User:Z5018221: Difference between revisions

From Embryology
Line 147: Line 147:


Over the years, patients with DMD have begun to live longer into their 20s and 30s showing an improvement in treatment.  Various factors such as earlier and continuous use of corticosteroids, routine flu and pneumococcal injections, and intense physical therapy have influenced these results. Currently, the therapies available for DMD aim to manage the disease rather than cure it. Corticosteroids are given to the patient to improve muscle function and strength however with continued use into adulthood, side effects such as weight gain, hypertension, hyperglycemia, cataracts and osteoporosis begin to surface. Patients also undergo physiotherapy to maintain function of the limbs, particularly of the upper extremity. A daily stretch routine targeting the muscles of the forearm wrist and fingers is crucial so the patient can still control their wheelchair, for example.  
Over the years, patients with DMD have begun to live longer into their 20s and 30s showing an improvement in treatment.  Various factors such as earlier and continuous use of corticosteroids, routine flu and pneumococcal injections, and intense physical therapy have influenced these results. Currently, the therapies available for DMD aim to manage the disease rather than cure it. Corticosteroids are given to the patient to improve muscle function and strength however with continued use into adulthood, side effects such as weight gain, hypertension, hyperglycemia, cataracts and osteoporosis begin to surface. Patients also undergo physiotherapy to maintain function of the limbs, particularly of the upper extremity. A daily stretch routine targeting the muscles of the forearm wrist and fingers is crucial so the patient can still control their wheelchair, for example.  
Research continues in the field of the disease and potential therapies have been proposed, in particular gene therapies. An example of a potential gene therapy for DMD patients is the CRISPR/Cas 9 system. This system is a genome modification technology, first identified in bacteria, re-engineered to 2 components of an RNA guide sequence and a DNA endonuclease. The system has now been modified to function in mammalian cells where it could generate random mutations or targeted repair, hence has been proposed as a potential way of disease modification.
Research continues in the field of the disease and potential therapies have been proposed, in particular gene therapies. An example of a potential gene therapy for DMD patients is the CRISPR/Cas 9 system. This system is a genome modification technology, first identified in bacteria, re-engineered to 2 components of an RNA guide sequence and a DNA endonuclease. The system has now been modified to function in mammalian cells where it could generate random mutations or targeted repair, hence has been proposed as a potential way of disease modification.
In order to correct the mutant phenotype of DMD the CRISPR/Cas9 system was recently employed on a mouse MdX model. It was found that the CRISPR/Cas 9 was able to repair a large population of skeletal myocytes, with the myocytes showing a good survival rate. Although the CRISPR/Cas 9 system has been successful in animal studies, further research must now be undertaken for employment in human patients.
In order to correct the mutant phenotype of DMD the CRISPR/Cas9 system was recently employed on a mouse MdX model. It was found that the CRISPR/Cas 9 was able to repair a large population of skeletal myocytes, with the myocytes showing a good survival rate. Although the CRISPR/Cas 9 system has been successful in animal studies, further research must now be undertaken for employment in human patients.



Revision as of 21:39, 22 September 2016

Student Information (expand to read)  
Individual Assessments
Mark Hill.jpg

Please leave this template on top of your student page as I will add your assessment items here.

Beginning your online work - Working Online in this course

  1. Make your own page.
    1. Log-in to the embryology website using your student ID and Zpass.
    2. Click your student number (shown in red at the top right of the screen following log-in)
    3. Create page using the tab at the top of the page, and save.
  2. Add the following to the top of your page exactly as shown - {{ANAT2341Student2016}}
  3. How would you identify your Type in a group and add to your page.
  4. What was the most interesting thing you learnt in the fertilisation lecture?


If you have done the above correctly your ZID should be blue and not red on this page link - ANAT2341 2016 Students.


Here is the example page I made in Lab 1 Student Page. With a few more explanatory notes.

Click here to email Dr Mark Hill

Editing Links: Editing Basics | Images | Tables | Referencing | Journal Searches | Copyright | Font Colours | Virtual Slide Permalink | My Preferences | One Page Wiki Card | Printing | Movies | Language Translation | Student Movies | Using OpenOffice | Internet Browsers | Moodle | Navigation/Contribution | Term Link | Short URLs | 2018 Test Student
Lab 1 Assessment - Researching a Topic
In the lab I showed you how to find the PubMed reference database and search it using a topic word. Lab 1 assessment will be for you to use this to find a research reference on "fertilization" and write a brief summary of the main finding of the paper.
  1. Add a new Sub-heading "Lab 1 Assessment" (without the quotes).
  2. Search the database for a reference on "fertilisation" published in the last 5 years.
    1. It must be a research article not a Review.
    2. The full paper must be available online, not just the abstract.
  3. Add a link to this reference using its PMID using this code <pubmed>XXXXX</pubmed> replacing the Xs with just the PMID number (no text).
  4. Under the reference write a short summary of the papers main findings.
    1. Only 1-2 paragraphs.
    2. Must not be a copy of the paper abstract.
  5. Save and you are done.

