TO THE LITERATURE

Montane, M. 1889 De la cytodierése dans le testicule du rat. Compt. rend. Soc. de biol., Paris, vol. 1, 9th series.

Morescu!, C. 1909 Beziehungen zwischen Ernihrung und Tumorwachstum. Zeitschr. f. Immunitaétsforschung, vol. 2, pp. 651-685.

Moraan, T. H. 1909 Breeding experiments with rats. Am. Naturalist, vol. 43, pp. 182-185.

Morcoutis, Sercivus 1911 Studies of inanition in its bearing upon the problem of growth. I. Arch. f. Ent. d. Organ., vol. 32, pp. 169-268. Morrurco, B. 1898 Uber die postembryonale entwickelung der quergestreif-

ten Muskeln von weissen ratten. Anat. Anz., vol. 15, pp. 200-206. 1899 Ueber die Verhaltnisse der Kernwucherung zum Lingenwachstum an den quergestreiften Muskelfasern der weissen Ratten. Anat. Anz., vol. 16, pp. 88-91.

1899 a Ueber die Regeneration des quergestreiften Muskelgewebes bei neugeborenen weissen Ratten. Anat. Anz., vol. 16, pp. 152-156. 1901 Ueber eine infectiése Form von Knochenerweichung bei weissen Ratten. Verhandl. d. Versamml. d. Gesellsch. f. Kinderh. deutsch. Naturf. u. Aerzte, vol. 72.

1902 Durch Infection hervorgerufene malacische und rachitische Skelet-verinderungen an jungen weissen Ratten. Centralbl. f. allg. Path. u. path. Anat., vol. 13, pp. 113-119.

Morke.t, G. Hersert 1872 Supplement to the anatomy of the mammalia, containing dissections of the sheep’s heart and brain, rat, sheep’s head and ox’seye. Longman & Co., London, pp. 153-269.

Moss, Samuet 1836 Notes on the habits of a domesticated white rat and a terrier dog (Flora) that lived in harmony together. London Mag. Nat. Hist., vol. 9.

Movret, J. -1895 Contribution a ]’étude des cellules glandulaires (pancréas). J. de l’anat. et physiol. Ann. 31, pp. 221-236, 1 pl. Mainly on frog and salamander. Rat among the mammals examined.

Mupce,G.P. 1908 Onsome features in the hereditary transmission of the self black and the Irish coat characters in rats. Proc. R. Soc. London, vol. 80 B, pp. 97-121.

1908 a On some features in the hereditary transmission of the albino character and the black piebald coat in rats. Proc. R. Soc. London, vol. 80 B, pp. 388-393.

1909 Note on the chemical nature of albinism. J. Physiol., vol. 38, p. Ixvii. c

1910 Article ‘‘Albino.’”? Encye. Brit., vol 1, p. 510 at the bottom, llthed. Recognizes 13 gametic types of the albino rat.

MuELLER, Cuaus 1902 Uber die Tyson’schen Driisen beim Menschen und eini- gen Sdiugetieren. Inaug.-Diss. Friedrichs-Universitiét,Halle-Witten- berg.

MUtier, Jonannes 1880 De glandularum secernentium structura penitiori earumque prima formatione in homine atque animalibus. Leipzig, 131 pp., 17 pl.

Muncu, Francis 1896 Die Topographie der Papillen der Zunge des Menschen und der Sdugethiere. Morphol. Arb., vol. 6, pp. 605-690, 2 pl., 53 text figs. Rat, pp. 615, 616. REFERENCES TO THE LITERATURE 249

Monson, T.M. 1910 An efficient rat killing device for use on board ship. U. S. Nav. M. Bull., Wash., vol. 4, p. 514.

Mourpuy, James B.‘ 1914 Heteroplastic tissue grafting effected through Roent- gen-ray lymphoid destruction. Journ. Am. Med. Assoc., vol. 62, p.

1459. Murray, ANDREW 1866 Geographical distribution of mammals. London, Day and Son. 4°.

NerxinG, JoserH 1909 Narkose und Lezithin. Minch. med. Wochensehr. 56, Il, pp. 1475-1478.

NeuMARK, E. 1913 Ueber die Bedeutung von Bakterienpraparaten als Rat- tenvertilgungsmittel. Gesundh.-Ingenieur, Minchen, vol. 36, pp.589

, -591.

Nicouas, A. 1890 Sur les cellules& grains du fond des glandes de Lieberkiithn. Bull. des séances de la Soc. des Sciences de Nancy, An. 2, pp. 45-49.

On.tmacHer, A. P. 1897 A modified fixing fluid for general histological and. neuro-histological purposes. J. Exper. Med., vol. 11.

Otps, W. H. 1910 The effects of thyroidectomy on the resistance of rats to morphine poisoning. Am. J. Physiol., vol. 26, pp. 354-360.

Orniits, W. 1911 Spontaneous nephritis in wild rats. Proc. Soc. Exper. Biol. and Med., 42nd meeting, February 15.

Orpway, THomas anp Morris, J. Lucien 1913 The protein metabolism in certain tumor-bearing rats. J. Med. Research, vol. 28, (N.S. vol. 23), pp. 301-308.

Orr, A. 1912 Pseudotubercolosi nei topi(M.decumanus) catturati nel porto di Venezia. Igiene mod., Genova, v. pp. 233-242.

OssorneE, T. B. anp MenpeEt, L. B. 1911 Feeding experiments with mixtures of isolated food substances. Am. J. Physiol., vol. 27, p. xxvi. 1911 a Feeding experiments with isolated food substances. Carnegie Inst. Wash., Pub. 156, parts I and II. 1911 b The réle of different proteins in nutrition and growth. Science vol. 34, pp. 722-732. 1912 The réle of proteins in growth. Proc. Am. Soc. Biol. Chem. J. Biol. Chem., vol. 11, p. xxii. 1912a Maintenance and growth. Proc. Am. Soc. Biol. Chem., J. Biol. Chem., vol. 11, p. xxxvii. 1912b Feeding experiments with fat-free food mixtures. Proc. Soc. Exper. Biol. and Med., vol. 9, p. 73. Also J. Biol. Chem., vol. 12, pp. 81-89. 1912 c Growth and maintenance on purely artificial diets. Proc. Soc. Exper. Biol. and Med., vol. 9, p. 72. 1912d Ein Stoffwechselkifig und Fitterungsvorrichtungen fir Rat- ten. Ztschr. biol. Techn. u. Methodik, vol. 2, pp. 313-318. 1912e Beobachtungen iiber Wachstum bei Fiitterungsversuchen mit isolierten Nahrungs-substanzen. Ztschr. f. physiol. Chem., vol. 80, pp. 307-370. 1912f The réle of gliadin in nutrition. ~J. Biol Chem., vol. 12, pp. 473-510. 1912 g Maintenance experiments with isolated proteins. J. Biol. Chem., vol. 13, pp. 233-276. 250 REFERENCES TO THE LITERATURE

OssorneE, T. B. 1913 The nutritive value of the proteins of maize. Science, N.S., vol. 37, pp. 185-191.

OssorneE, T. B. anp MenveE., L. B. 1913 Feeding experiments relating to the nutritive value of the proteins of maize. Proc. Am. Soc. Biol. Chem. in J. Biol. Chem., vol. 14, p. xxxi.

1913 a The relation of growth to the chemical constituents of the diet. J. Biol. Chem., vol. 15, pp. 311-326.

1913 b The influence of butter-fat on growth. J. Biol. Chem., vol. 16, pp. 423-487. Also in Proc. Soc. Exper. Biol. and Med., vol. 11, pp. 14-15.

1914 Some problems of growth. Am. J. Physiol. vol. 33, p. xxviii. 1914a Amino acids in nutrition and growth. J. Biol. Chem., vol. 17, p. 325. :

1914 b Influence of cod liver oil and some other fats on growth. J. Biol. Chem., vol. 17, p. 401.

1914¢ Nutritive properties of proteins of the maize kernel. J. Biol. Chem., vol. 18, pp. 1-16.

1914d Thesuppression of growth and the capacity to grow. J. Biol. Chem., vol. 18, pp. 95-106.

1914e The contribution of bacteria to the feces after feeding diets free from indigestible components. J. Biol. Chem., vol. 18, pp. 177- 182.

1915 The influence of beef-fat on growth. Given at Soc. for Exper. Biol. and Med., 64th Meeting, Jan. 20, 1915.

OupEMANS, J. TH. 1892 Die accessorischen Geschlechtsdriisen der Saiugetiere. Haarlem, 96 pp.16 pl. 4°.

OvaLLE, ALonso DE 1646 An historical relation of the Kingdom of Chili, 1646. Translated from Spanish into English, London, 1703, in A. & J. Church- ill’s ‘‘A collection of voyages and travels.’’ vol.3, London, 1704. p. 44 rat or pericote.

Owen, Ricnarp 1840-1845 Odontography; or a treatise on the comparative

anatomy of the teeth; their physiological relations, mode of develop- ment, and microscopic structure in the vertebrate animals. 2 v., xix, 74, 655 pp; atlas, 37 pp. 150 pl. roy. 8°. London, H. Bailliére. 1868 On the anatomy of vertebrates. London, 1866-1868. Vol. 3, Mammals, 1868. Musdecumanus, alimentary canal, p.421 and fig.317; No gall bladder, p. 485; Low type of pancreas, p. 493 and fig. 380 (Hyde Salter). ,

Pauias, Pretro 1778 Novae species Quadrupedum e Glirium mordine. Erlangen. 1831 Zoographica Rosso-Asiatica. Sistens omnium ani- malium in extenso imperio rossico et adjacentibus maribus observa- torium recensionem domicilia, mores et descriptiones, anatomen atque icones plurimorum. Petropoli, vol. 1, p. 164.

PanetTu, J. 1888 Ueber die secernierenden Zellen des Diinndarm-Epithels. Arch. f. mikr. Anat., vol. 31, pp. 1138-191., 3 pl. Mainly Triton and mouse. Rat: see figs. 30, 31, pl. X.

1888 a Ein Beitrag zur Kenntniss der Lieberktihn’schen Krypten. Centralbl. f. Physiol., vol. 1, pp. 255-256. REFERENCES TO THE LITERATURE 251

Pauz, C.B. 1906 On the influence of an excessive meat diet on the male repro- ductive organs. J. Physiol, vol. 34, pp. xiv—xv.

Pearson, Kart 1910 Darwinism, biometry and some recent Biology I. Bio- metrika, vol. 7, part 3, pp. 368-385.

1911 Remarks on Professor Lloyd’s note on inheritance of fertility. Biometrika, vol. 8, pp. 247-249.

Pemprey, M.S. 1895 The effect of variations in external temperature upon the output of carbonic acid and the temperature of young animals. J. Physiol., vol. 18. pp. 363-379.

Pemsrery, M.S. anp Spriccs, E.I. 1904 The influence of fasting and feeding upon the respiratory and nitrogenous exchange. J. Physiol., vol. 31, pp. 320-345.

Pennant, Tuos. 1781 History of quadrupeds. 2 vols. London. Vol. II. Rats. M.rattus introduced into South America in 1544—time of Vice- roy Blasco Minez. (Minez—a misprint for Niifiez.)

Perers, Albert 1890 Beitrag zur Kenntniss der Harder’schen Driise. Arch. f. mikr. Anat., vol. 36, pp. 192-203.

Perrie,G.F. 1910 Ratsand plague. Nature, vol. 85, pp. 15-16. Historical: Late association circa 1800 of rat with plague.

Pitts 1898 Article ‘Animal heat’’ in Schafer’s Text Book of Physiol., vol. 1, p. 790.

