Uterine Gland

From Embryology
Revision as of 12:28, 7 February 2014 by Z8600021 (talk | contribs)
Embryology - 28 Mar 2024    Facebook link Pinterest link Twitter link  Expand to Translate  
Google Translate - select your language from the list shown below (this will open a new external page)

العربية | català | 中文 | 中國傳統的 | français | Deutsche | עִברִית | हिंदी | bahasa Indonesia | italiano | 日本語 | 한국어 | မြန်မာ | Pilipino | Polskie | português | ਪੰਜਾਬੀ ਦੇ | Română | русский | Español | Swahili | Svensk | ไทย | Türkçe | اردو | ייִדיש | Tiếng Việt    These external translations are automated and may not be accurate. (More? About Translations)

Introduction

Uterine gland secretory phase

The uterine gland or endometrial gland is a simple tubular glands formed by invagination of the uterine endometrium. The epithelium is described as a columnar epithelium of ciliated cells and secretory cells. The glands extend into the underlying thick vascular stromal layer. The glands line the uterus body and change in appearance and secretion during the menstrual cycle. The glands secretions function to provide the initial nutritional support of the conceptus and may have a role in maintaining adhesion.

Menstrual Cycle Links: Introduction | menstrual histology | ovary | corpus luteum | oocyte | uterus | Uterine Gland | estrous cycle | pregnancy test
Historic Embryology - Menstrual 
1839 Corpus Luteum Structure | 1851 Corpus Luteum | 1933 Pap Smear | 1937 Corpus Luteum Hormone | 1942 Human Reproduction Hormones | 1951 Corpus Luteum | 1969 Ultrastructure of Development and Regression | 1969 Ultrastructure during Pregnancy

Some Recent Findings

Uterine Gland Histology During the Menstrual Cycle

Uterine gland proliferative phase.jpg Uterine gland secretory phase.jpg
Uterine gland proliferative phase Uterine gland secretory phase

Uterine changes cartoon 1.jpg

Menstrual Cycle Histology

The different stages of the menstrual cycle can be monitored by the cellular appearance of vaginal smears Menstrual Cycle - Histology.

A more invasive technique is dilate and curettage (DnC), which allows sampling of the functional layer of the uterine endometrium Menstrual Cycle - Histology.

Decidualization

Decidualization is the process of converting endometrial stromal cells into decimal cells and requires at least 8–10 days of hormone stimulation.

  • initiated during the mid-secretory phase of the menstrual cycle
  • in response to elevated progesterone levels
  • acts mainly through progesterone receptor (PR) PR-A (other isoform is PR-B)

Molecular

PMID: 21546446 Prokineticin 1 (PROK1) signalling via prokineticin receptor 1 (PROKR1) regulates Dickkopf 1 (DKK1) expression, a negative regulator of canonical Wnt signaling.


Links: Placenta - Maternal Decidua

References

  1. <pubmed>22908303</pubmed>


Books

Reviews

Articles

<pubmed></pubmed> <pubmed></pubmed> <pubmed></pubmed> <pubmed></pubmed>

Search Pubmed

Search Pubmed Now: Uterine Gland

Additional Images

Terms

External Links

External Links Notice - The dynamic nature of the internet may mean that some of these listed links may no longer function. If the link no longer works search the web with the link text or name. Links to any external commercial sites are provided for information purposes only and should never be considered an endorsement. UNSW Embryology is provided as an educational resource with no clinical information or commercial affiliation.


Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link



Cite this page: Hill, M.A. (2024, March 28) Embryology Uterine Gland. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Uterine_Gland

What Links Here?
© Dr Mark Hill 2024, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G