PubMed logo.gif

Lab 2 Assessment - Uploading an Image
  1. Upload a research image using the guide information below. The image uploaded for your individual assessment can relate to your project or from fertilisation to week 3 of development (upload only a single image).
  2. Add that image to your own individual page (see Images) including an image title and its reference link.
  3. No two students should upload the same image, check new images before you upload.
  4. No student can delete an image once uploaded, please contact me by email with the image address and I will delete (with no penalty, just glad to help out).


2016 Group Project Topic - Signaling in Development

OK you are now in a group

  1. Go to the blank group page and add a topic that interests you along with your student signature.
  2. No two groups can do the same topic, but at this stage the final topic has not yet been decided (next week).

Initially the topic can be as specific or as broad as you want.


Chicken embryo E-cad and P-cad gastrulation.png

Chicken embryo E-cad and P-cad gastrulation[1]

References

  1. <pubmed>27097030</pubmed>
Lab 4 Assessment - GIT Quiz

ANAT2341 Quiz Example | Category:Quiz | ANAT2341 Student 2015 Quiz Questions |

Design 4 quiz questions based upon gastrointestinal tract. Add the quiz to your own page under Lab 4 assessment and provide a sub-sub-heading on the topic of the quiz.

An example is shown below (open this page in view code or edit mode). Note that it is not just how you ask the question, but also how you explain the correct answer.

Lab 5 Assessment - Course Review
Complete the course review questionnaire and add the fact you have completed to your student page.
Lab 6 Assessment - Cleft Lip and Palate
  1. Identify a known genetic mutation that is associated with cleft lip or palate.
  2. Identify a recent research article on this gene.
  3. How does this mutation affect developmental signalling in normal development.
Lab 7 Assessment - Muscular Dystrophy
  1. What is/are the dystrophin mutation(s)?
  2. What is the function of dystrophin?
  3. What other tissues/organs are affected by this disorder?
  4. What therapies exist for DMD?
  5. What animal models are available for muscular dystrophy?
Lab 8 Assessment - Quiz
A brief quiz was held in the practical class on urogenital development.
Lab 9 Assessment - Peer Assessment
  • This will form part of your individual assessment for the course.
  • Each student should now look at each of the other Group projects in the class.
  • Next prepare a critical assessment (should include both positive and negative issues) of each project using the project group assessment criteria.
  • This assessment should be pasted without signature on the top of the specific project's discussion page. (minimum length 3-5 paragraphs/project)
  • This critical assessment should also be pasted on your own student page.
  • Each student should therefore have 5 separate reports pasted on their own page for this assessment item.
  • Length, quality and accuracy of your reports will be part of the overall mark for this assessment.
    • there will be a greater loading on this than simple question assessments.
Lab 10 Assessment - Stem Cells
As part of the assessment for this course, you will give a 15 minutes journal club presentation in Lab 10. For this you will in your current student group discuss a recent (published after 2011) original research article (not a review!) on stem cell biology or technology.
Lab 10 - Stem Cell Presentations 2016
Group Mark Assessor General Comments

Group 1: 15/20

Group 2: 19/20

Group 3: 20/20

Group 4: 19/20

Group 5: 16/20

Group 6: 16/20

The students put great effort in their presentation and we heard a nice variety of studies in stem cell biology and regenerative medicine today. The interaction after the presentation was great.

As general feedback I would like to advise students to:

  • Never discuss M&M as a separate section in journal clubs. I gave this advice prior to the lab, but still most groups did talk through the M&M section.
  • Do not use your slides as cheat sheets, avoid text on slides, know what messages you need to get across, use images to illustrate these
  • Engage with your slides. Talk through them. Point at panels. Gauge your audience’s understanding by making eye contact with them
  • Avoid using abbreviations. Most people do not readily understand these and will lose track
Lab 11 Assessment - Heart Development
Read the following recent review article on heart repair and from the reference list identify a cited research article and write a brief summary of the paper's main findings. Then describe how the original research result was used in the review article.