Prromer,H.G.axnp Tuomson, J.D. 1908 Further results of the experimental treatment of trypanosomiasis in rats; being a progress report of a Com- mittee of the Royal Society. Proc. R.Soc. London, vol.80B, pp. 1-12.

PLoscHKO, ADAM AND V. ARNSTEIN 1897 Die Nervenendigungen und Ganglien der Respirationsorgane. Anat. Anz., vol. 13, pp. 12-22.1 fig. Rat.

PopwisoTzky, VALERIAN 1878 Anatomische Untersuchungen tiber die Zungen- driisen des Menschen und der Saiugethiere (both M.decumanus and M. rattus). Inaug.-Diss. Dorpat., 144 pp., 2 pl.

Popwyssotzx1,W. 1882 Beitrige zur Kenntnis des feineren Baues der Bauch- speicheldriise. Arch. f. mikr. Anat., vol. 21, pp. 765-768. Rat exam-

ined. Results apply especially to the dog.

PousakorF, P. 1888 Ueber eine neue Art von fettbildenden Organen im lockern Bindegewebe. Arch. f. mikr. Anat., vol. 32, pp. 123-182.

Poti, HernricH 1898 Ueber das Schicksal der verpflanzten Nebenniere. Cen- tralbl. f. Physiol., yol. 12, pp. 321-326.

1899 Verdnderungen der Nebenniere bei Transplantation. Arch. f. mikr. Anat., vol. 54, pp. 440-481.

PontTIER anD GéRaRD, G. 1900 De l’entre-croisement des pyramides chez le tat. Leur passage dans le faisceau de Burdach (note préliminaire). Bibliogr. anat. Nancy, vol. 8, pp. 186-190, Ten figures—sections of the bulb.

Poppe, K. 1913 Pseudotuberkulose. in (Kotte, WILHELM AND WASSERMANN, A. v (eds). Handbuch der pathogenen Mikro-organismen, 2nd ed. enl. vol. 5, part 2, pp. 779-781.

Potrevin, H. 1910 La dératisation rapport sur I’état actuel des méthodes ap- plicables A la déstruction des rongeurs et de leurs parasites. Bull. de ]’Office internat. d’hyg. pub. Par., vol. 2, pp. 542-613. 252 “REFERENCES TO THE LITERATURE

Pounp,C.J. 1905 On trypanosoma and their presence in the blood of Brisbane

rats. Proc. R. Soc. Queensland, vol. 19, pp. 33-38.

Preyer, W. 1866 Quantitative Bestimmung des Farbstoffs im Blute durch das Spectrum. Annalen der Chemie u. Pharmacie, vol. 140, pp. 187- 200. Rat, p. 198. 1871 Die Blutkrystalle. Mauke’s Verlag, Jena. Rat: pp. 3, 13, 16, 38, 127.

Propromus, THEOpoRUS See KELLER, OrTo ’09.

PrzipraM, Hans 1907 Demonstrationen iiber Vererbung bei Sdugetieren. Zentralbl. f. Physiol., vol. 21, p. 257. 1910 Uebertragungen erworbener Higenschaften beiSaugetieren. Ver- suche mit Hitze-Ratten. Verh. Ges. deutsch. Nat. Aertze Vers. 81, Tl, 2, Halfte 1, pp. 179-180. 1911 Albinismus bei Inzucht. Verhandl. d.naturf. Ver. in Brinn, vol. 49 (Festband fir Mendel). 1912 Ueber das Vorkommen der Hausratte (Mus rattus L.) in Oester- reich. Wochenschr. Das ésterreichische Sanitétswesen, no. 16, pp. 297-299.

Quinquaup 1873 Sur les variations de l’hemoglobine dans la serie zodlogique. Compt. rend. de l’Acad. de Science, Paris, vol. 77, pp. 487-489.

RasinowitscH, L. anp Kempner, W. 1899 Beitrag zur Kenntnis der Blut- parasiten, speciell der Ratten-trypanosomen. Zeitschr. f. Hyg., vol. 30, p. 251.

RaMACHANDRIER, P.S. 1908 Rat destruction in India (Abstr.). Med. Times, Lond., vol. 36, p. 319.

Ram6n y Casau,S. See Casat, S. Ramén.

Ramstriém, M. 1905 Untersuchungen und Studien iber die Innervation des Peritoneum der vorderen Bauchwand. Anat. Hefte, vol. 29, pp. 351- 443. Mus decumanus, p. 372.

Ranson, 8.W. 1903 On the medullated fibers crossing the site of lesions in the brain of the white rat. J. Comp. Neur., vol. 13, pp. 185-207. 1904 Retrograde degeneration in the corpus callosum of the white rat. J. Comp. Neur. and Psychol., vol. 14, pp. 381-389. 1906 Retrograde degeneration in the spinal nerves. J. Comp. Neur. and Psychol., vol. 16, pp. 3-31. 1913 The fasciculus cerebrospinalis in the albino rat. Am. J. Anat., vol. 14, p. 411. 1914 A note on the degeneration of the fasciculus cerebro-spinalis in the albino rat. J. Comp. Neur., vol. 24, pp. 503-507. 19144 The tract of Lissauer and the substantia gelatinosa rolandi. Am. J. Anat., vol. 16, pp. 97-126.

Ranvier, L. A. 1883 De l’éxistence et de la distribution de l’éléidine dans la muquese bucco-oesophagienne des Mammiféres. C.R. de l’Acad. des Sc. Paris, vol. 97, pp. 1377-1379. 1884 Les membranes muqueuses et le systéme glandulaire. J. de microg., vol. 8, pp. 29-38; 77-86; 142-150; 194-200; 310-317 ; 419-422. 1885 Les membranes muqueuses et le systéme glandulaire. Le foie (Rat). J. de microg., vol. 9, pp. 6-14; 55~-63 ;1 03-109 ; 155-163; 194-201; 240-247 ; 287-295; 334-343; 389-396; 438-445; 480-482. REFERENCES TO THE LITERATURE 253

Ranvier, L. A. 1886 Les membranes muqueuses et le systéme glandulaire. Le foie. J.demicrog., vol. 10, pp. 5-10; 55-58; 160-166 ; 211-214; 355-362; 443-447. 1886.a Etude anatomique des glandes connues sous les noms de sous- maxillaire et sublinguale, chez, les mammiféres. Arch. de physiol. norm. et path.,ser.3, vol.8, pp. 223-256. M.decumanus, p. 224, fig.1. 1887 Le mécanisme de la sécrétion. M.decumanus, see p. 530. J. de microg., vol. 11, pp. 527-534. 1888 Le mécanisme de la sécrétion. J. de microg., vol.12, pp.3-11; 33 —4]; 65-73; 104-111; 165-173; 212-218; 243-250; 298-303; 329-335; 364- 368 ; 389-393. 1894 Des chyliferes du rat et del’absorption intestinale. Compt.rend. acad. d. sc. Paris, vol. 118, pp. 621-626. Rapp, W.v. 1839 Ueberdie Tonsillen. Arch. f. Anat., Physiol., u. wiss. Med., pp. 189-199. Pl. Vil and VIII. Absence of tonsils. RattTone, G. anp Monprno, C. 1888 Sulla circolazione del sangue nel fegato. Giorn. di sc. nat. ed econ., vol. 19, pp. 125-136., 2 pl. 1888 a Sur la circulation du sang dans le foie. Arch. ital. de biol., vol. 9, fase. 1, pp. 13-15. 1889 Sur la circulation du sang dans Ie foie. Arch. ital. de biol.,vol. 12, pp. 156-177, 2 pl. (Abrégé d’un travail duquel la 1° partie a été publiée 4 Palerme, la 2° dans ]’Arch. per le sc. med., Torino, vol. 13, no. 3.) Rat among animals used. 1889 a Sulla circolazione del sangue nel fegato, pt. 2. Arch. per le sc. med., vol. 13, pp. 45-72, 1 pl. RavTHeR, Max 1903 Ueber den Genitalapparat einiger Nager u. Insektivoren, | insbesondere die accessorischen Genitaldriisen derselben. Jenaische Ztschr. f. Naturw., vol. 38, pp. 377-472. 3 pl. . Reaney, M. F. anp Matcotmson, G. E. 1908 Rat destruction in Kamptree. Indian M. Gaz., Calcutta, vol. 43, p. 338. Reeaup,Cy. 1900 Notesurle tissu conjonctif du testicule chez lerat. Compt. rend Soc. de Biol., vol. 52, pp. 26-27. 1900 a Dégénérescence des cellules séminales chez les mammiféres en Pabsence de tout état pathologique. Compt. rend.Soc. deBiol., Paris, vol. 52, pp. 268-270. 1900 b Note sur certaines différenciations chromatique observées dans le noyau des spermatocytes du rat. Compt. rend. Soc. de biol., Paris, vol. 52, pp. 698-700. 1900 c¢ La sécrétion liquide de l’epithélium séminal; son processus his- tologique. Compt. rend. Soc. de Biol., vol. 52, pp. 912-914. 1900 d Les phases et les stades de l’onde spermatogénetique chez les mammiféres (rat). Classification rationnelle des figures de la sperma- togenése. Compt. rend. Soc. de biol., Paris, vol. 52, pp. 1039~1042. 1900 e Diréction hélicoidale du mouvement spermatogénétique dans les tubes séminiféres du rat. Compt. rend. Soc. de biol., Paris, vol. 52, pp. 1042-1044. 1900 f Les phénoménes sécrétoires du testicule et la nutrition de l’epi- thélium séminal. Compt. rend. Soc. de viol., Paris, vol. 52, pp. 1102- 1104. 254 REFERENCES TO THE LITERATURE

Regaup, Cu. 1901 Pluralité des karyokinéses des spermatogonies chez les mammiféres (rat). Compt. rend. Soc. de biol., Paris, vol. 53, pp. 56-58.

1901 a Division directe ou bourgeonnement du noyau des spermato- gonies, chez le rat. Compt. rend. Soc. de biol., Paris, vol. 53, pp. 74-76.

1901 b Variations de la chromatine nucléaire au cours de la spermato- genése. Compt. rend. Soc. de biol., Paris, vol. 58, pp. 224-226.

1901 ec Sur le mode de formation des chromosomes pendant les karyo- kinéses des spermatogonies, chez le rat. Compt. rend. Soc. de biol., Paris, vol. 53, pp. 406-407.

1901 d Note surlescellules glandulaires del’épididyme du rat. Compt. rend. Soc. de biol., Paris, vol. 53, pp. 616-618.

1902 Sur l’existence de cellules séminales dans le tissu conjonctif du testicule, et sur la signification de ce fait. Compt. rend. Soc. de biol., Paris, vol. 54, pp. 745-747.

1902 a Note histologique sur la sécrétion séminale du moineau do- mestique. Compt. rend. Soc. de biol., Paris, vol. 54, pp. 583-585. 1903 Quelques faits nouveaux relatifs aux phénoménes de sécrétion de l’épithélium séminal du rat. Compt. rend. de I’Ass. d. anat. Nancy, vol. 5, pp. 179-186. Bibliographie anatomique Suppl. 1903. 1904 Variations histochimiques du filament axile pendant le développe- ment des spermies, chez lerat. C.R. Ass. Anat. Sess. 6, p. 202.

Reun, James A.G. 1900 An older name for the Norway rat. Proc. Biol. Soc. Wash., vol. 13, p. 167. Mus decumanus (Pall) to Mus (Epimys) nor- vegicus (Erxleben). Merely a three line note.

Reicuarpt, Martin 1906 Ueber die Untersuchung des gesunden und kranken Gehirnes mittels der Wage. Arb.a.d. psychiat. Klin. zu Wurzburg, part 1. ,

Rercuert, E, T, anp Brown, A. P. 1909 The differentiation and specificity of corresponding proteins and other vital substances in relation to bio- logical classification and organic evolution: The crystallography of hemoglobins. Carnegie Inst. of Wash., Wash., D. C., pp. 229-237.

