User:Z5178463

From Embryology
Revision as of 20:23, 4 October 2017 by Z5178463 (talk | contribs)
    2017 Project Groups
Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

Z5177691

Z5178570

Z5093005

Z5059696

Z5059949

Z5178275

Z5178407

Z5076039

Z5017644

Z5015446

Z5178463

Z5076019

Z5059996

Z5076466

Z5018962

Z5177670

Z5117343

Z5075309

Z5075778

Z3416557

Z5178462

Z5059373

Z5114217

Z5062492

Z5076351

Z5177699

Z5113034

Z5114433

Z5076158

Z5018156

Mark Hill - Lab 1 page

Primary Heart Field and Heart Tube Formation

At around day 15 of human development, the first cells start to migrate through the primitive streak to the anterior and lateral sections of the cranial end of the embryonic disc, forming bilateral primary heart fields. These primary heart fields resemble a crescent shape, as seen from Figure ().

At around day 18, the lateral plate mesoderm is split into two layers, namely the splanchnic mesoderm, facing the endoderm and the somatic mesoderm, facing the ectoderm. The former portion of the mesoderm gives rise to the heart. The portion between the splanchnic and somatic mesoderm is the presumptive pericardial space. Cells from the splanchnic mesoderm will merge to form 2 lateral endocardial tubes (also known as angioblastic cords) and as they form a lumen, are enveloped by myocardium. These endocardial tubes are as of now located inferior to the presumptive pericardial space.

At around 19-21 days, the embryonic disc starts to fold. This folding begins cranially and extends in a caudal direction. The endocardial tubes fuse and is now located between the pericardial space and newly formed foregut that becomes surrounded by pericardial space (also known as the pericardial coelom). At this stage, the myocardium does not completely engulf the endocardial tubes. Instead, it remains in a continuous attachment with the non-cardiac splanchnic mesoderm through a structure called the dorsal mesocardium.

At this point, the primitive heart tube is bilaterally symmetrical and resembles an inverted Y shape. Starting from the inflow tract, there is the right and left sinus venouses that receives blood from the embryo, followed by the primitive atrium, primitive ventricle, bulbus cordis and then the truncus asteriosus which gives rise to the aortic and pulmonary trunk. [1]

<pubmed> PMC1767747</pubmed> Z5178463

Cardiac Neural Crest and Outflow tract

The outflow tract is a tube that runs from the right ventricle to the aortic sac and presents with a distinctive dog-leg bend that separates the proximal (bulbus cordis) and distal (truncus arteriosus) ends of the tract. The endocardial jelly that lines the lumen of the outflow tract concentrates to form the endocardial cushion facing each other that spirals in a 180-degree twist through the length of the outflow tract. Like the outflow tract, these endocardial cushions can be divided into distal and proximal moieties. The distal endocardial cushions are also known as the truncal ridges and the proximal ones are also known as the bulbar ridges. Cells from the cardiac neural crest migrates out of the neural tube, through the pharyngeal arches and aortic sac and into the outflow tract, where it condenses in the ridges to support the septation of the outflow tract. [2] [3]

The fusion of the endocardial cushions starts from the distal end of the outflow tract and proceeds proximally. Fusion of the truncal endocardial cushions forms the aorticopulmonary septum that separates the truncus into an aortic and pulmonary trunk. The bulbar endocardial cushions fuse as they extend towards the interventricular septum, separating the proximal outflow tract into the prospective aortic and pulmonary trunks. As the outflow tract separates, the aortic trunk leads to the 3rd and 4th pharyngeal arch arteries and the pulmonary trunk leads to the 6th pharyngeal arch artery. [4][5]


Outflow tract anatomy.png

Outflow Tract Anatomy. This image portrays an image of the outflow tract viewed in a distal and proximal manner. The tubular endocardial cushions are located in the distal end and the bulbar endocardial cushions are located in the proximal end. The proximal end of the outflow tract extends from the right ventricle. This image is based upon <pubmed>PMC1767864</pubmed>

<pubmed> PMC1767864</pubmed> <pubmed> 23633400 </pubmed> (Z5178463)





Here is the Student Page demonstration page I showed in the Practical class.

Use this page to practice editing and don't forget to add a topic to the 2017 Group Project 3 page.

student page



 2017 ANAT2341 - Timetable | Course Outline | Group Projects | Moodle | Tutorial 1 | Tutorial 2 | Tutorial 3

Labs: 1 Fertility and IVF | 2 ES Cells to Genome Editing | 3 Preimplantation and Early Implantation | 4 Reproductive Technology Revolution | 5 Cardiac and Vascular Development | 6 CRISPR-Cas9 | 7 Somitogenesis and Vertebral Malformation | 8 Organogenesis | 9 Genetic Disorders | 10 Melanocytes | 11 Stem Cells | 12 Group

Lectures: 1 Introduction | 2 Fertilization | 3 Week 1/2 | 4 Week 3 | 5 Ectoderm | 6 Placenta | 7 Mesoderm | 8 Endoderm | 9 Research Technology | 10 Cardiovascular | 11 Respiratory | 12 Neural crest | 13 Head | 14 Musculoskeletal | 15 Limb | 16 Renal | 17 Genital | 18 Endocrine | 19 Sensory | 20 Fetal | 21 Integumentary | 22 Birth | 23 Stem cells | 24 Revision

 Student Projects: 1 Cortex | 2 Kidney | 3 Heart | 4 Eye | 5 Lung | 6 Cerebellum
  1. <pubmed> PMC1767747 </pubmed>
  2. <pubmed> PMC1767864 </pubmed>
  3. <pubmed> 23633400 </pubmed>
  4. <pubmed> PMC1767864 </pubmed>
  5. <pubmed> 23633400 </pubmed>