<pubmed>26932668</pubmed>Development

ANAT2341Lectures - Textbook chapters  
Lecture (Timetable) Textbook - The Developing Human Textbook - Larsen's Human Embryology
Embryology Introduction Introduction to the Developing Human
Fertilization First Week of Human Development Gametogenesis, Fertilization, and First Week
Week 1 and 2 Second Week of Human Development Second Week: Becoming Bilaminar and Fully Implanting
Week 3 Third Week of Human Development Third Week: Becoming Trilaminar and Establishing Body Axes
Mesoderm Fourth to Eighth Weeks of Human Development Fourth Week: Forming the Embryo
Ectoderm Nervous System Development of the Central Nervous System
Early Vascular Cardiovascular System Development of the Vasculature
Placenta Placenta and Fetal Membranes Development of the Vasculature
Endoderm - GIT Alimentary System Development of the Gastrointestinal Tract
Respiratory Respiratory System Development of the Respiratory System and Body Cavities
Head Pharyngeal Apparatus, Face, and Neck Development of the Pharyngeal Apparatus and Face
Neural Crest Nervous System Development of the Peripheral Nervous System
Musculoskeletal Muscular System Development of the Musculoskeletal System
Limb Development of Limbs Development of the Limbs
Renal Urogenital System Development of the Urinary System
Genital Urogenital System Development of the Urinary System
Stem Cells
Integumentary Integumentary System Development of the Skin and Its Derivatives
Endocrine Covered through various chapters (see also alternate text), read head and neck, neural crest and renal chapters.
Endocrinology Textbook - Chapter Titles  
Nussey S. and Whitehead S. Endocrinology: An Integrated Approach (2001) Oxford: BIOS Scientific Publishers; ISBN-10: 1-85996-252-1.

Full Table of Contents

Heart Cardiovascular System Development of the Heart
Sensory Development of Eyes and Ears Development of the Eyes
Fetal Fetal Period Fetal Development and the Fetus as Patient
Birth and Revision
Additional Textbook Content - The following concepts also form part of the theory material covered throughout the course.
  1. Principles and Mechanisms of Morphogenesis and Dysmorphogenesis
  2. Common Signaling Pathways Used During Development
  3. Human Birth Defect
ANAT2341 Course Timetable  
Week (Mon) Lecture 1 (Mon 1-2pm) Lecture 2 (Tue 3-4pm) Practical (Fri 1-3pm)
Week 2 (1 Aug) Introduction Fertilization Lab 1
Week 3 (8 Aug) Week 1 and 2 Week 3 Lab 2
Week 4 (15 Aug) Mesoderm Ectoderm Lab 3
Week 5 (22 Aug) Early Vascular Placenta Lab 4
Week 6 (29 Aug) Gastrointestinal Respiratory Lab 5
Week 7 (5 Sep) Head Neural Crest Lab 6
Week 8 (12 Sep) Musculoskeletal Limb Development Lab 7
Week 9 (19 Sep) Renal Genital Lab 8
Mid-semester break
Week 10 (3 Oct) Public Holiday Stem Cells Lab 9
Week 11 (10 Oct) Integumentary Endocrine Lab 10
Week 12 (17 Oct) Heart Sensory Lab 11
Week 13 (24 Oct) Fetal Birth and Revision Lab 12

ANAT2341 2016: Moodle page | ECHO360 | Textbooks | Students 2016 | Projects 2016


Lab Attendance

Z5018221 (talk) 14:41, 12 August 2016 (AEST)

Z5018221 (talk)


Z5018221 (talk) 14:06, 19 August 2016 (AEST)

Z5018221 (talk) 14:13, 26 August 2016 (AEST)

Z5018221 (talk) 15:19, 2 September 2016 (AEST)

Z5018221 (talk) 13:21, 9 September 2016 (AEST)

Z5018221 (talk) 13:05, 16 September 2016 (AEST)

Lab 1 Assessment

<pubmed>27462598</pubmed>

During the process of oocyte retrieval, a technique used in in vitro fertilization (IVF), oocytes may become exposed to ovarian endometriotic fluid, an event that is unlikely however possible in the clinical environment. Hashin et al. investigated the effect of various concentrations of human endometriotic fluid exposure on mice cumulus-oocyte complexes (COCs) by measuring fertilization, blastocyst formation and hatched blastocyst rate. COCs obtained from 46-week-old female mice were randomly divided into 5 groups and each exposed to differing concentrations of endometriotic fluid obtained from a 29-year-old patient during aspiration, for 5 minutes. Final concentrations were 0.625%, 1.25%, 2.5% and 5%. COCs were then inseminated with sperm retrieved from male mice. Fertilisation was assessed day 1 following insemination by formation of 2-cell, and blastocyst formation on day 5.