The blood of the rat.

~eswe REMLINGER, P. 1904 Rage expérimentale de la souris et durat. Compt. rend. Soc. de biol., vol. 56, p. 42.

Renavt, J. 1904 Les cellules fixes des tendons de la queue du jeune rat sont toutes des cellules connectives rhagiocrines. C.R. Soc. Biol. Paris, vol. 56, pp. 1067-1069.

Renson, Gro. 1882 De la spermatogenése chez les mammiféres. Arch. de biol., vol. 3, pp. 291-334.

Reports oN PLAGUE INVESTIGATIONS IN INDIA 1906 Issued by the Advisory Committee appointed by the Secretary of State for India, the Royal Society and the Lister Institute. J. Hyg., vol. 6, pp. 421-536; vol. 7, pp. 324-476; pp. 694-986.

REtTTERER, Ep. 1905 Des ménisques interarticulaires du genou du Cobaye et du Rat. C.R.Soce. Biol. Paris, vol. 58, pp. 44-47. REFERENCES TO THE LITERATURE 255

Rerzius, A. 1841 Ueber den Bau des Magens bei den in Schweden vorkommen- den Wihlmiusen (Lemmus Nilss., Hypudaeus Jllig.) (A. d.Schwed. von F. C. H. Creplin.) Taf. XIV. fig. 2-9. Archiv. fir Anat. u. Physiol., pp. 403-420. Comparisons with Mus decumanus.

Retzius, GusraFr 1893 Biologische Untersuchungen, Neue Folge V. 2. Stud- ien itber Ependym und Neuroglia, pp.9-15. Samson & Wallin. Stock- holm. :

1894 Biologische Untersuchungen. Neue Folge VI, 1. Die Neuro- glia der Neurohypophyse der Saugetiere, pp. 1-28. Samson & Wallin, Stockholm.

1909 Biologische Untersuchungen, 14. Die Spermien der Nagetiere. Taf. XL-XLVIII, Taf. XLIX, fig. 13-20, pp. 138-162. p. 160, Mus norvegicus Erxl. (Mus decumanus Pall) Neue Folge, XIV. Gustav Fischer, Jena.

Ricwarpson, Frorence 1909 A study of sensory control in the rat. Psych. Monographs, vol. 12, no. 1, pp. 1-124. .

Rincetine, H.G. 1912 Naar aanleiding van een opvallende sterfte onder de ratten aan boord van een stoomschips te Amsterdam. Tijdschr. v. sociale hyg. Zwolle, xiv, 29-53.

Ritzema-Bos, J. 1894 Untersuchungen tiber die Folgen der Zucht in engster Blutverwandtschaft. Biol. Centralbl., vol. 14, pp. 75-81. Rosertson, T.B. 1908 On the normal rate of growth of an individual and its

biochemical significance. Arch. f. Entweklngs-mechn. d. Organ., vol. c , 25, pp. 571-614.

1912 Studies in the blood relationship of animals as displayed in the

composition of the serum proteins. I. A comparison of the serum of

the horse, rabbit, rat and ox with respect to their content of various

proteins in the normal and in the fasting condition. J. Biol. Chem.,

vol. 18, p. 325.

Rosertson, T.B.anpBurnert,T.C. 1913 The influenceof lecithin and chol- esterin upon the growth of tumors. J. exper. Med., vol. 17, pp. 344- 352.

Ropinson, ARTHUR 1889 Observations on the early stages in the development of the lungs of rats and mice. J. of Anat. u Physiol., vol. 23, pp. 224- 241. 1892 Some points in the early development of Mus musculus and Mus decumanus; the relation of the yolk-sac to the decidua and the placenta. Rep. Brit. Assoc. Adv. Sc., 6lst Meeting, Cardiff, pp. 690- 691. 1892 a Observations upon the development of the spinal cord in Mus musculus and Mus decumanus. Rep. Brit. Assoc. Adv. Sc., 61st meet- ing, Cardiff, pp. 691-692. 1896 On the formation and structure of the optic nerve, and its rela- tion to the optic stalk. J. Anat. and Physiol., vol. 30, pp. 319-333. 1904 Lectures on the early stages in the development of mammalian ova and on the differentiation of the placenta in different groups of mam- mals. J. Anat. and Physiol., vol. 38, pp. 186-204. 256 * REFERENCES TO THE LITERATURE

Rosinson, G. H. 19138 The rats of Providence and their parasites. Am. J. Pub. Health, vol. 3, pp. 773-776.

RopweEtui, James 1858 The rat: Its history and destructive character. G. Routledge & Co., London.

Roupfé, Aticr AND Jones, WaLTER 1909 The purine ferments of the rat. J. Biol. Chem., vol. 7, p. 237.

Romer, F. 1896 Studien tiber das Integument der Séugethiere. I. Entwickel. d. Schuppen u. Haare am Schwanze u. an d. Fiissen v. Mus decumanus und einigen anderen Muriden. Jenaische Zeitschr. f. naturw., vol. 30, pp. 603-622. Two plates mainly from M. n. albinus.

Rosenav, M. J. 1901 An investigation of a pathogenic microbe (B. typhi

murium Danyz) applied to the destruction of rats. Bull. no. 5, Hyg. Lab., U.S. Mar. Hosp. Serv. Wash. 1910 The inefficiency of bacterial viruses in the extermination of rats. Found in ‘‘The rat and its relation to the public health,”’ pp. 179-204. Treasury Dept. Pub. Health and Mar. Hospt. Service of the U. 8. Government Printing Office, Wash., D.C.

RosEenretp, Cart 1899 Zur vergleichenden Anatomie des Musculus tibialis posticus. Anat. Hefte, vol. 11, pp. 361-388. Mus rattus, p. 364.

Rotu, A. H. 1905 The relation between the occurrence of white rami fibers and the spinal accessory nerve. J. Comp. Neur. and Psychol., vol. 15, pp. 482-493.

Rous, Pryton 1911 The rateof tumor growth in underfed hosts. Proce. of Soc. for Exper. Biol. and Med., vol. 8, pp. 128-130.

1914 The influence of diet on transplantable and spontaneous mouse tumors. J. Exp. Med., vol. 20, p. 483.

Row anp, SypNEyY 1911 Preliminary observations on the protective and cura- tive value for rats of the serum of a horse immunised with a toxic nu- cleo-protein extracted from the plague bacillus. J. of Hyg., Plague Suppl. 1, 6th Report of Plague Investigations in India, pp. 11-19.

Rupert, O. 1890 Ueber den Oesophagus des Menschen und der Hausthiere. Ztschr. f. wissensch. Mikr., vol. 7, pp. 224-225.

Rucker, Witt1am C. 1910 Rodent extermination. Found in ‘‘The rat and its relation to the public health,’’ pp. 153-162. Treasury Dept. Pub. Health and Mar. Hospt. Service of the U. S. Government Printing Office, Washington, D. C.

1912 How to poison rats. Pub. Health Rep., U.S. Mar. Hosp. Serv., Wash., vol. 27, p. 1267.

1918 Deratization of rat-proof buildings. Pub. Health Rep. Wash., vol. 28, p. 254.

Ryper, JA. 1888 A theory of the origin of placental types, and on certain ves- tigiary structures in the placentae of the mouse, rat and field mouse. Am. Naturalist, vol. 21, pp. 780-784.

Rywoscu, D. 1907 Vergleichende Untersuchungen iiber die Resistenz der Ery- throcyten einiger Siugethiere gegen hiimolytische Agentien. Arch. f. d. ges. Physiol., vol. 116, pp. 229-281. REFERENCES TO THE LITERATURE 257

Saprazts, J. AnD MuraTeT 1905 ¥Fréquence des Trypanosomes chex Mus rat- tus. Rareté chez Mus decumanus et chez Mus musculus. Résistance du decumanus et du rat blanc 4 l’infestation naturelle. C. R. Soc. Biol. Paris, vol. 59, pp. 441-443. ==

Satter, H.H. 1859 Pancreas. (Article in R. B. Todd’s “The Cyclopaedia of anatomy and physiology.’’) Vol. 5 (suppl. vol.), pp. 81-114, London. Several text figures for the rat.

Sanpri, O. 1908 Contribution A l’anatomie et 41a physiologie de l’hypophyse. Résumé de ]’auteur. Riv. di pat. nerv. e ment., vol. 13, pp. 518-550. Arch. ital. de Biol., vol. 51, pp. 337-348. Growth of rats fed with hy- pophysis.

Saviort1,Grovannr 1869 Untersuchungen iiber den feineren Bau des Pancreas. Arch. f. mikr. Anat., vol. 5, pp. 404-414, pl. XXIII and XXIV.

Scnirer, E. A. 1898 (see Gamcer, A.) Rat, haemoglobin of. Text-book of Physiol., vol. 1, pp. 193, 194 and 206.

1900 Rat, motor area of. Text-book of Physiol., vol. 2, p. 732.

1900 a Rat, muscle spindles of. Text-book of Physiol., vol. 2, p. 1008.

1908 Present condition of our knowledge regarding the functions of the suprarenal capsules. Brit. M. J., May 30 and June 6, pp. 1-10. . 1912 The effects upon growth and metabolism of the addition of small amounts of ovarian tissue, pituitary, and thyroid to thenormal dietary of white rats. Quart. J. Exper. Physiol., vol. 5, pp. 203-228.

Scuirr, E. 1891 Schwarzliche Varietat von Mus decumanus. Sitzgsber. Ges. Naturf. fr. Berlin, no. 4, p. 61.

Scuern, K. 1909 Ueber eine durch den Bazillus enteritidis Gartner hervorge- rufene Rattenseuche. Arb. a. d. k. Gsndhtsamte, Berl., vol. 30, pp- pp. 575-583.

1912 Ueber das Rattenvertilgungsmittel Virus sanitar A. Centralbl. f. Bakteriol., 1 Abt., vol. 62, pp. 468-471.

Scuirr, J. Morirz 1859 Untersuchungen iber die Zuckerbildung in der Leber und den Einfluss des Nervensystems auf die Erzeugung des Diabetes. Wirzburg. :

1884 Bericht iiber eine Versuchsreihe betreffend die Wirkungen der Exstirpation der Schilddriise. Arch. f. exper. Path. u. Pharmakol., vol. 18, pp. 25-34.

1884a Résumé d’une série d’expériences sur les effets de l’ablation des corps thyroides. Rev. méd. de la Suisse-Rom., vol. 4, pp. 65-75.

Scumipt, F. Ta. 1863 Das folliculére Driisengewebe der Schleimhaut der Mundhohle und des Schlundes bei dem Menschen und den Saugetieren: Ztschr. f. wiss. Zool., vol. 13, pp. 221-302, pl. XIV-XVI. a

Scuunze, F.E. 1871 Die Lungen. In Stricker’s Handbuch der Lehre von den Geweben des Menschen und der Tiere. Leipzig. Pp.464-477. P.465, diameter of alveolar passages, 0.1 mm. in rat.

Scntraann, W. 1908 Ueber eine durch Milben hervorgerufene Erkrankung

von Ratten. Centralbl. Bakt. Parasit. Abt 1, Orig., vol. 48, pp. 167— 2s 258 REFERENCES TO THE LITERATURE

ScawaLse,G. 1872 Beitrage zur Kenntniss der Driisen in den Darmwandungen in’s Besondere der Brunner’schen Driisen. Arch. f. mikr. Anat., vol. 8, pp. 92-140, pl. V.