Results indicated no apparent difference between the endometriotic fluid treated groups and the non-exposed control group except for the 0.625% exposure group which had a higher fertilization rate. Blastocyst formation rate and hatched blastocyst rates were also similar between exposed and non-exposed groups, overall indicating no detrimental impact on fertilization, blastocyst formation, and hatched blastocyst rates, following exposure to differing concentrations of endometriotic fluid. Previous experiments have generated results proving otherwise such as an experiment by Piromlertamorn et al. using mice. It was shown that use of a single concentration of endometriotic fluid leads to similar results in fertilization and blastocyst formation rate, however a significant decrease in blastocyst hatching rate. Despite the result, the authors noted this decrease was also observed in serum-treated groups, providing conflicting results. Hashin et al. have additionally noted a few limitations to their experiment where the endometriotic fluid utilised was only from a single patient, and pregnancy and implantation rates were not analysed. The authors of the study stress that to truly assess the effect of endometriotic fluid on oocyte and embryonic development, the contents of the fluid should be studied further to determine cytoxic effect, and its effect on pregnancy and implantation.


Mark Hill 18 August 2016 - You have added the citation correctly and written a good descriptive summary of the article findings. I guess I am am wondering why the researchers expected human endometriotic fluid to have an effect on mice? Note the house mouse generally only lives about a year. Assessment 5/5


Lab 2 Assessment

Ago2 in Mammalian Gastrulation

Ago2 and it's Importance in FGF Signalling in Mammalian Gastrulation

<pubmed>18166081</pubmed>


Mark Hill 29 August 2016 - All information Reference, Copyright and Student Image template correctly included with the file and referenced on your page here. Note though to display the reference citation correctly with the legend. You need to include the ref name for a citation, as shown below.

Code: <ref name="PMID18166081"><pubmed>18166081</pubmed></ref>

Ago2 in Mammalian Gastrulation[1]

Assessment 5/5

Referencing

fertilization

Z5018221 (talk) 14:34, 5 August 2016 (AEST)

PMID 27486480

http://molecularcytogenetics.biomedcentral.com/articles/10.1186/s13039-016-0269-1


Lab 3 Assessment

Mark Hill 31 August 2016 - Lab 3 Assessment Quiz - Mesoderm and Ectoderm development.

Question 1 - somites

Question 3 - brain vesicles

Question 5 - maternal diet

Assessment 3/5


Lab 4 Assessment

Gastrointestinal Development in the Embryo

1 During embryonic folding, a piece of the yolk sac pinches off to become the primitive gut. The yolk sac however, remains connected to the gut tube via the vitelline duct.

True
False

2 Which is the correct sequence in liver development:

Hepatic diverticulum→ Ventral foregut endoderm→ Gallbladder→ Hepatic buds→ Hepatocytes
Ventral foregut endoderm→ Hepatic buds→ Hepatocytes→ Hepatic diverticulum→ Gallbladder
Gallbladder→ Hepatocytes→ Hepatic buds→ Hepatic diverticulum→ Ventral foregut endoderm
Ventral foregut endoderm→ Hepatic diverticulum→ Gallbladder→ Hepatic buds→ Hepatocytes

3 All of the following function as a site of hematopoiesis during embryonic development EXCEPT:

Yolk Sac
Bone Marrow
Spleen
Liver

4 Which of the following is TRUE:

The cloaca forms the anterior urinary and dorsal rectal regions by formation of a septum within a common urinary, genital, GIT space
The foregut is supplied by the superior mesenteric artery
Abnormalities such as atresia and stenosis can lead to recanalization
Somatic and splanchnic mesoderm arise from intermediate mesoderm


Lab 5 Assessment

Questionnaire completed


Lab 6 Assessment

Cleft palate, often occurring in conjunction with cleft lip is among the most common congenital malformations and involves abnormal facial development during gestation. Between the 4th week and the 6th-7th weeks of development, migrating neural crest cells of the anterior neural tube with the mesodermal cells form the facial primordia. From here the filtrum and primary palate are formed, by the merging of the nasal prominences to form the intermaxillary segment, which then fuses with the maxillary prominences to form the upper lip. The palatal shelves additionally grow out from the maxillary prominences.

This complex process involves a variety of signalling molecules, transcriptions factors and cell-cell interactions, and an interference in the cascade can lead to the failure of fusion of the facial primordia, resulting in facial clefting. An important transcription factor expressed primarily in the palatal shelves and tongue during palatogenesis is TBX22. TBX22 is a member of a family of transcriptional regulators containing a common DNA-binding domain, the T-box. Mutations of the TBX22 gene have been strongly linked with syndromic X linked cleft palate producing clefting of the palate and ankyloglossia, otherwise known as tongue-tie.