Sevenxa, Emin 1883 Studien tiber Entwickelungsgeschichte der Thiere., I. Keimblitter und Primitivorgane der Maus. C. W. Kreidel, Wies- baden.

1884 Studien itiber Entwickelungsgeschichte der Thiere., 3. Die , Blitterumkehrung im Hider Nagethiere. C.W.Kreidel, Wiesbaden.

Severin, FriepricH 1885 Untersuchungen iiber das Mundepithel bei Saiuge- tieren mit Bezug auf Verhornung, Regeneration und Art der Nervenen- digung. Arch. f. mikr. Anat., vol. 26, pp. 81-88, 1 pl. Rat included

- among mammals examined.

Surersorn, C. Davizrs 1897 On the dates of the natural history portion of Sa- vigny’s “Description de ’Egypte.”’ Proc. Zoél. Soc. of London, 1897, pp. 285-288.

Suerrinaton, C.S. anp Copeman, S.M. 1893 Variations experimentally pro- duced in the specific gravity of the blood. J. Physiol., vol. 14, p. 54.

Suipuey, A.E. 1908 Rats and their animal parasites. J. Economic Biol., vol. 3, pp. 61-83.

Stmeson, F. 1913 Rat proofing; its practical application in the construction or repair of dwellings or other buildings. Pub. Health Rep., Wash., vol. 28, pp. 679-687, 10 pl.

Sirrenrietp, M.J. 1912 Influence of anemia and hyperemia on the growth of sarcoma in the white rat. Proc. Soc. Exper. Biol. and Med., vol. 9, pp. 56-57.

Sionaker, J. R. 1907 The normal activity of the white rat at different ages. J. Comp. Neur. and Psychol., vol. 17, pp. 342-359.

1912 Thenormal activity of the albino rat from birth to natural death, its rate of growth and the duration of life. J. Animal Behavior, vol. 2, pp. 20-42. !

1912a The effect of a strictly vegetable diet on the spontaneous ac- tivity, the rate of growth, and the longevity of the albino rat. Leland Stanford Jr. Univ. Pub., Univ. Series.

Suatt, W.S. 1899 Notes on the psychic development of the young white rat. Am. J. Psychol., vol. 11, pp. 80-100.

1900 An experimental study of the mental processes of the rat. Am. J. Psychol., vol. 11, pp. 133-164. 1901 Experimental study of the mental processes of the rat, IJ. Am. J. Psychol., vol. 12, pp. 206-239.

Sozorra, J. anp Burcxnarp, G. 1910 Reifung und Befruchtung des Hies der weissen Ratte. Anat. Hefte, I Abt., 127 heft (42 band, heft 2), pp. 483-492.

Soxrezr, B. 1889 Siugethier-Mitosen im histologischen Kursus. Archiv f. mikr. Anat., vol. 33, pp. 517-518.

Sounif, A.H. 1903 Recherches sur le développement des capsules surrénales chez les vertébrés supérieurs. J. de l’Anat. et Physiol., vol. 39, pp. 197-293 ; 390-525 ; 492-533; 634-664. REFERENCES TO THE LITERATURE 259

Sprtzxa,E.C. 1886 Thecomparative anatomy of the pyramid tract. J.Comp. M. and &., vol. 7, p. 46.

Sraur,Hermann 1903 Ueber die Ausdehnungder Papilla foliata und die Frage einer einseitigen ‘‘kompensatorischen Hypertrophie’’ im Bereiche des Geschmacksorgans. Arch. f. Entwcklngsmechn. d. Organ., vol. 16, pp. 179-199.

STEFFENHAGEN, K. 1910 Untersuchungen iiber das Rattenvertilgungsmittel Liverpoolvirus. Arb.a.d.k. Gsndhtsamte Berl., vol. 36, pp. 198-220.

Sremvacu, E. 1894 Untersuchungen zur vergleichenden Physiologie der mann- lichen Geschlechtsorgane, insbesondere der accessorischen Gesch- lechtsdriisen. Arch. f.d. ges. Physiol., vol. 56, pp. 304-338.

1910 Geschlechsttrieb und echt sekundare Geschlechtsmerkmale als Folge der innersekretorischen Funktion der Keimdrisen.

I. Priexistente und echt sekundare Geschlechtsmerkmale.

II. Uber die Entstehung des Umklammerungsreflexes bei Froschen. III. Entwicklung der vollen Mannlichkeit in funktioneller und soma- tischer Beziehung bei Saugern als Sonderwirkung des inneren Hoden- sekretes. Zentralbl. f. Physiol., vol. 24, pp. 551-566.

1911 Umstimmung des Geschlechtscharakter bei Siugetieren durch Austausch der Pubertatsdriisen. Zentralbl. f. Physiol., vol. 25, pp. 723-725.

1912 Willkirliche Umwandlung von Saugetier-Mannchen in Tiere mit ausgeprigt weiblichen Geschlechtscharakteren und weiblicher Psyche. Arch. f. d. ges. Physiol., vol. 144, pp. 71-108.

1913 Feminierung von Mannchen und Maskulierung von Weibchen. Zentralbl. f. Physiol., vol. 27, pp. 717-723.

STENDELL, W. 1913 Zur vergleichenden Anatomie und Histologie der Hypo- physis cerebri. Arch. f. mikr. Anat., vol. 82, pp. 289-332.

Sterzi1, Giuserre 1904 Die Blutgefasse des Rickenmarks. Anat. Hefte, vol. 24, pp. 5-364. Mus decumanus, p. 169.

Stewart, Corin C. 1898 Variations in daily activity produced by alcohol and by changes in barometric pressure and diet, with a description of re- cording methods. Am. J. Physiol., vol. 1, pp. 40-56.

Strepa, L. 1869 Studien wber das centrale Nervensystem der Vogel und Sauge- theire. Ztschr. f. wissensch. Zodl., vol. 19, p. 68.

Stites, Co. W. anp Crane,C.G. 1910 The internal parasites of rats and mice in their relation to diseases of man. Found in ‘‘The rat and its rela- tion to the public health,” pp. 87-110. Treasury Dept. Pub. Health and Mar.-Hospt. Service of the U. S. Government Printing Office, Wash., D.C.

Stites, Cu. W. anp HassaLi, ALBERT 1910 Compendium of animal parasites reported for rats and mice (Genus Mus). Found in‘ The rat and its relation to the public health,” pp. 111-122. Treasury Dept. Pub. Health and Mar.-Hospt. Service of the U.S. Government Printing Office, Wash., D.C.

Stirtinc, W. 1883 A simple method of demonstrating the nerves of the epi- glottis. J.Anat.and Physiol., vol. 17, p. 203. Rats included in mam- mals observed. 260 “REFERENCES TO THE LITERATURE

Stiruinc, W. 1883a The trachealis muscle of man and animals. J. Anat. and Physiol., vol. 17, pp. 204-206.

SrotsensurG, J. M. 1909 On the growth of the albino rat (Mus norvegicus var. albus) after castration. Proc. Assoc. Am. Anat. in Anat. Record, vol. 3, pp. 233-244. 1913 The effect of spaying and semi-spaying young albino rats (Mus norvegicus albinus) on the growth in body weight and body length. Anat. Record, vol. 7, pp. 183-194.

StresaL, Hans ano Weiss, Otto 1901 Beitrige zur Physiologie der Neben- niere. Archiv f.d. ges. Physiol., vol. 86, pp. 107-121.

SturzMann, J. 1898 Die accessorischen Geschlechtsdriisen von Mus decumanus und ihre Entwicklung. Diss. Leipzig.

SurroLtk 1910 The epizodtic of rat plague. Lancet, Lond., vol. 2, p. 1497.

Sweet, J. E., Corson-Wuite, E. P. anp Saxon, G. J. 1913 The relation of diets and of castration to the transmissible tumors of rats and mice. J. Biol. Chem., vol. 15, p. 181.

Symposium 1911 Ueber die Vertilgung der Ratten. Im Sinne einer Abwehr-

massregel gegen die Pest. Das dsterreichische Sanititswesen, no. 17

and 18, 1911.

Szymanski, J. S. 1914 Lernversuche bei weissen Ratten. Arch. f. d. ges. Physiol., vol. 185, pp. 386-418.

Tarant, A. 1889 La fécondation et la segmentation. Etudieés dans les oeufs des rats. Arch. Ital. de Biol., vol. 11. 1889 a I primi momenti dello sviluppo dei mammiferi. Studi di morfologia normaleef patologica eseguiti sulle uova dei topi. Atti d. T. Acead. d. Lincei, Roma. Ser. 4, Rendiconti, vol. 5, semestre 1, pp. 119-125.

Tattpy, T.M.J. 1911 A plea for the owl (the best of all rat killers). J. Roy. Inst. Pub. Health, Lond., pp. 108-113.

TANDLER, J. 1899 Zur vergl. Anat. der Kopfarterien bei den Mammalia. (1898.) Denkschr. der kais. Akad. der Wissensch. in Wien, vol. 67, p. 729; Mus rattus—albino among those examined. 1902 Zur Entwickelungsgeschichte der Kopfarterien bei den Mam- malia. Morphol. Jahrb., vol. 30, pp. 275-373.

Taytor, KENNETH 1915 Observations upon a rat sarcoma treated with emul- sions of embryonic tissues. Proc. of Soc. for Exper. Biol. and Med., vol. 12, pp. 216-218.

TreLto, Francisco 1906 Terminaciones sensitivas en los pelos y otros organos. Rev. trimestr. Microgr., vol. 9, pp. 49-77, fig. 1.

Terra, Paut pe 1911 Vergleichende Anatomie des menschlichen Gebisses und der Zihne der Vertebraten. Jena. Fischer, p.301, fig.125. Teeth of M. norvegicus.

Terry, BensaMin T. 1905 An epidemic of trypanosmiasis among white rats. Trans. Chicago Path. Soc., pp. 1-4.

Tuompson, J. A. 1906 On the epidemiology of plague. J. Hyg., vol. 6, pp. 537-569.

TIDSWELL, F. anp CLeLanp, J. B. 1912 Leprosy-like disease in rats. Rep. Gov. Bur. Microbiol., Syndey, vol. 2, pp. 49-51. REFERENCES TO THE LITERATURE 261

TiunEY, FREDERICK 1911 Contribution to the study of the hypophysis cerebri

with especial reference to its comparative histology. Memoirs of The Wistar Institute of Anatomy and Biology, no. 2, p. 47. Mus decu- manus (figs. 34 and 35). 1913 An analysis of the juxta-neural epithelial portion of the hypo- physis cerebri, with an embryological and histological account of a hitherto undescribed part of the organ. Internat. Monatschr. f. Anat. u. Physiol., vol. 30, pp. 258-293, Pl. V-XIX and 3 fig. Rat among other animals studied.

TrrasoscuH!, CarLto 1902 Gli animali propagatori della peste bubbonica. 3

Nota. Caratteri distintivi del Mus decumanus Pall. e Mus rattus L.

Diffusione del Mus rattus in Italia. Boll. Soc. zool. ital. Ann. 11, pp.

173-177.

1904 Gli animali propagatori della peste bubbonica. 4a Nota. I

ratti e i loro ectoparassiti. Boll. Soc. zool. ital. Ann. 13, pp. 88-97.

1904. Les rats, les souris et leurs parasites cutanés dans leurs rap-

ports avec la propagation de la peste bubonique. Arch. Parasitol.,

vol. 8, pp. 161-349.

Torprer, Kart AND FLEISCHMANN, A. 1891 Die Morphologie des Magens der Rodentia. Morphol. Jahrb., vol. 17, pp. 380-416.

Topsett, Epwarp 1658 History of four-footed beasts. No place. No pub- lisher. Rat, p. 403.

TournaDE, A. 1913 Sur les délais de régénération du vague chez le rat blanc. C.R. Soc. Biol., Paris, vol. 74, pp. 956-957.

Toyoruxv, Tamaki 1911 Ueber die parathyreoprive Verinderung des Rat- tenzahnes. Frankfurt. Ztschr. f. Path., vol. 7, pp. 249-294. TrautTmMann, A. 1912 Ueber Massenausstreuung von Bacillus enteritidis

Gartner. Arch. {. Hyg., vol. 76, pp. 206-209.

Traurmann, H. 1912 Zuriickweisung der Versuche Mereschowsky’s: Ueber die Anwendung des Trautmannschen Verfahrens zur Virulenzsteiger- ung des Bacillus Danysz. Centralbl. f. Bakteriol., 1 Abt., vol. 65, pp. 58-60. .

TrommsporF, R. 1909 Ueber biologische Eiweissdifferenzierung bei Ratten und Mausen. Arb. a. d. k. Gsndhtsamte, Berl., vol. 32, pp. 560- 567.

Trovsssart, E. L. 1881 Epimys—subgenus—including Rattus and Norvegi- cus. Bull. Soc. d’Etudes Sci. d’Angers, vol. 10, p. 117.

1897 Catalogus mammalium tam viventium quam fossillum. Nova Editio (Prima completa) Berolini. See Fasciculus III. Rodentia II, p. 471 et seq.

1910 Faune des mammiféres d’Europe. Berlin. Friedlander.

TUCKERMAN, FREDERICK 1892 Further observations on the gustatory organs of the Mammalia. J. Morphol., vol. 7, pp. 69-94. Musdecumanus, pp. 73-75.

TuLiBerc, TrcHo 1900 Ueber das System der Nagethiere. Nova Acta Reg. Soc. Sc. Upsaliensis Ser. 3, vol. 18, pp. 1-514. Mus decumanus, pp. 254-257. 262 REFERENCES TO THE LITERATURE

TuRNER, JoHN 1904 On the primary staining of the rat’s brain by methylene blue. Brain, vol. 27, pp. 64-83.

UsLENHUTH, Pau AND WerIDANz,.O. 1909 Mitteilungen iiber einige experi- mentelle Krebsforschungen. Arb. a. d. k. Gsndhtsamte, vol. 30, pp. 434-444,

Uxricu, Joun L. 1913 The number and distribution of trials in learning in the white rat. Behavior Monographs, vol. 2, no. 5, serial number 10, pp. 1-51.

Usxow, N. 1883 Ueber die Entwickelung des Zwerchfells, des Pericardiums und des Coeloms. Archiv. f. mikr. Anat., vol. 22, pp. 143-219. Rat, pp. 191 and 192. .

Van ALSTYNE, ELEANOR AND BEEBE, S.P. 1913 Diet studies in transplantable tumors. I. The effect of non-carbohydrate diet upon the growth of transplantable sarcoma in rats. J. Med. Research, vol. 29 (n.s. vol. 24), pp. 217-232. White rats, 10 tables.

Van Der Vioet 1906 Ueber den Verlauf der Pyramidenbahn bei niederen Sdugetieren. Anat. Anz., vol. 29, p. 113.

Veca, GARCILASO DE LA (1535-1616) 1688 The royal commentaries of Peru, 1609-1617. Rendered into English by Sir Paul Rycaut. Portrait of Rycaut and 10 plates. London.

Vincent, S.B. 1912 The function of the vibrissae in the behavior of the white rat. Behavior Monographs, vol. 1, no. 5, Johns Hopkins University.

Vincent, 8.B. 1913 The tactile hair of the white rat. J. Comp. Neurol., vol. 23, pp. 1-27.

1915 The white rat and the maze problem. I. The introduction of a visual control. J. of Animal Behavior, vol. 5, pp. 1-24.

1915a The white rat and the maze problem. II. The introduction of an olfactory control. J. of Animal Behavior, vol. 5, pp. 140-157. 1915 b The white rat and the maze problem. III. The introduction of a tactual control. J. of Animal Behavior, vol 5, pp. 175-184.

Vincent, Swarr 1897 The effects of subcutaneous injections of extracts of suprarenal capsules. J. Physiol., vol. 21, Proc. of Physiol. Soc., p. XXV.

1897 a On the general physiological effects of extracts of the supra- renal capsules. J. Physiol., vol. 22, pp. 111-120.

Vincent, SWALE AND Jonuy, W.A. 1905 Some observations upon the function of the thyroid and parathyroid glands. J. Physiol., vol. 32, pp. 65-86. 1906 Further observations upon the functions of the thyroid and parathyroid glands. J. Physiol., vol. 34, pp. 295-305.

Vincent, Swate 1910 The chromaphil tissues and the adrenal medulla. Proc. Roy. Soc., Lond., 8. B., vol. 82, pp. 502-515.

1912 Internal secretion and the ductless glands. Edward Arnold, London.

Wacner, Rupotrnw 1841 Icones zootomicae. Handatlas zur vergleichenden Anatomie nach fremden und eigenen Untersuchungen, xvi,44pp., 35 pl., fol. L. Voss, Leipzig. Achte Tafel, p. 9, fig. XI. Brainof M. decumanus. REFERENCES TO THE LITERATURE 263

Water, R. 1693 Some observations in the dissection of a rat (with illustra- tions). Phil. Trans., vol. 17, pp. 594-596.

Warp, Henry L. 1906 Observation on a pied rat. Bull. Wis.Nat. Hist. Soc., n.s. vol. 4, pp. 37-38.

WASIELEWSKI, v.AND Senn, G. 1900 Beitrige zur Kenntnis der Flagellaten des Rattenblutes. Zeitschr. f. Hyg., vol. 33, p. 444.

Watney,H. 1874 Noteon the minute anatomy of the alimentary canal. Proc. Royal Soc., London, vol. 22, pp. 293-294. Rat included among animals studied.

Watson, B.P. 1907 The effect of a meat diet on fertility and lactation. Proc! Roy. Soc. Edinb., vol. 27, part 1, pp. 6-10.

Watson, Coatmers 1904 Stimulation of the thyroid and parathyroid glands

by a proteid dietary (raw meat). J. Physiol., vol. 31, Proc. of the Physiol. Soc., p. v. 1906 The influence of a meat diet on the thyroid gland in the second generation of meat fed rats. J. Physiol., vol. 34, Proc. of the Physiol. Soc., p. xxix. 30 1906 a The influence of diet on growth and nutrition. J. Physiol., vol. 34, pp. 111-132. ‘Ge 1906 b Preliminary note regarding an experimental investigation into the effects of varying diets upon growth and nutrition. Proc. Roy? Soc., Edinb., vol. 26, part 1, pp. 87-94.

Watson, CHALMERS, AND CaMPBELL, M. 1906 The minute structure of the uterus of the rat with a note on the influence of a meat diet on it. J. Physiol., vol. 34, Proc. of Physiol. Soc., p. xvi.

Watson, CHALMERS, AND Lyon, G. 1906 A preliminary note on the influence of a meat diet on the kidneys. J. Physiol., vol. 34, Proc. of the Physiol. Soc., p. xix-xxi. !

Watson, Coaumers 1907 A note on the adrenal gland in the rat. J. Physiof., vol. 35, pp. 230-232. oe, 1907 a The influence of a meat diet on the kidneys. Internat. Mon- atschr. f. Anat. u. Physiol., vol. 24, pp. 197-208. ; 1907 b The effects of captivity on the adrenal glands in wild ris. J. Physiol., vol. 35, Proc. of Physiol. Soc., pp. xlix-l.

1907 ¢ The influence of an excessive meat diet on the osseous can Proc. Roy. Soc. Edinb., vol. 27, part 1 (no. 1).

1907 d_ The influence a diet on the liver. Lancet, October 12. Weight of liver in Norway rat reduced by diet poor in nitrogen. 1909 A note on the minute structures of the thyroid gland in the rat. Quart. J. Exper. Physiol., vol. 2, pp. 383-387. . 1910 The influence of diet on the structure of the tissues. Reprint of the Appendix from the new work on ‘‘Food and Feeding in Health and Disease” (Chalmers Watson, November, 1910). Oliver and Boyd, London. ; 1912 The influence of diet on the thyroid gland. Quart. J. Exper. Physiol., vol. 5, pp. 229-232.

Watson, G. W. anv Gress, J.H. 1906 The influence of an excessive meat diet on the Ble lawieent and structure of the teeth: J. Physiol., vol. 34, Proc. of Physiol. Soc., pp. xvii-xviii. 264 REFERENCES TO THE LITERATURE

Watson, Joun B. 1903 Animal education. Con. from the Psychol. Lab. Univ. of Chicago, vol. 4, no. 2, pp. 5-122. Plates showing medullation of the nervous system at various ages.

1905 The effect of the bearing of young upon the body weight and the weight of the central nervous system of the female whiterat. J.Comp. Neur. and Psychol., vol. 15, pp. 514-524.

1907 Kinaesthetic and organic sensations; their réle in the reactions of the white rat to the maze. Monograph Suppl., Psychol. Review, vol. 8, pp. 1-100.

Watson, Joun B. anp Watson, Mary I. 1918 A study of the responses of ro- dents to monochromatic light. J. Animal Behavior, vol. 3, pp. 1-14.

Watson, JouHn B. 1914 Behavior. An introduction to comparative psychol- ogy. Henry Holt & Co., N. Y. Rat, pp. 129-131, 198, 210-219, 235, 237-238, 292, 348, 384-385, 423-425.

Wese., H. von 1914 A bacteriological study of a rat epidemic. Proc. N. Y. Pathol. Soc., vol. 13, pp. 97-103.

ae: Sam J. G. 1892 Melanic variety of the rat (Mus decumanus, Pallas).

Berg Ann. of Scott. Nat. Hist., vol. 1, p. 134. WeIL, Ricuarp 1913 The intrayaeenine implantation of rat tumors. J. Med.

Research, vol. 28 (n.s. vol. 23), pp. 497-508. 2 plates.

Weispacu, A. 1868 Der Wassergehalt des Gehirns nach Alter, Geschlecht und Krankheiten. Med. Jahrbiicher, vol. 16, nos. 4 and 5, pp. 1-76.

Weiss, Armin 1900 Ein postoccipitaler Wirbelkérper bei Rattenembryonen. Centralbl. f. Physiol., vol. 14, pp. 93-96. . 1901 Die Entwicklung der Wirbelsiiule der weissen Ratte, besonders der vordersten Halswirbel. Ztschr. f. wissensch. Zool., vol. 69, pp. 492-532.

Wuerry, W.B. 1908 Further notes on rat leprosy and on the fate of human

‘ and rat lepra bacilliin flies. J. Infec. Dis., Chicago, vol. 5, pp. 507-518.

Waite, Moses C. 1901 Article ‘Blood stains’ in reference Handbook of the

‘Medical Sciences. Wm. Wood & Co., N. Y., vol. 2, pp. 84 and 86. Wipe 5omaeis Victor 1909 Ueberdie eistepaldune fee KG6rperform bei Entypie “desKeimes. Beitrige zur EntwicklungsgeschichtederRatte. Ztschr. i f. wissensch. Zool., vol. 94, pp. 240-298. Wiepersuem, R. 1903 Ueber ein abnormes Rattengebiss. Anat. Anz., vol. — 22, pp. 569-573.

WieDERSPERG, GUSTAV von 1885 Beitrige zur Entwickelungsgeschichte der Samenkérper. Archiv f. mikr. Anat., vol. 25, pp. 118-136. Rat, pp. 117, 118, 119.

Wiener, E. 1902 Ueber den Bazillus Danyz. Miinchen. med. Wehnschr.,

vol. 49, pp. 401-402.