Mutations of the TBX22 gene commonly occur as nucleotide alterations where amino acid substitutions, deletions and transitions may occur as well as sequence variants close to splice sites. These mutations lead to formation of truncated proteins, with missense mutations affecting amino acids within the DNA binding T box domain. Missense mutations of TBX22 primarily occur at major areas of contact with the target DNA, affecting and reducing the protein’s ability to bind to the DNA or even other binding proteins in the transcriptional complex. This loss in binding to DNA and other crucial proteins within the transcriptional complex therefore affects the downstream cascade of gene activation, and as a result the development and fusion of the palate.

Through research it has been shown that a variety of genetic mutations involving genes such as TBX22, PVRL1, and IRF6 lead to facial clefting. However the location and type of mutation does not completely determine the severity of the clefting but rather environmental factors. Environmental factors such as alcohol, tobacco, and toxin exposure during pregnancy can also impact palatogenesis.

1) <pubmed>14729838</pubmed> 2) <pubmed>14722155</pubmed>


Lab 7 Assessment

1) What is/are the dystrophin mutation(s)?

In approximately 65% of patients with Duchenne Muscular Dystrophy (DMD), lack of dystrophin is due to a frameshift mutation caused by gene deletions, which give rise to premature stop codons, hence preventing translation to protein. In the remaining cases, point mutations and small gene insertions/deletions are the underlying causes leading to formation of truncated protein, with exon duplications responsible for approximately 5% of all mutations.

2) What is the function of dystrophin?

DMD is caused by the absence of the protein dystrophin in skeletal, smooth and cardiac muscle, a protein present at the membrane of muscle fibres and an important link between the cytoplasmic and extracellular matrix of the muscle fibre. Due to this it has an important mechanical role where it maintains the strength of muscle fibres, as, in fibres lacking dystrophin, normal contraction weakens the fibre and leads to degeneration. As well as playing a mechanical role, it is also involved in signalling pathways such as pathways for production of nitric oxide, and the Ras/MPAK pathway.

3) What other tissues/organs are affected by this disorder?

Dystrophin is not only present in skeletal muscle, but also in cardiac muscle. The heart can be affected whereby the conduction tissues can get damaged and lead to abnormal rhythms such as arrthymia and dysrhythmia, or pump abnormally leading to cardiomyopathy. Weakening of respiratory muscles is additionally seen in patients, leading to difficulties in breathing. At this point ventilation machines are utilized to assist with breathing.

4) What therapies exist for DMD?

Over the years, patients with DMD have begun to live longer into their 20s and 30s showing an improvement in treatment. Various factors such as earlier and continuous use of corticosteroids, routine flu and pneumococcal injections, and intense physical therapy have influenced these results. Currently, the therapies available for DMD aim to manage the disease rather than cure it. Corticosteroids are given to the patient to improve muscle function and strength however with continued use into adulthood, side effects such as weight gain, hypertension, hyperglycemia, cataracts and osteoporosis begin to surface. Patients also undergo physiotherapy to maintain function of the limbs, particularly of the upper extremity. A daily stretch routine targeting the muscles of the forearm wrist and fingers is crucial so the patient can still control their wheelchair, for example.

Research continues in the field of the disease and potential therapies have been proposed, in particular gene therapies. An example of a potential gene therapy for DMD patients is the CRISPR/Cas 9 system. This system is a genome modification technology, first identified in bacteria, re-engineered to 2 components of an RNA guide sequence and a DNA endonuclease. The system has now been modified to function in mammalian cells where it could generate random mutations or targeted repair, hence has been proposed as a potential way of disease modification.

In order to correct the mutant phenotype of DMD the CRISPR/Cas9 system was recently employed on a mouse MdX model. It was found that the CRISPR/Cas 9 was able to repair a large population of skeletal myocytes, with the myocytes showing a good survival rate. Although the CRISPR/Cas 9 system has been successful in animal studies, further research must now be undertaken for employment in human patients.

5) What animal models are available for muscular dystrophy?

Currently, the most common animal model used for DMD research is the MDX mouse, which contains a nonsense mutation abolishing formation of dystrophin. However to bridge the gap between these models and human patients in terms of vector production and immune response, canine models are now being utilized. Dog breeds of the Golden Retriever, Rottweiler and Cavalier King Charles have been reported as dystrophin deficient due to gene deletions.

References

1) <pubmed>27515321</pubmed> 2) <pubmed>16887341</pubmed> 3) <pubmed>27619714 </pubmed>

  1. <pubmed>18166081</pubmed>