1903 Weitere Bemerkungen zur Enstehung von Rattenepizoétieen. Centralbl. f. Bakteriol., vol. 34, part 1, pp. 406-411.

WIESEL, JosEF, 1899 Ueber accessorische Nebennieren am Nebenhoden beim Menschen und tiber Kompensations-hypertrophie dieser Organe bei der Ratte. Sitz.-Ber. d. Akad. d. Wissen. in Wien. Math.-naturw. K1., Bd. 108, Abt. 3, pp. 257-280. 1 plate. REFERENCES TO THE LITERATURE 265

WiesE., Joser 1899a Ueber Compensations-Hypertrophie der accessorischen Nebennieren beider Ratte. Centrabl.f. Physiol., vol.12, pp. 780-783.

Wintacu, Pau, 1888 Beitrige zur Entwicklung der Lunge bei Saugethieren. 23 pp, 8°. Osterwieck, Harz; A. W. Zickfeldt.

Wituiams, J. Leon 1896 On the formation and structure of dental enamel. The Dental Cosmos, vol. 38, pp. 101-127.

Wo xsacu, S. B. anp Honews, James A. 1914 A critical review of the bacteri- ology of human and rat leprosy. J. Med. Research, vol. 29 (n.s. vol. 24), pp. 367-423.

Wotpnicu, Jon. 1880-1884 Diluviale Fauna von Zudslawitz bei Winterberg in Béhmerwalde. Sitzber. d. k. Akad. d. Wiss. 3 parts, 18S0-1881- 1884.

Wormuey,T.G. 1888 Microchemistry of poisons. 2ded. Phila.

Wrss, Hans von 1870 Die becherférmigen Organe der Zunge. Arch. f. mikr. Anat., vol. 6, pp. 237-260. Rat, pp. 255-256.

Yerkes, Roperr M. 1913 The heredity of savageness and wildness in rats. J. Animal Behavior, vol.3, pp. 286-296.

ZAWARYKIN, TH. 1883 Ueber die Fettresorption im Dinndarm. Arch. f. d. ges. Physiol., vol. 31, pp. 231-240.

ZILLINBERG-PAUL, OrTILie 1909 Fortgesetzte Untersuchungen iiber das Ver- halten des Darmepithels. III. Mitteil. (Rat.) Ztschr. f. Biol., vol. 52, pp. 327-354, pl. VI.

Zinsser, Hans anv Carey, Epwarp G. 1912 A contribution to the study of rat leprosy. J. Am. M. Ass., vol. 58, pp. 692-695.

ZUCKERKANDL, E. 1903 Die Entwickelung der Schilddriise und der Thymus bei der Ratte. Anat. Hefte, vol. 21, pp. 3-28.

ZuMSTEIN, J. J. 1890 Ueber den Bronchialbaum des Menschen und einiger Saugetiere. Sitzungsb. d. Gesellsch. z. Beférd. d. ges. Natur. zu Marburg. Jahrg., 1889, pp. 25-29. (Sitz. vom 26 Marz, 1889.) Rat among mammals used.

1891 Ueber die Unterkieferdriise einiger Sduger. 1 Anat. Teil. Habilitationsschrift, Marburg, 32 pp.

ZuscuLaG, Emit 1903 Le rat migratoire et sa destruction rationnelle. Copen-

hagen.

ADDENDA

Titles of papers which appeared while this volume was in press or which had been overlooked.

BarsBer, ALDA Grace 1915 The localization of sound in the white rat. J. Animal Behavior, vol. 5, pp. 292-311.

Broumpt, E. 1907 Phénoménes de la parturition chez le rat blanc. Bull. Soc. Zool., France, vol. 32, pp. 50-52.

Conrow, Sara B. 1915 Taillessnessintherat. Anat. Record, vol. 9, pp. 777- 783. 266 REFERENCES TO THE LITERATURE—ADDENDA

Dass, F. 1908 On the relations between the ovaries and the uterus. Surg. Gynec. and Obst., vol. 6, pp. 153-159.

Hata, 8. 1915b On the influence of exercise on the growth of organs in the albino rat. Anat. Record, vol. 9, pp. 647-665.

Heape, Water 1900 The “sexual season’? of mammals and the relation of the “‘pro-oestrum”’ to menstruation. Quart. J. Mier. Science, vol. 44, pp. 1-70.

HennesereG, B. 1905 Beitrag zur Kenntnis der lateralen Schilddriisenanlage. Anat. Hefte, vol. 28, pp. 287-302.

1909 Uber die Bedeutung der Ohrmuschel. Anat. Hefte, vol. 40, pp. 95-147.

1914 Beitrag zur Entwickelung der dusseren genitalorgane beim Sduger. Erster Teil. Anat. Hefte, vol. 50, pp. 425-498.

Hunter, Water S. 1915 The auditory sensitivity of the white rat. J. Ani- mal Behavior, vol. 5, pp. 312-329.

Ivanorr, Ex1z 1900 La fonction des vésicules séminales et de la glande pros- tatique dans |’acte de la fécondation. J. de Phys. et de Path. gen., vol. 2, pp. 95-100.

1907 De la fécondation artificielle chez les mammiféres. Arch. des Sc. Biol., vol. 12, pp. 377-511.

Kine, Henen D. 1915 a Growth and variability in the body weight of the rat. Anat. Record, vol. 9, pp. 751-776.

Kocu, R. 1898 Reise-Berichte tiber Rinderpest, Bubonenpest in Indien und Afrika, Tsetse oder Surrakrankheit Texasfieber, tropische malaria u. Schwarzwasserfieber. J. Springer. Berlin. 136 pp. 8°. Trypano- somes—rat.

K6nicstein, H. 1907 Die Veranderungen der Genitalschleimhaut wihrend der Graviditét und Brunst bei einigen Nagern. Arch. f. d. ges. Physiol., vol. 119, pp. 553-570.

LANE-Cuayron, Janet E. 1907 On ovogenesis and the formation of the inter- stitial cells of the ovary. J. Obst. and Gynaec., vol. 11, pp. 205-214.

Laveran, A., and Mresniz, F. 1901 Recherches morphologique et expérimen- tales sur le trypanosome des rats. Ann. de l’Institut Pasteur, vol. 15, pp. 673-713.

Mernarpus, Orro 1882 Der historische Kern der Hameler Rattenfingersage. Separat Abdruck aus der Ztschr. des Historischen Vereins fir Nie- dersachsen, Jahrg. 1882, Hannover. Hahn’sche Buchhandlung.

Osporne, Taomas B. AND MENDEL, L. B. 1915 a The comparative nutritive value of certain proteins in growth, and the problem of the protein minimum. J. Biol. Chemistry, vol. 20, pp. 351-378.

1915 b Further observations of the influence of natural fats upon growth. J. Biol. Chemistry, vol. 20, pp. 379-390.

1915 c Protein minima for maintenance. J. Biol. Chemistry, vol. 22, pp. 241-258.

Ossporne, THomas B. AND WAKEMAN, ALFRED J. 1915 Does butter-fat contain nitrogen and phosphorus? J. Biol. Chemistry, vol. 21, pp. 91-94.

Rosinson, ARTHUR 1892b The nutritive importance of the yolk-sac. J. of Anat. and Phys., vol. 26, pp. 308-323. eee ee

REFERENCES TO THE LITERATURE—ADDENDA 267

SrotsensurG, J. M. 1915 The growth of the fetus of the albino rat from the thirteenth to the twenty-second day of gestation. Anat. Record, vol. 9, pp. 667-682.

Vincent, Stevza B. 19156 The white rat and the maze problem. IV. The number and distribution of errors—a comparative study. J. Animal Behavior, vol. 5, pp. 367-374.

Warren, JoHN 1915 On th eearly dévelopment of the inguinal region in mam- malia. Anat. Record, vol. 9, pp. 131-133.

WIEDERSHEIM, Ropert 1897 Comparative anatomy of vertebrates. Parker’s translation, 2d ed., London.

INDEX

Page numbers preceded by N refer to the Norway rat.

Activity Miles run, 20.

Age

Characters which are functions of, 3. of opening eyes, 19, N 191.

of independence, 19.

of sexual maturity, 21, N 191.

Span of life, 6, 20, 21, N 190.

Body weight on, 31-33, 63-72, 105-118. Thymus on, 102.

Percentage of water on, 114.

Albino Rat (See Rat)

Anatomy, 30-57.

General, 30. Embryology, 30.

Bones, joints and connective tissues, 33.

Muscles, 38.

Vessels and lymphatics, 39. Nervous system, 41.

Sense organs, 55.

Integument, 55. Gastro-pulmonary systems, 55. Uro-genital, 56.

Endocrine, 56.

Axis—of Nerve Fiber (See Nerves)

Behavior

under natural conditions, 28. under experimental conditions, 28.

Biology, 19-28, N 189-194.

Blood

Cell elements (number), 40-41. Erythrocytes (diameter), 39. Growth of, 83.

Hemoglobin, percentage of, 84.

Blood (continued)

Oxygen capacity, 84.

Percentage of water in, 40, N 211. Specific gravity, 39, 83.

Volume, 83.

Wandering cells in, 41.

Weight of, 83.

Body Weight (See Growth)

on age, 31-33, 63-72, 105-113.

on body length, 88, N 198.

at maturity—according to sex, 27. Modified by external conditions, 69. 71. Net, 74.

Variations in weight at birth, 103.

Bones (See Skeleton)

Brain (See Organs)

Composition, chemical, 180-184.

Growth, 90, N 200-201.

Methods for fixation, 49-55. Water—percentage of, 6, 176-179, N 211-213. Mitoses in, 41. 42.

Specific gravity, 41.

Cell Division (See Mitosis) Cells

Erythrocytes (diameter), 39.

Erythrocytes (number), 40.

Leucocytes, 40.

Wandering cells, 41.

of peritoneal fluid, 41.

of liver (diameters), 56.

of pancreas (diameters), 56.

of nervous sytem: Purkinje cells (diameters), 43. in ganglia (numbers and diameters), 44,

45, 46. 269 270 — INDEX

Charts 1-31

1. The growth of the fetus from the 13th to the 22d day of gestation...................... 64 2. Growth in body weight onage—males. To 365 days...............0cc ccc ce eee eeeae 66 3. Growth in body weight on age—females. To 365 days...................ccesceseee ee 67 4. Growth in body weight on age—malesand females. To 485 days..................- -. 169 5. Percentage weights of systems on age. Muscalature, ligamentous skeleton, viscera and integument......... 0... cece cece eee cece ete e teen ene te cet eeneeeteeueeees 77 6. Body length on body weight—males and females. ................ cece csecuceceeeeeee 88 7. Body weight on body length—males and females.....................ccceceececeeee 89 8. Tail length on body length—males and females..... PODDMNIIMIIII oooc555cc- 89 9. Brain weight on body weight—males only. Spinal cord weight on body weight— malesionly. -Seege---- +. o eee cee ee etree ee coe erence ees oe se eee ee 91 10. Weight of both eyeballs on body weight—males............. 00.0 ccc ccc cee cee ceeees 92 11. Weight of heart on body weight—males................ 0... cece cece cece cece teaeees 93 12. Weight of both kidneys on body weight—males.................. 0.0 sce cuceeeeeeee 93 18. Weight of liver on body weight—males............... 00.00 c cece cece cee e cere eeeeeee 94 14. Weight of spleen on body weight—males..............0 0.0. c ec cc cece cece esse eeeeaes 95 15. Weight of both lungs on body weight—males..................0. 00 .ccececeeeeeeeeee 96 16. Weight of blood on body weight—males and females........................0000005 96 17. Weight of alimentary tract on body weight—males.....................00000eeeeeee 97 18. Weight of thyroid on body weight—males and females..................0.00.00ceeee 98 19. Weight of hypophysis on body weight—males and females.......................+-. 99 20. Weight of both suprarenals on body weight—males and females.................... 100 21. Weight of both ovaries on body weight............ 00 ccc cece eee eee eee eeteeeees 101 22. Weight of both testes on body weight........... 0... ccc cece cece cee e cee c en eeeeeas 101 23. Weight of thymus on age—to 400 days........... 0c c cece eee cece cece eee eneeeeees 102 24, Percentage of dry substance in the body as a whole and in the several systems—liga- mentous skeleton, integument, visceraand musculature—on age................+-. 178 25. In terms of the dry substance of the entire body the percentage weight of the dry - substance of the integument, viscera, ligamentous skeleton and musculature—on BEC cece ccc ce b eect c cece eee c eet ee teen et ee ttteee tees sss 2 178 26. Percentage of water in brain—on age—males. Percentage of water in spinal cord— on age—males....... 0... cece cece eee eee eee ee eeeeneees -.. eee Eee 179 27. Absolute weight of the more important chemical constituents of the brain—onage..... 184 28. Norway rat Body length on body weight—males. (Graph for the Albino inserted for comparison)................ caves db vccectccoeceececeecerece s+ 2 = 199 29. Norway rat Body weight on body length. Malesandfemales......................- 199 30..Norway rat Taillengthon body length. Malesand females.....................+.+5 200 31. Norway rat Brain weight on body weight—males. (Graph for Albino inserted for COMPArisOn). 22222... . 6.3... ee eee ee eee eee eee ee eee Spinal cord weight on body weight—males. (Graph for Albino inserted for com- PATISON)......0 0 ee eee cee eee cee eee s eases cree se esee ess «oe 201 Chromosomes, Number of, 31. of bones, 181. Ciassification and Nomenclature, 7-10. of brain, 181-182. Composition, Chemical (See Water, per- of spinal cord, 182. centage of) Correlation, Coefficients of, 103.

of entire body, 180-181. INDEX

Distribution (See Early Records and Migra- tions), 10-15.

Dry Substance (See Water, percentage of) Early Records and Migrations, 10-15.

Embryology, 30-33.

Early stages, 31-33.

Later stages, 33.

Volumes of ova and embryos, 32.

Eyes Age of opening, 19, N 191.

Fat

Fatty acids, 84. according to size, 85. according to sex, 85.

Total fat, 83.

Feces Weight of, 59.

Fecundity, 22.

Influence of weight of mother, 23. Influence of food conditions, 23.

Fetus

Crown-rump length, 64-65. Weight from 13th day of gestation, 64-65.

Fibers—Nerve

Number, 44-49. Diameter and area, 44, 45, 47, 48, 49.

Formulas

Catalogue of, 158-159. Use of, 3.

Fossil Remains Mus rattus, 10.

Functions (See Physiology)

Circulation, 61. Digestion, 61.

Endocrine glands, 61, 62. Muscle, nerve, 61. Nervous system, 61. Nutrition, 58, 59, 60.

271

Functions (continued)

- Body temperature, 60, 61. Reproduction, 61. Respiration, 61. Secretion, 61.

Special senses, 61.

Ganglia (See Cells)

Gestation

Period of, 21, N 190. Lengthening of, 22.

Growth

of entire body in weight on length: Birth to maturity, 65-69, N 198. Weight-length ratio, 72, N 202. Body length on body weight, 87, N 198. Body weight (Norway) on body weight (Albino), N 200. of entire body in weight on age: before birth, 31-33, 63-64. Birth to maturity, 65-72. Body weight, net, 74. . under various external conditions, 63, 69. of parts on body weight: Head, trunk, limbs, 73-75, N 195. Method of dissection, 73-74. Tail length on body length, 88, N 200. of systems on body weight: Integument, 75, 76, N 196. Musculature, 75, 76, N 196. Skeleton (ligamentous), 75, 76, N 196. Skeleton (cartilaginous), 78. Viscera, 75, 76, N 196. Teeth, 37-39. of organs on body length and weight: Methods of examination and graphs, 87- 102. Alimentary tract, 97. Blood (weight), 96. Brain, 90, N 200-201. Eyeballs. 91-92. Heart, 92-93. Hypophysis, 98-99. Kidneys, 92-93. Liver, 94. 272

Growth—Continued Lungs, 95-96. Ovaries, 100-101. Spinal cord, 90-91, N 202. Spleen, 95. Suprarenals, 99-100. Testes, 101-102. Thymus (on age), 102. Thymus (on body weight), 114. Thyroid, 97-98. Viscera combined, 114.

Variations in organ weight, 103-104.

Heredity

in general, 29. Coat color, 29. Independence Attainment of, 19.

Impregnation Time of, 21.

Length

of body, 87, N 198. of limb bones, 81-82. of tail, 88-89, N 200.

Life History, 19, N 189-191.

Litter

Average number in, 26, N 190. Second the best, 26. Unit for experimental work, 3.

Litters Usual number of, 26, N 190.

Liver Cells and nuclei—diameters, 55-56.

Menopause, 21.

Metabolism Protein, 58-60.

Methods

Statistical, 2.

for fixation of brain Various figuratives, 49-51. Formaldehyde, 51-55.

INDEX

Migrations, 11-13.

Mitosis in brain, 41, 42. in spinal cord, 41-43.

Modification of Body Growth

Experimental, 69, 71. Method of measuring, 5.

Muscles Number of fibers and nuclei, 39.

Myeline Sheath (See Nerves) Nerve Fibers (See Nerves)

Nerves

Cerebral Number of fibers: N. cochlearis, 43. N. oculomotorius, 44. Spinal nerves and ganglia: Number and size of fibers, 45-47. Number of ganglion cells, 43-49. Diameter of ganglion cells, 44, 48. Peripheral, 48, 49. Number of fibers N. peronealis, 48. Autonomic Fibers less than 4y, 49.

Nervous System, 41-49.

Fixation methods, 49-55. Physiology of, 61.

Nitrogen Weight of, excreted, 58, 60.

Norway Rat (See Rat)

Number

of mitoses (nervous system), 41, 42. of erythrocytes, 40.

of leucocytes, 40.

of nerve cells, 41-49.

of nerve fibers, 41-49.

of muscle fibers and nuclei, 39.

Nutrition (See Functions) INDEX

Organs (See Growth of) Alimentary tract, 97. Blood (weight and volume), 96. Brain, 90, N 200-201. Eyeballs, 91-92.

Heart, 92-93. Hypophysis, 98-99. Kidneys, 92-93.

Liver, 94.

Lungs, 95-96.

Ovaries, 100-101. Pancreas, 56.

Sense organs, 55.

Spinal cord, 90-91, N 202. Spleen, 95.

Suprarenals, 99-100. Testes, 101-102.

Thymus, 102, 114. Thyroid, 97-98. Ovulation, 21, 31. Ova--distance from fimbria, 31. © Ova—diameter, 31. Ova—volume, 32.

Ovum (See Ovulation)

Pancreas Size of cells and nuclei, 56.

Parts (Larger Divisions of Body)

Fore-limbs, hind-limbs, head and trunk 73- 75, N 195.

Peritoneal Fluid

Cells of, 41.

Physiology (See Functions) 58-62. Puberty, 21.

Rat

Norway, 1. = Mus norvegicus, l, 7, 8. = Mus decumanus, 7, 8. = Epimys norvegicus, 7. gray, brown, or sewer rat—Wanderratte (G.). Surmulot, rat d’égout, (Fr.). compared with Albino, N 191-193. similar to European form, N 193, 194. melanic variety, 14.

273

Rat (continued) Norway—aAlbino = white rat = Mus norvegicus albinus, 14. = Mus norvegicus albino, 7. = Mus norvegicus var. albino, 7. = Mus norvegicus var. albus, 7. coat color, 9, 29. compared with Norway, N 191-193. extracted, 9. Gametic purity, 9, 10. Inbred, 9. Laboratory animal, 1. Observations mainly for the first year, 2. Origin of variety, 14. similar to European form, 14. strains—local, 3. House rat—black Mus rattus rattus (old English black rat), 7, 8. Ship rat (gray) Mus rattus alexandrinus, 8. Albino of M. rattus, 8, 9. M. n. albinus wrongly identified with Albino of M. rattus, 14. Mus rattus X Mus norvegicus mutually in- fertile, 14.

Rattenkonig, 15.

Records, Early, and Migrations, 10-15.

Mus norvegicus, 12, 13. Mus rattus, 11.

Reference Tables, 2, 3.

References to Literature—By Subject Classification, 10.

Fossil remains, 10.

Melanic variety, 14.

Early records and migrations, 15. Rattenkénig, 15.

Albino: Biology, 28. Heredity, 29.

Anatomy, 56-57. Physiology, 61-62. Growth:

in total body weight, 72. of parts and systems, 85. 274

References to Literature—By Subject— Continued of parts and organs, 175. in terms of water and solids, 179. of chemical constituents, 184. Pathology, 185-186. Norway: Life history and characters, N 194. Growth: of parts and systems, N 197. of organs, N 202. in terms of water and solids, N 213.

References to Literature—By Authors

Introduction to literature cited, 214. Titles by authors, 215-265. Addenda, 265-267.

Sense Organs Cochlea, 55.

Sex Body weight according to, 27. Sexual maturity, 21, N 191. Proportion of sexes, N 190-191. Sex ratio, 26-27. in first litters, 27. according to season, 27. Recognition of, in young, 26-27. Ano-genital distance, 27.

Skeleton

List of bones, 34.

Cartilaginous skeleton, 76-78. Weight of moist skeleton, 79. Weight of dry skeleton, 79-80.

Ligamentous skeleton, 76-78. Growth of skeleton, 33, 76-81.

Tables

Revision of........... 20.0 cece cece e ee eee eee Reference tables, use of...............-.00-005

List of tables 1-89 in serial order.

INDEX

Skeleton (continued) Phosphorus content, skeleton, 181. Ash, 181. Percentage of water, 79. Transformation of weights, 77. Cranium (skull), 82. definition of, 82-83. Measurements of, 33-36. Weight of, 83, N 196. Long bones lengths, absolute and relative, 81-82. shrinkage on drying, 82.

Skull (See Skeleton; Cranium) Span of Life, 6, 20-21, N 190.

Specific Gravity

Blood, 39, 83. Brain, 41.

Spermatogenesis, 30, 31.

Spinal Cord

Composition, chemical, 182.

Growth, 90-91, N 202.

Water, percentage of, 176-179, N 211-213. Mitosis in, 41-43.

Superfecundation, 22. Superfetation, 22.

Systems (weighed) (See Anatomy)

Integumentary, muscular, skeletal, visceral, 75, 76.

Weight—absolute, 76.

Weight—proportional, 75.

Adult proportions, 78.

1. Percentage of water in encephalon of rat compared with that in man at correspond-

ING AVES... ce ee cee ee eens 2. Total number of miles run................ 3. Influence of age of mother on birth weight

4. Influence of weight of mother on birth weight. ............... 02. cee cece cence eee 24 INDEX 275 Tables—Continued

5. Influence of size of litter on the individual birth weight........................... 25 6. Individual birth weight in relation to body weight of mother....................... 25 7. Sex ratios and average number for litter............ 0.00.00... cece cece eee c nce cee 26 8. Ano-genital distance in young albino rats.............. 0.0.00... 0.2 e eee e cece eees 27 9. Maximum body weights...........2. 0.0... ec cee cee cece ete e eee eterececnceree 28 10. Distance of ova from fimbria at various ages.............. 00... e cece eee eee nce cecee 31 11. Volumes of ova and embryoS..... 1.0.0.0... 00 ccc cc cece ence ee eeccevececcecee 32 12. Measurements of cranium.............0. 0.02 e eee eee cece eect e ec ecececees 35 13. Range and rate of increase in cranial characters............2......0.0.cecccececeees 36 14. Length of incisors............ ccc cee ce eee eect e eee e eet eee eeteeeees 38 15. Measurements of enamel ...........0.. 00. ccc cece ee eee ene c eee e et enceecenes 38 16. Growth of incisors and of cranium................ 0.00 e cece cece cece tec ace ceeee 38 17. Number of fibers and of nuclei in Muse. radialis....................2.....0.....2.- 39 18. Percentage of water in blood............. 2.0.0. e eee cece ence te cee eect eeenee 40 19. Number of erythrocytes, leucocytes, etc., in blood......................000.000.0052 40 20. Wandering cells in blood............ 020.0 ccc ccc cece cece cee eaee 41 21. Wandering cells in peritoneal fluid...............20 00220 c eee eee e cece eee ee 41 92. Mitoses in brain and cord. Hamilton (’01)............0.2...0.2 20. c ccc e cece e cece 42 23. Mitoses in brain and cord—special observations on cerebellum...................... 42 24, Diameters of Purkinje cells and their nuclei................ 2022... ccc ccc ce ceeeeeeee 43 25. Number of myelinated fibers in the oculomotor nerve.................-...00.0eeeee 44 26. Range of diameter in cells of cervical ganglion...................0. 0... c cece cece 44

27. Number of spinal ganglion cells and number and size of myelinated root fibers of spinal nerves from three levels and at five ages (body weights).........................200. 45 28. Number of ganglion cells and of root fibers in the second cervical nerve............ 46

29. Number of myelinated fibers in the ventral and dorsal roots of the second cervical nerve—together with the distal excess of fibersinthe nerve......................... 46

30. Number of ventral root fibers in the second cervical nerve at different ages—together with the areas of the fibers and of their axes........2..... 20.0020 cece cece eee ee eee 47

31. Diameters of cell body and of nucleus in second cervical spinal ganglion together with standard deviation and coefficient of variation..................0.... cece sees 48 32. Number of myelinated fibers in the peroneal nerve..............0..0 000 e cece cence eee 48 33. Sectional areas of largest fibers and of their axes—in peroneal nerve................... 49

34. Myelinated fibers less than 4u in diameter in the ventral roots of the second to the fifth cervical nerves......... 0. ccc ec e ec ceen eee nee e eee eee eeeeteeneees 49 35. Effects of various fixing solutions on the weight of the brain........................- 50-51

36. Increase in the weight of rats’ brains in a neutralized 4 per cent formaldehyde solu- tion, made five months before using........... 22.22. e cece eee cet eee eees 53

37. Increase in the weight of rats’ brains in a neutralized 4 per cent formaldehyde solu- tion made at the time of using............ 002.2020 cee eee cence ee eee eens 53

38. Increase in the weight of rats’ brains in a neutralized 4 per cent formaldehyde solution—freshly made for each lot of animals..................... 00. c cece eens 54

39. Increase in the weight of rats’ brains in a non-neutralized solution of 4 per cent for- maldehyde freshly made for each lot of animals.......2..... 00... e cece cece eee cence 54

40. Percentage of solids in rats’ brains after fixation in various 4 per cent formaldehyde

solutions.............0....0.000000008 ene eee Rn eee EEE ECE EEE EEE LE CL EEE 55 276 INDEX

Tables—Continued

41. Volumes of cell body and of nucleus: liver cells; volumes of cell body and of nucleus: pancreas) cells). 1... o.oo so oleae: ill eeERMEI) > « el> )-/elotsis-1) se ae 56 42. Excretion of urine, feces and nitrogen............. 20. e eee ccc e reece cece eee eeeeaenes 59 43. Protein metabolism—nitrogen distribution—female..................0ccceeceesecvecs 60 44, Protein metabolism—nitrogen distribution—male..................-0-ecececeeeeeers 60 45. Body temperature under different external temperatures................000ceeeceeees 61 46. Mean weights of fetuses at daily intervals from the 13th day of kosiation 0 eee 65. 47. Crown-rump lengths of fetuses at daily intervals from the 14th day of gestation...... 65 48. Ratios obtained by dividing the body weight in grams by the body length in milli- meters—for both males and females............... 2. cece cece cece eet eeeeeneevens 70-71 49. Percentages of the entire body weight represented by the weights of head, trunk, fore-limbs and)hind limbs.................0+0-«+eees ones + ees ccieeis ciel lien 74 50. Percentages of the entire body weight represented by the weights of the integument, ligamentous skeleton, musculature and VisceTa............cce cep sence cee ceeecnes 75 51. Absolute weights of integument, ligamentous skeleton, musculature and viscera in seven groups, of increasing body weight..................eeeeeeee ‘1.0 eee 76 52. The percentage values for the weight of the cartilaginous skeleton—and by differ- ence the percentage values for the periosteum, ligaments, etc., combined............ 78 53. Cartilaginous skeleton—moist weight and percentage value—also percentage value of dry skeleton.........20.....eseccsec sce ecec sete ee cece ces s+ eee eee 79-80 54. Lengths of long bones—femur, tibia, humerus and ulna—absolute and relative........ 81-82 55. Weights of crania—in series from London, Paris, Philadelphia and Vienna............ 83 56. Growth of blood in volume and oxygen capacity with increasing age (body weight)... 84 57. Proportion of fat with increasing age (body weight)..............:seseceeseeeeerees 85 58. Coefficients of variation in body weights...............cceee cece cence ee eeeencecers 103 59. Coefficients of variation in organ weights... ........... 0c. cece eee cee eee eee ee ec eeene 104 60. Coefficients of correlation of organ weights with body weight....................... 104 61. Mean weights of fetuses at daily intervals from the 13th day of gestation and also at birth. (Duplicates in full table 46).......... 0... eee ee eee eee eee eee eens 105 62. Growth in body weight on age—based on the records of Donaldson, Dunn and Watsona@06)......-......-..ccceneece sss c esse ve veneessecos sce ++ cnn 106-107 68. Growth in body weight on age—males. Observations of Donaldson, Dunn and Watson (706)... neces cect etc c ence ers ccecs cece esee sees ccc c ss 5 + + oir 108 64. Growth in body weight on age—females. Observations of Donaldson, Dunn and Watson (706)... 02... sce ccc cc cect cus errcscctet esse recto c ee wile «0. «3a 110 65. Growth in body weight on age. New Haven Colony—Ferry (’13).................. 112 66. The numbers of animals used in computing the values in the growth table 65......... 113 67. Growth in body weight on age—King (MS ’15). Mean of two series, with coefficients Of VATIATION.. 60.0... cere cece te cece etree tree ne eele tees eee olele + 6) eines 113 68. Increase in the length of the tail, and in the weights of the body, brain, spinal cord and both eyeballs, on body length............. 0 cece e cece eee c ence eee eenes 115-120 69. Increase in the weights of the body and of the heart, both kidneys, liver and spleen on body lengthe-ey- eect cas. eerie soo 3 cele 121-126 70. Increase in the weights of the body and of the lungs, blood, alimentary tract, testes lana Ovaries, on bodylength........25-.-..-..-00s-- +. 0 «+ ine ee 127-132 71. Increase in the weights of the body and of the hypophysis, suprarenals and thyroid

jonebody, length..........2-..---- +. soe ocliele + © ++ erento 133-138 INDEX 277

Tables—Continued

72. Weight of the thymus on age in days........ 2.20.2... cece cece cece cence eee eeeeees 139-141

73. Increase in the weight of all the viscera—including the thymus—which is entered separately—on body length........... 0... cc cee cece cece cece cece eee ceeenenes 142-147

74. Percentage of water in the brain and in the spinal cord—with increasing age—up to BMRB TTP EET ITI: «ooo soos or ccc cece ee ee cetera cecccre es + oe eee 148-157

75. Percentage of dry substances in the entire body, in the several systems and in some organs. Observations at seven ages. ..... 0... sec ee cece cece e ence ete tete eens 177

76. Giving in terms of the dry substance of the entire body the percentage represented by the weights of the dry substance of the skin, ligamentous skeleton, musculature and viscera—seven age QZTOUPS..... 6... . 1 eee eee eee eacceeseeeees 179

77. Chemical composition of the entire rat, Hatai (MS ’15)..........0..... 20. ccc cece 180

78. Chemical composition of the entire rat McCollum ('09)..................00. 2c cc eeee 181

79. The phosphorus compounds of the rat as affected by ovariotomy................... 181

80. Chemical composition of the brain at different ages..............0ccc eee e cee eneues 182

81. Absolute weights of constituents of one brain at different ages..................... 183

82. Norway rat Percentages of the entire body weight represented by the weights of head, trunk, fore-limbs and hind-limbs............. 2... 0c e eee c eee cece e eee eee ee 195

83. Norway rat Percentage of the entire body weight represented by the weights of the integument, ligamentous skeleton, musculature and viscera.................- 196

84. Norway rat Weights of crania in series from London, Paris, Philadelphia and RRO oo Solas. oo elon aiiepeie se + apcle ose taiene ooo clone nine ve eae ee tisleieec es = spe, - See 196

85. Norway rat Increase in the length of the tail and in the weights of the body, brain and spinal cord, on body length... 2.0.2.0... 0... ccc c cee c cece etc e teen eenceeeeee 203-208

86. Norway rat Giving the ratios obtained by dividing the body weight in grams, by the body length in millimeters............. ccc cece eee ec cece eee cere eeeeees 209-210

87. Norway rat The percentage of water inthe blood ...............- eee e eee cece eee 211

88. Norway rat Percentage of water in the brain and in the spinal cord. ve known 212

89. Norway rat Percentage of water in the brain and in the spinal cord of rats of increasing body weights. Ages not known.............. cee cece eee eee erencceee 213

Technic Ovaries, weight, 100. '

Body, length, 87. Testes, weight, 102.

Body, weight, 88. Thymus, weight, 102.

Tail, length, 87. Teeth

Brain, weight, 90.

Spinal cord, weight, 90. Eruption of, 37.

Eyeballs, weight, 91. Formula for, 37.

Heart, weight, 92. Incisors

Kidneys, weight, 92. Development—time relations, 37.

Liver, weight, 94. Growth of, 37-39, 83.

Spleen, weight, 95. Measurement in skull,- 38.

Lungs, weight, 95. Enamel, 38.

Blood, weight, 96. Rate of growth before attrition, 38.

Alimentary tract, weight, 97. Rate of growth after attrition, 38.

Thyroid, weight, 97.

Temperature of Body, 60, 61.

Hypophysis, weight, 98. Suprarenals, weight, 99. Testes, descent of, 27. 278

Urine

Volume, 59.

Weight of nitrogen in, 59, 60. similar to that of man, 60. Variations—Coefficients of in body weight 103, 113. Cranial measurements, 33-35.

Water, Percentage of

in entire body (dry substance),*176-179, 180.

in systems, 177, 179. in organs, 176, 177.

INDEX

in blood, 40, N 211.

in brain of rat and of man, 6.

in brain and spinal cord, 176, 179, N 211-213. in skeleton, 78-81.

Weight at Birth, 22, 24-26. According to size of litter, 25. According to characters of mothers:

Age, 24.

Weight, 24, 25.

Undergrowth, 26.

Disease, 26.

Weight-length Ratio, 72, N 202.

FINIS



PLEASE DO NOT REMOVE CARDS OR SLIPS FROM THIS POCKET


UNIVERSITY OF TORONTO LIBRARY


QL Donaldson, Henry Herbert 737 The rat

R6D6

BioMed.

s2